
PHYSICAL REVIEW D VOLUME 52, NUMBER 2 15 JULY 1995

Lyapunov exponent and plasmon damping rate in non-Abelian gauge theories
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We explain why the maximal positive Lyapunov exponent of classical SU(N) gauge theory
coincides with (twice) the damping rate of a plasmon at rest in the leading order of thermal gauge
theory.
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I. INTR.&DU CTIC)N

Numerical studies of Hamiltonian SU(N) lattice gauge
theory in 3+1 dimensions have shown that the gauge
fields exhibit chaotic behavior in the classical limit [1].
The numerical value of the largest positive Lyapunov ex-
ponent Ao has been obtained for SU(2) and SU(3) with
the result [1,2]

0 = &wg'Ep,

Ap
——cN(N —1)g T = 0.34g T (N =2),

(N = 3). (2)

where E„ is the average energy per plaquette, c2 = 0.17
for SU(2), and cs = 0.10 for SU(3). For the SU(2) gauge
theory the complete spectrum of Lyapunov exponents
was obtained on small lattices [3]. These calculations,
which follow the evolution of a classical gauge field config-
uration in Minkowski space, also showed that the energy
density distribution on the lattice rapidly approaches a
thermal distribution [4]. This finding confirms the ex-
pectation of a finite growth rate of the coarse-grained
entropy density of the gauge field, which follows from
the observation that the sum over all positive Lyapunov
exponents at Gxed energy density grows like the volume
[3]. Hence, at any given level of coarse graining, the clas-
sical gauge Geld "self-thermalizes" on a time scale of the
order of the inverse Lyapunov exponent.

In order to determine the value of the maximal Lya-
punov exponent Ao, the evolution of the gauge field con-
figurations must be followed over periods to &) Ao . The
Lyapunov exponent is therefore electively obtained for
gauge fields that are members of a thermal ensemble, and
we can identify the average energy per plaquette E„ in
(1) with that of a thermalized lattice. At high temper-
ature the gauge field is a collection of weakly coupled
harmonic oscillators; hence, the average energy per inde-
pendent degree of freedom of the classical gauge field is
equal to the temperature T, yielding E„= s (N —l)T
for SU(N). The factor —accounts for the restrictions im-
posed by Gauss' law. We can therefore rewrite the result
(1) as

As already noted in [4] these values for Ao coincide, apart
from a factor 2, with those of the damping rate of a ther-
mal plasmon at rest, obtained by Braaten and Pisarski
[5] in the framework of thermal perturbation theory:

0=6635 g T 0.176g'r
24~ 0.264g T

(N =2),
(N = 3).

The goal of the present work is to establish this connec-
tion and to explain the origin of the factor Ao/po ——2.

We approach this goal in several steps. First we re-
view the numerical "measurement" of the Lyapunov ex-
ponent in classical lattice gauge theory. We point out
that the exponential growth rate of a small perturbation
in the magnetic energy density used in those calculations
is equal to twice of the growth rate of fluctuations in the
elementary field variable, in the continuum limit the vec-
tor potential. This explains the factor 2 between Ao and
$0 ~

In the next step we demonstrate that in classical calcu-
lations the linear perturbation propagation correspond-
ing to the equations of Inotion of a chaotic dynamical
system has in general a complex &equency spectrum.
The Lyapunov exponent is equal to the magnitude of
the imaginary part of those f'requencies.

Then we argue that the chaotic dynamics of the classi-
cal system acts like a thermal ensemble averaging the per-
turbation propagation equation over stochastic frequen-
cies. The square of these frequencies can either be pos-
itive or negative. In this case the damping rate and the
plasma frequency of the classical elementary field fluctu-
ations are related to the mean value and the width of the
probability distribution of frequency squares.

The final result of these considerations is that the
Lyapunov exponent as defined in [1] measures twice the
damping rate of classical gauge field fluctuations on the
lattice. It is left to show that the quantum field theo-
retical calculation of the thermal damping rate at rest
in hot perturbation theory in the leading O(g2T) order
survives in the classical (h —+ 0) limit. We begin with the
discussion of this point in order to establish connection
with thermal quantum field theory.
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II. COLLECTIVE PLASMA MODES

We begin by brie8y reviewing the derivation of the
plasmon damping rate. Non-Abelian gauge Geld Auctu-
ations in a thermal background have been studied ex-
tensively in the framework of perturbation theory [6—10).
The gauge fiel develops massive collective modes (plas-
mons) with frequency ~(k) ) k due to interaction with
"hard" thermal gauge bosons, i.e. , excitations with en-
ergy of order T. The energy of a plasmon at rest is
mz = u(0) = s~NgT in SU(N) gauge theory For our
purpose it is important that the dispersion relation ~(k)
can be obtained in the framework of semiclassical trans-
port theory, where classical Geld Huctuations a„are cou-
pled to the quantized thermal excitations of the gauge
field [11]. The gauge-invariant description of the collec-
tive modes requires the introduction of effective n-point
vertices [8], which can be systematically derived from the
e8'ective action [12,13]

EH~i, (a„) = ——m dn tr
~

f" f„2

where n = (1,n) is a null four-vector, and the integral is
over all directions of the spatial unit vector n. D stands
for the gauge-covariant derivative. We have denoted the
collective gauge potential a„and field strength f„by
lower-case letters to indicate that these describe Huctua-
tions around a thermal background. Note that ZH~z, is
a classical construction, with the sole exception that the
plasmon rest mass m, g depends on the energy distribution
n(ur) = (e" ~+ —1) of quantized thermal excitations of
the gauge Geld:

thermal excitations, it also applies to the collective ex-
citations of the classical gauge Beld on a lattice. The
sole modification is that the spectrum of thermal Quctu-
ations is now given by the limit of the Bose distribution.
Denoting the lattice spacing by a we find

2
Q W 1 1 Q T

m m —%g T) —= Ng-
g (d 3'7t a (7)

(8)

where pii = ~3m~ is the inverse Debye color screening
length. The scattering rate v is obtained by multiplying
with the gluon density in the initial state and with the
Bose factor in the final state, yielding

in the weak-coupling, large volume limit. The plas-
mon mass (7) is a purely classical quantity of dimension
(length) not containing ti, but it diverges in the con-
tinuum limit a ~ 0. This is not surprising, since the
lattice spacing serves as a cutofF that is required to regu-
larize the ultraviolet divergences of the classical thermal
gauge theory. The exponential growth rate of small clas-
sical Geld Quctuations is not affected by this divergence
because it does not depend on the value of mg, as men-
tioned above. The result (3) for the plasmon damping
rate po remains valid if the correct plasmon mass mg in
the efFective action (4) is replaced by the value (7) for
the classical gauge Geld deGned on a lattice.

More intuitively, the independence of po from the value
of mg can be understood as follows. The cross section for
scattering of a thermal gluon on a slow plasmon is

d3k
n((u) [1+n(cu)] a

27r s

N~ —1 TpDo. N
4

9' & '70)

v = 2(N —1)

At leading order in g, (5) is evaluated for hard thermal
quanta with u = ~k~.

Braaten and Pisarski [5] showed that the collective
plasmon modes are unstable due to the efFective inter-
action (4). The plasmon damping rate p(k) is defined as
the imaginary part of the plasmon pole in the Feynman
propagator corresponding to decaying plane wave solu-
tions. The rate of instability for a plasmon at rest can
be expressed as the imaginary part of the polarization
function of the gauge field at the plasmon pole [14]:

where we have made use of (5). From this result, which
has the same structure as the expression (3) for po, it is
obvious that the plasmon mass mg as well as 6 cancel
from the scattering rate.

III. LYAPUNOV EXPONENTS

2 A d k Ngm~ — ~ g~
3 T (2vr)s

n(ur) [I + n((u)] = — T. (5)—
9 h

1
po

—= p(0) = Im 'II, (mg +i0, 0),
2mg

(6)

where the transverse polarization function *II'(~,k) only
depends on soft modes described by (4). The plasmon
rest mass exactly cancels &om expression (6) and the re-
sult (3) is a pure number multiplied by g~T, which is
a classical inverse length scale. In fact, the calculation
explicitly makes use of the classical limit of the Bose dis-
tribution, n(u) ~ T/hu, in the evaluation of the loop
integral [see Eq. (23) of [5]].

Since the efFective action (4) can be derived from clas-
sical considerations [15], assuming a given spectrum of

The Lyapunov exponents measure the growth rate of
inGnitesimal perturbations around an exact solution of
the classical lattice Yang-Mills equations. Since the max-
imal Lyapunov exponent A~ was shown to be independent
of the lattice spacing, we assume that we can work in the
continuum limit whenever adequate. If A~(x, t) is an ex-
act solution of the Yang-Mills equations, the linearized
equation for a small perturbation a~(x, t) around A„ is

D a„—D„D a" —2i[F„,a"] = 0. (10)

Here D~(A) = 0~ —i [A~, ] is the gauge covariant deriva-
tive where the brackets denote the Lie algebra commuta-
tor, and E„ is the field strength tensor associated with
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the background field A~.
The numerical approach to the determination of Ao

proceeds by solving (10) for an arbitrary initial condi-
tion a„(x,0) and measuring the growth rate of the norm
of a„(x,t). To be precise, the maximal Lyapunov expo-
nent was determined in [1,2] from the logarithmic growth
rate of the "distance" between neighboring field configu-
rations, defined on the lattice as

D[A'„, A„f tr'r jerr tr H'(r)r —tr H(r)r (12)

where B(B') are the magnetic fields associated with the
gauge potential A„(A'„). In going from (11) to (12) we
have suppressed the constant factor (g2a/2N„), since we
are interested only in the growth rate of (In17). For an
in6nitesimal perturbation a„ that is a solution of the lin-
earized equation {10),we obtain

&[a~ lA~] —= @[A~+a„,A„]

fB(tr B2)
oc d xtr

17[Uq, Ut] = ) tr U„—tr U„','pp
where Ug are the group valued link variables, Up d.enotes
the elementary plaquette operator, and Kp is the total
number of spatial plaquettes. In the continuum limit,
the distance measure (11) takes the form

a'(tr B ) (~) (~))
2 ojA OA " ) (16)

the background field A~(x, t) must decay on a time scale
that is short compared with the time to required for the
calculation of the Lyapunov exponent, and the time evo-
lution of the background field must be ergodic on the
time scale to.

The ergodicity of the background gauge 6eld is assured
by its dynamical chaoticity on time scales long compared
to the inverse of the positive Lyapunov exponents; hence,
the second condition is satisfied [16]. On the other hand,
if the first condition were violated, the Lyapunov expo-
nent would depend on the starting configuration A& {x,t).
In numerical studies [1—4] we have found that this is not
the case. A direct study of the autocorrelation function
performed by us has shown that the 6rst condition is also
satisfied. These conditions are in accordance with the
g T (( gT (( T hierarchy assumed in hot perturbative
gauge theory.

The maximal Lyapunov exponent is then obtained
from the relation

d
Ap --—ln (17[a„(t)])z, (»)

where the distance measure (13) in a thermal background
is

(17[a„])~oc cE x tr
I a„
( B(tr B ) (~)&

T )

1 (8'(tr B')
2 BA„BA~ " )

The maximal Lyapunov exponent is then defined as

D[ „(t,)IA„]

The first term in (16) vanishes because the thermal aver-
age of any quantity transforming under the adjoint rep-
resentation is zero. In the second term, the thermal aver-
age projects on to the singlet part of 0 (tr B )/BA„BA
yielding

{14)
{&[a~])~~

In practice, every randomly chosen initial configuration
A„(0) with a fixed average energy density has been found
to yield the same value for the maximal Lyapunov ex-
ponent Ao. The numerical calculations show that the
maximal Lyapunov exponent depends only weakly on
the lattice size and extrapolates smoothly to the limit
of spatially homogeneous gauge potentials on a 1 lat-
tice. We take this as an indication that Ao is associated
with long wavelength perturbations a~(x, t) in an appro-
priately chosen gauge.

p v

Since the averaged value of 'V is quadratic in the Geld
fluctuations a„ the Lyapunov exponent defined through(&)

the magnetic energy distance measure is twice as large as
the one defined by the dominant exponential growth rate
of the fluctuations of the elementary Geld

Ap[A„] = 2 lim —ln lla. (t.) II (18)a„0

IV. ERGODIC LIMIT
V. CLASSICAL SPECTH, AL FUNCTION

We now propose to make use of the fact, noted in the
Introduction, that the background gauge field A~(2:, t)
rapidly approaches thermal configurations, by replacing
the long-time average of the growth rate of (in17) by
the canonical average over background gauge fields A„,
where the temperature T is chosen such that the thermal
energy density equals the average energy density of the
time-dependent background field A„(x,t). The replace-
ment of the temporal average by the canonical average
relies on two conditions: The autocorrelation function of

Solving the classical equations of motion one deals with
a problem essentially different &om perturbative field
theory: instead of investigating transition amplitudes be-
tween scattering states we follow the evolution of a given
initial configuration from a time t = 0 forwards. The
appropriate method to analyze this evolution is not the
Fourier transformation as in quantum field theory, but
the Laplace transformation. Its inverse transformation is
then calculated along a path which has all poles of the
spectral function on its same side; the path's position is
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shifted accordingly, compared with the Fourier transfor-
mation.

The classical solution of the equations of motion for
field perturbations therefore explores in forward time di-
rection all poles of a free oscillator (or wave) equation.
In case of chaotic Hamiltonian dynamics the solutions
are both exponentially growing and damped giving rise
to poles of the Laplace transform with positive as well as
negative real parts.

Making the formal connection between Laplace and
Fourier transformation through a complex rotation of the
frequency variable, 8 = iw, the inverse Laplace transfor-
mation path runs above all poles in the complex w plane.
As a consequence in either case (oscillatory or chaotic)
the integration path for the inverse Laplace transforma-
tion includes al/ poles for positive time and none for neg-
ative time while the Fourier transformation includes up-
per half plane poles for the advanced (negative time) and
lower half plane poles for the retarded (positive time)
propagator (Fig. 1).

The position of the poles obtained in a classical time,
forward calculation may have in general both positive and
negative imaginary parts. Therefore a better quantity
for comparison between the classical and quantal calcu-
lations is the spectral function which also considers poles
in the whole complex ~ plane.

Summarizing this argument, the position of all poles
of a spectral function can be obtained from the linearized
classical equations of motion for field perturbations (in
the leading order of an h expansion), but the retarded
and advanced propagators used to solve scattering prob-
lems in perturbative field theory discard the unsuitable
poles due to their very definition. A positive Lyapunov
exponent in Hamiltonian (energy conserving) dynamical
systems, on the other hand, always occurs together with
its negative counterpart Liouville's theorem ensures
it. Therefore studying positive exponential rates gives
information about the position of the poles of damped
retarded and advanced propagators simultaneously.

The growth or damping rate, or the oscillation fre-
quency of small amplitude fluctuations in a classical dy-
namical system is studied by linearizing the classical
equations of motion. This procedure leads to a new dif-
ferential operator whose spectrum gives the poles of the
classical spectral function. Odd parity under time reHec-
tion, real valuedness and normalization conditions then
determine the relative weights of the pole terms.

The difFerential operator belonging to the linear per-
turbation propagation equation (10) is identical with the
second variation of the classical action, S"[A], taken at
the background field configuration A which is a solution
of the classical equation of motion S'[A] = 0. Here the
prime means variation with respect to A. Considering the
generating functional of connected Green's functions, the
two-point function is just the inverse of this di8'erential
operator,

F
Re co

FIG. 1. The integration paths in the complex frequency
plane for the inverse Laplace (I ) and Fourier (F) transforma-
tions.

The spectrum of this operator contains two poles on the
real axis w = +0 if 0 (t) is a positive constant. This
case, familiar from zero-temperature perturbative field
theory, describes small oscillations determining the real
poles of the spectral function and the familiar retarded
and advanced propagators. In classically chaotic, highly
excited systems, however, it happens that 0 (t) is neg-
ative. This causes exponentially growing Huctuations
a typical source of chaotic behavior.

In order to gain a qualitative understanding about
the (classical) spectral function of chaotic systems we
consider 0 (t) as a Gauss-distributed stochastic variable
[17]. It can have both negative and positive values, and
its time variation is replaced by the ensemble variation
due to the ergodic property of classically chaotic dy-
namical systems discussed in the previous section. In
this limit the probability distribution of the frequency
squares, P(O ), is determined by its two lowest moments,

(0 ) —(0')' = 4o'p', (21)

parametrized by two real parameters o. and p. This
parametrization re8ects the fact that while (0 ) can ei-
ther be positive or negative, the width of its distribution
is always positive.

The stochastic average of the difI'erential operator for
the fluctuations has to be carried out on the quadratic
level, because with the Gaussian distribution we assumed
white noise property of the stochastic quantity. We get

G[A, A'] = (AA') —(A)(A') = (S"[A])

in the Gaussian approximation to the small amplitude
fluctuations. So the linear perturbation propagation in
classical equations of motion gives information about the
saddle point approximated generating functional.

Now aiming at the description of long wavelength plas-
mon damping we may neglect spatial derivatives and
write the general form of the classical, linearized per-
turbation propagation equation (10) schematically as

d2

, +n'(t) n(&) =0. (20)

= ((u —n —ip)((u —n + ip)((u + n —ip)((u + a + ip). (22)
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This result exhibits the symmetric four-pole structure
typical for a spectral function describing classical plasma
oscillations

energy by the thermal gluon mass mg = gT/~h. The
general one-loop form of the self-energy contains an in-
tegral over hard momenta, a factor of g, and the phase
space distribution of thermal gluons

A(~) =
( III —tl —ZP

+ (8+0!+lP

(d —0! + XP

Idd+tl —t f)
yielding the Lorentz shape

A(ur) =-
PC {Id} —tl + P ) + 4+2n2

(23)

(24)

ImII(m~, O) = g h fd }: n}—I)f(}fmg) (27)

where the complicated algebraic expression f (k/mg) de-
pends only on scaled momentum variables. Using now
the long wavelength approximation the phase space dis-
tribution of thermal gluons is replaced with its classical
counterpart, n(k) —T/Ru, leading to

The relative signs of the pole terms follow from the defi-
nition of the spectral function as the difference between
the advanced and retarded propagators and from its odd
time parity A( —w) = —A(u). The normalization factor
1/2n ensures that

did} tIIA(Id) = 1, (25)

so in each mode exactly one boson is counted by the
spectral function A(tI)) [18].

This particular four-pele spectral function describes a
general solution of the stochastically averaged perturba-
tion propagation equation which behaves like

(t) ~ icyt pt + ~ ——icxt —pt + ~ int+pt + D int+pt—

(26)

After some initial oscillations the exponential growth
dominates the long-time behavior of ~a(t) ~. It is exactly
this which has been seen in numerical calculations. The
conclusion of this argument is that the Lyapunov expo-
nent of elementary IIield fluctuations averaged ergodically
is equal to the classical gluon damping rate as expressed
by the imaginary part of the pole positions in the spectral
function A(w).

We note that in a recent publication [19] a similar
Gaussian model for the chaotic instability in general
Hamiltonian Rows has been investigated. Our result pre-
sented above recovers the more general one of [19] for
a vanishing expectation value of the noisy oscillator fre-
quency square (n = p) after substituting a characteristic
time scale r = 1/p in the general formula {19)of [19].

VI. CLASSICAL AND QUANTUM CLUON
DAMPINC

Finally we argue again that the leading order gluon
damping rate (3) obtained in hot perturbative QCD
(PQCD) is classical; i.e. , it retains its value in the clas-
sical limit h —+ 0. This fact has been argued before in
Sec. II. Here we briefly reconstruct the argument and re-
solve some technical issues. This concludes our reasoning
about the equality of the Lyapunov exponent of chaotic
classical lattice gauge theory and the gluon damping rate
at rest in a hot plasma.

The gluon damping rate in hot PQCD is obtained from
definition (6) dividing the imaginary part of the self-

ImII(ms, 0) oc g T deaf((u/mg) (28)

Scaling the integration variable with the Debye mass,
which is of quantum origin containing the Planck con-
stant, we see that the imaginary part of the one-loop
gluon self-energy in a hot plasma is proportional to m~.
It follows that the gluon damping rate obtained using
"classical" thermal gluons does not depend on the Debye
mass and Planck's constant,

(29)

showing that the result (3) is essentially classical.
Finally, it is still to show whether nonpole contribu-

tions to the self-energy in the field theoretical calculation
do not interfere with the above arguments. The one-loop
spectral function used there as an input contains a pole
term picking up the zeroes u(k) of the inverse propagator
corresponding to collective plasma modes to the lowest
order and a cut term describing the e8'ect of scattering
on thermally excited spacelike modes:

—I II
P(k, (u) =

(k —~z+ ReII) + (ImII)

The respective self-energies for the transverse and longi-
tudinal excitations to leading order in hot perturbative
QCD are [20]

and

1 —x' 1+x)
IIt(k, cu) = m x

~

1 + ln
2x 1 —x)

2 2+—mx(1 —x)
2

(32)

IIt(k, w) = k + m 2 —x ln
~

—iform x (33)2 2 1+x)
1 —x)

with x = m/k and m = 3m. /2. Using these forms one
obtains the following cut parts of the retarded Fourier
transform of the spectral function, A(t, k), for small k/m:

A(k, (u) = Z(k)b((u —~{k) ) + P(k, ~)O(k2 —~2).

(30)

The cut coeflicient p(k, cu) is related to the real and imag-
inary parts of the one-loop self energy II(k, w):
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4x(1 —x2) sin ktx
dx

4x4 1+ ' *'ln'+ + x~ 1 —x» (34)

k x sin ktx
A.„,,(k, t) -+ —20(t), ch

2m2 o 2 —xln + + x2

Since the integrand is bounded, the cut contribution can-
not grow exponentially with time and hence does not con-
tribute to the maximal Lyapunov exponent (15). In fact,
the cut contribution vanishes in the long wavelength limit
k ~ 0. This leaves us with the pole part, which remains
finite in this limit.

nents obtained in [3] reflects the spectrum of damping
rates p(k) of excitations in a thermal bath. If this were
true, it would confirm our assuinption that p(k)
Since, at present, it is not known whether p(k) is a quan-
tity with a classical limit for k g 0, the identification
with the Lyapunov spectrum remains a conjecture. We
finally note that if the correspondence between ergodic
and canonical averages holds up for other physical quan-
tities, transport coeKcients of non-Abelian gauge fields
at the classical scale (g T), such as magnetic screening
[21] or color difFusion [22], could possibly also be calcu-
lated by real-time evolution of classical gauge fields on a
lattice.

VII. SUMMARY ACKNOWLEDGMENTS

This concludes our argument establishing a connec-
tion between the classical Lyapunov exponent and the
gluon damping rate in hot perturbative @CD. We note
that some elements of the argument are heuristic, in par-
ticular, the replacement of the long-time average of the
growth rate of fluctuations around a specific field config-
uration by the thermal average. This reasoning assumes
that the growth rate, or equivalently the plasmon damp-
ing rate, depends only on coarse-grained properties of the
gauge field. We believe that this is so because the one-
loop calculation of the damping rate po only involves soft
loop momenta [8] and hence does not depend on details
of the short-distance Huctuations of the gauge field.

Because of the general nature of our argument, we con-
jecture that the complete spectrum of Lyapunov expo-
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