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The one-loop vertex in QED is calculated in arbitrary covariant gauges as an analytic function
of its momenta. The vertex is decomposed into a longitudinal part, which is fully responsible for
ensuring that the Ward and Ward-Takahashi identities are satisfied, and a transverse part. The
transverse part is decomposed into eight independent components each being separately free of
kinematic singularities in any covariant gauge in a basis that modifies that proposed by Ball and
Chiu. Analytic expressions for all 11 components of the O(n) vertex are given explicitly in terms of
elementary functions and one Spence function. These results greatly simplify in particular kinematic
regimes.

PACS number(s): 12.20.Ds, 11.15.Bt

I. INTR.ODU CTION

This paper presents the calculation of the one-loop ver-
tex in QED in an arbitrary covariant gauge. Why should
we want to compute this' Needless to say, it is the in-
teractions that determine the structure and. properties of
any theory. In QED the fermion-boson vertex is this ba-
sic interaction. Many, if not most, physical phenomena
are controlled by kinematic regimes in which the interac-
tions become strong. This determines, for instance, the
spectrum of hadrons and the nature of confinement in
QCD or the existence of e+e bound states in the strong
electromagnetic 6elds of heavy nuclei. Such phenomena
can only be studied by nonperturbative techniques using
(as appropriate) the Schwinger-Dyson or Bethe-Salpeter
equations in the continuum or on the lattice. In under-
taking studies of the nonperturbative nature of gauge
theories [1], we immediately have to confront the issue
of what is the nonperturbative form of the fundamental
fermion-boson interaction. Ansatze for this are needed
to accomplish a truncation of the hierarchy of the field
equations that are the Schwinger-Dyson equations. It is
known that the much used rainbow approximation with
its bare vertex. , p", while seductively simple, fails to re-
spect the gauge invariance and multiplicative renormal-
izability so crucial in determining the structure of the
theory and the characteristics of observables. Thus one
must seek more sophisticated. Ansatzt that d.o respect
these key properties [2—5].

The only truncation of the complete set of Schwinger-
Dyson equations that we know of that maintains the
gauge invariance and multiplicative renormalizability of
a gauge theory at every level of approximation is per-
turbation theory. Physically meaningful solutions of the

Schwinger-Dyson equations must agree with perturba-
tive results in the weak-coupling regime. Perturbation
theory can thus serve as a guide to allowed nonperturba-
tive forms. To be concrete, we know that the complete
fermion propagator, S~, of momentum p involves two
functions of p . This follows from the spin structure of
the fermion propagator. These two can be chosen to be
E(p ), the wave function renormalization, and M(p ),
the mass function, so that

[This can be (and is often) written in a variety of other
ways, e.g. , S~(p) = n(p )P + P(p2), etc. , always in-
volving two independent scalar functions. ] Since S~(p)
is a gauge-variant quantity, these functions I" (p ), M(p )
will in general depend on the gauge. They can be calcu-
lated, in principle, at each order in perturbation theory.
At lowest order F(p ) = 1, M(p ) = m, the bare mass.
Now these same functions must also occur in the fermion-
boson vertex, since the Ward-Takahashi identity relates
the three-point Green's function to the ferrnion propa-
gator in a well-known way. This is satisfied at every
order of perturbation theory. Indeed, such id.entities are
true nonperturbatively. Thanks to the work of Ball and
Chiu [4] we know how to express the nonperturbative
structure of the part of the vertex (a part convention-
ally called the longitudinal component) that satisfies the
Ward-Takahashi identity in terms of the two nonpertur-
bative functions describing the fermion propagator. We
have also learned that Inultiplicative renormalizability of
the fermion propagator imposes further constraints on
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the vertex but these have yet to be fully exploited, though
a start has been made [2,3,6]. While the bare fermion-
boson vertex in a minimal coupling gauge theory is sim-
ply p~, in general the vertex involves 12 spin amplitudes
that can be constructed kom p" and. the 2 independent
four-momenta at the vertex as elucidated by Bernstein
[7]. This would suggest that the complete fermion-boson
vertex involved a large number of independent functions.
However, some of these at least must be related to the
fermion functions P(p ), M(p ), not to mention the anal-
ogous boson renormalization function G(p~). It is to the
nature of these forms that perturbation theory can be
a guide, but only if we calculate in an arbitrary gauge.
For instance, if we calculated the vertex in massless @ED
merely in the I andau gauge we would find the p~ compo-
nent was like its bare form just p". This would serve little
as a pointer to the form 2[X (k ) + I" (p )]p" as it&

nonperturbative structure. Only by calculating the ver-
tex in an arbitrary gauge does this result become clearer.
Ball and Chiu have performed this O(n) calculation of
the vertex in the Feynman gauge and we will be able to
check their result and correct a couple of minor misprints
in their published work.

Thus our aim is to compute the fermion-boson vertex
to one loop in perturbation theory in any covariant gauge
and to decompose it into its 12 spin components, of these
all but 11 are nonzero. This full vertex is by its very na-
ture &ee of kinematic singularities. We then divide the
vertex into two parts: the longitudinal and transverse
pieces. The longitudinal component alone satisfies the
Ward-Takahashi and Ward identities. The way to en-
sure this without introducing kinematic singularities was
fully described by Ball and Chiu. We then investigate the
transverse part and decompose it into the basis of eight
vectors proposed by Ball and Chiu [4]. We examine each
coeKcient of these and And that two have singularities
in arbitrary gauges. These are not present in the Feyn-
man gauge in which Ball and Chiu work. We propose a
straightforward modification of their basis that ensures
each transverse component is separately Bee of kinematic
singularities in any covariant gauge. This makes this ba-
sis a natural one for future nonperturbative studies. We
divide the discussion into five parts.

The one-loop calculation of the vertex, its decomposi-
tion into spin amplitudes and the expression of these in
terms of known functions, including one Spence function
with ten diferent arguments are all presented in Sec. II.

The one-loop calculation of the fermion propagator
to determine the functions I" (p ), M(p ), which fix the
O(n) longitudinal part of the vertex is in Sec. III A.

The extraction of the transverse part of the one-loop
vertex and its decomposition into 8 independent compo-
nents in the Ball-Chiu basis are described in the rest of
Sec. III.

Checking the singularity structure of each of the curn-
ponents of the vertex is given in Sec. IV. This leads to the
proposal of a new basis for the transverse vertex, which
has coefficients that have only the singularities of the full
vertex. We deduce the form of the vertex in specific kine-
matic regimes in Sec. IVC. In Sec. V we give our brief
conclusions.

II. PEBTUH.BATIVE CALCULATION

A. Definitions: Feynman rules and basis vectors

For the most part the definitions given here are stan-
dard, but they are stated here to make this paper self-
contained. The perturbative calculation involves the use
of bare quantities de6ned as follows in Minkowski space:

bare vertex: —ieI' = it p„,

fermion propagator: iS&(p) = i(P+ m)/(p —m. ),

photon propagator: iA„(p)

i[p'q~-—+ (&
—I)I ~p-]h' (4)

where e is the usual @ED coupling and the parameter (
specifies the covariant gauge.

The vertex, Fig. I, I'"(k, p) can be expressed in terms
of 12 spin amplitudes formed IIrom the vectors p", k", pI"

and the spin scalars I, g, P, and gP. Thus we can write

where we number the V,.
" as

V,"= k"g, V2" = p"p, Vs" = k"p, V4" = p~g,
V," =-&~gP, V," =~~, Vf =k&, V,"=p&,
Vs":P gI V,"o:k gI Vj~: P g V~q

(6)

The vertex satis6es the Ward-Takahashi identity

q„I'"(k,p) = S~'(A;) —S~'(p),

where q = A: —p, and the Ward identity

I'"(p, p) =
~ ~

S~'(p)-
as the nonsingular k —+ p limit of Eq. (7). With the
fermion propagator given to any order by Eq. (I), we fol-
low Ball and Chiu and define the longitudinal component
of the vertex by

FIG. 1. The fermion-boson vertex to one-loop order show-
ing the definition of momenta and Lorentz indices.
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qE(k') E(p') )
1 (»~ + 5)(k + p)" &

2 k' —p' gE(k')
(p+ k)" (M(k2) M(p ) )
k' —p' ( E(k') E(p') j

I'& alone then satisfies the Ward- Takahashi identity,
Eq. (7), and being free of kinematic singularities the
Ward identity, Eq. (8), too.

The full vertex can then be written as

with

(14)

The coeKcients wi are Lorentz scalar functions of A: and
p, i.e. , functions of k, p, q .

A general constraint on the eight v s comes &om C-
parity transformations. The full vertex must transform
under charge conjugation C in the same way as the bare
vertex [7,8], so that

Cl„(k,p)C = —I'„(—p, —k) .

I'" (k, p) = I'~T (k, p) + 1 ~ (k, p),
where the transverse part satisfies

q„I'7 (k, p) = 0 and I'T(p, p) = 0 .

(io)
From the Ward-Takahashi identity, Eq. (7), it is clear
that I'~&(k, p) must be symmetric under k 4-+ p inter-
change. The symmetry of the transverse part depends
on its p-matrix structure. Thus Eq. (15) together with

The Ward- Takahashi identity fixes four coeKcients of the
12 spin amplitudes in terms of the fermion functions —the
three combinations explicitly given in Eq. (9), while the
coefficient of o„k"p must be zero [4]. The transverse
component I'&(k, p) thus involves eight vectors, which
can be expressed in Ball-Chiu form:

we have, from Eqs. (12) and (13),

7;.(k, p, q ) = ~;(p, k, q ) fori = 1, 2, 3, 4, 5, 7, 8,

rs(k', p', q') = —rs(p, k', q') .

r" (k, p) = ) '(k', p', q')T,."(k,p), (12)
B. The one-loop calculation

where

T" = p" (k. q) —k" (p q)
T2" = [p"(k q) —k"(p. q)](I'i+»~)

T" = [p"(k. q) —k" (p q)]k"p op

(13)

The vertex of Fig. I is naturally expressed as

I "(k,p) = p~ + A" (k, p) .

Analogous to Eq. (5) we will express A" as

12
A" (k, p) = ) P,*V,",

(18)

Ts" = ~"(»' —k') + (p+ k)"5
T7" =

2 (p' —k') h'"(»~+ 8) —»'" —k"]

+(k+ p) "k"p o),
Ts" = p"k p"o p—+ k"»i —p"I(,

where the subscript on the P' indicates this calculation
is only to first order in o;.

From the Feynrnan rules specified in Sec. IIA, A" to
O(cx) is simply given by

—ieA" =
(2~)4 ( iep )iS—~(p —to)( —icy")iS~(k —to)(—icy~)iA p(tU), (20)

where M denotes the loop integration is to be performed in Minkowski space. Substituting Eqs. (3) and (4) for S&(p),
we have, with n:—e /47r,

te 4 P —g+m „g—g+m p g p, , tv topd top p" -p +( —1)
(p —to) 2 —m2 (k —to) 2 —m2 t02 tU4

Ball and Chin [4] use a difFerent notation for the momenta in Fig. 1. They have p, p' as the incoming and outgo-
ing fermion momenta and q as the incoming boson momentum. They define their inverse fermion propagator S~ (p)
QF(p ) + G(p ) and what we here call the w, they denote by A, .
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in „4 p (P —ijb+ m)p" (It: —g+ m)p
4vr M iU [(p —ut) 2 —m2] [(k —uj) 2 —m2]

in 4 Q(P —g+ m)p" (g —g + m)g
4vrs M m4[(p —zu)' —m'][(k —m)' —m'] ' (22)

on separating the g p and zo mp parts of the photon propagator.
What makes the present calculation in an arbitrary covariant gauge significantly longer and more complicated than

that of Ball and Chiu in the Feynman gauge (( = 1) is the form of the photon propagator Eq. (4). The decomposition
of the loop integrals of Eqs. (20)—(22) into scalar forms in the general case brings greater complexity because of the
potential appearance of infrared divergences in Eq. (22). Nevertheless, having the Feynman gauge calculation is a
most helpful check on our results.

Our first step is to perform a little p matrix algebra and rewrite Eq. (22) as

ZO.'4 A" jan@A" = — d. . . , +(( —1)4ms M w2[(p —io)2 —m2][(k —ur)2 —m2] m4[(p —zv)2 —m ][(k —m) —m ]

where

&" = & (8 —0)&"(I'i —K)~- + m~ [(8 —0)~" + ~"(F —K)]~- + m'~ ~"~-

&" = W(P —4)&"(F —K)K+ mkKP —K)~" + ~"(Ii —%)lk+ m'K~"K .

To proceed we introduce the following seven basic integrals over the loop momentum d m: J~ ~, J„,J„,Io, I„
I~'„', and K~'~;

J~'~ = d'~ 1

ur 2 [(p —io) 2 —m2] [(k-
d4 P

ur 2 [(p —m) 2 —m2] [(k—
d4m p v

m2 [(p —zv) 2 —m2] [(k—
1

~'Np —~)' —m']Kk-

r~'~ = P

~'Kp —~)™]Nk—

I(2) d4 v

u)4[(p —io) 2 —m2][(k—

K~'~ = d'm 1

M [(p —~)' —m'] [(k —~)

'Uj —m

m 2 —m2

m —m

—m

m —m

m —m

~ —m2]

(26)

(28)

(29)

(32)

A" of Eq. (22) can then be reexpressed in terms of five of these as

A" = — ( p (Pp"g+ mfa" + mp"g+ m p"))p 1
—[~ (g~"~" + ~ ~"8+ ~'~" + ~"~ ) ~.] J."+~-~"~"~"~.J„",

(+&
- )[I(-~9~" ~"F~" ~"~ ~"~")J."+7"~~'l

+ (w g~"gv" + v"gv"v" + v"v"g~" + 'v"~"~'))I'p']) .

Our next step is to compute the basic integrals of Eqs. (26)—(32) [9—11], each of which is a function of k and p. We
relegate to Appendix A the tabulation of each of the intermediate integrals.

~. Z~» ~nd, Z~» eaIe«a~~d,P gkV

The method of relating Lorentz vector and tensor integrals to scalar integrals is by now standard [4], so we will

not dwell on this but merely give one example to serve as a reminder to the reader. J~ of Eq. (27) can as a Lorentz
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vector only have components in the directions of the four-moments k„and p~. Thus we can write

J('1 = [k„J~(k,p) + p„J~(k,p)], (34)

where J~, J~ must be scalar functions of k and p. The factor of iver /2 is taken out purely for later convenience. It is
then easy to see that

J~(k, p) = . [2k. pp"J1 i) —2p k"J11],
Z+2A2 (35)

with a similar expression for J~, where

= (k p) —k p (36)

is the ubiquitous triangle function of k, p, and q. One then rewrites the integrand numerators using, for instance,

2p m = p'+ m' —m' —[(p —zv)' —m'], (37)

so that, in d dimensions,

Q)f *(():—m)' —m')(( —m)' —m

d"u
+(k p —p )

[(k —vu) 2 —m2] [(p —u)) ~ —m2]

I P 2 ~ 2 ~ 2 I~2
2 ~ ~ I

tO tU

u)2[(k —m)2 —m2] u)2[(p —m) —m ]
(38)

The basic 16 scalar integrals, of which 4 appear in this
equation, Qy(k, p), Qs(k, p), Qq4(k, p), and Q) (p), are
given in Appendix A. %e thus deduce

expressed in terms of scalar integrals K, J~, JD, and J~
by

1 Jp 2J~(k, p) = —(—m p q —p k. q)Q2

+k pL' —p L —2p - qS (39)

J(2)—
d ~" " '"4)K() y

I
k~k g~ —

I
Jc

r (k. p)b+
I p, k +k~p —9~ 2 j
( P'& J+

I p)j,p~ 9) u 4
(45)

where

2
(o)

2

J~(k, p) = J~(p, k), (40)

(41)

All but K(k, p) are ultraviolet finite and so the number
of dimensions d has been set equal to 4. In d = 4+ e
dimensions, with p the usual scale parameter introduced
to ensure the coupling o. remains dimensionless for any
d, we have

(42) K.(k, p) = . ,K1'1, (46)

I' = I(p++ k), (43)
Kp(k, p) = 2)M'[C —2S+ 2], (47)

1 t' m') [(1 —4m'/q')'~'+ 1]S= —I1 —4 ln
2 ), q2 ) [(1 —4m2/q2))-)'2 —1]

' 44
where

with Jp being expressed in terms of Spence functions
[9—12] see Appendiw A, Eqs. (A15)—(A18). In an anal-
ogous fashion, the tensor integral J~„ofEq. (28) can be Then

= ———p —1n(vr) —ln(m /p ) .
2 2 2 (48)
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( , m'& t' m'&
J&(k, p) =, i

2p'+2k p, i

—4k. pS+2k. p i
1 —,

i

L'

+(2k p(p —m )+3p {m —k ))JA+p (m —p )Jp),

JL)(k, p) =
4A2 (

m2
2k p[(k —m )J~+ (p —m, )JB —1] —k 2

k2

p 2S+
(

1
2 [L+(k m )JB2 m')

p')

—2S+
i

1 — ~I, +(p —m )J„( m')
k'y

(5o)

Jx(k, p) = Jc(p, k),
all of which involve the previously defined J~, JB, L, L', and S of Eqs. (42)—(44).

(51)

1&~& and I&~& ealculagedpv

In a way analogous to the coinputation of J~ and J„„the ultraviolet finite integrals I~ and I„[11]of Eqs. (30),(~) (2) (~) (2)

(31) can be reexpressed in terms of scalar integrals, I~, IB, Ic, ID, IB, that in turn involve the same functions we
have already computed. Thus

I~') = [k„I~(k,p) + p„IB(k,p)], (52)

where

and

Ig(k, p) = — J() — f(m —p )k —(m —k )k -p)S
2 x

2 2 A, 2 2+, , p' —k p+ (k' —m')(m'+ k p) I + (m*+ k p)1'I(m2 —p2)

IB (k, p) = I~ (p, k),

(53)

(54)

with the denominator

y = (q —2m )(p —m )(k —m ) + m, (p —m ) + m (k —m )
=p k q +2[(p +k )k. p —2p k ]m +m q (55)

"
&0 +

I k„k. —p„Ic+
I
p„k. +.k—,p. —p~- I

Ic +
I p,p. —p„.—I

lp ),l, )
i~' g„( k' 1' (k p) l fp'2 )

Ic(kp)= ~, J Jo —
k, I

+ k, , 'l+(2 .p —3pj —p JB4L2

+(—2k. p(m' —p') + kp*(m' — ))I„+k(m* —pp')Ip)I, (57)

1 f m', i F m2
ID(k, p) =, —2(k p) J, + 2

i
1+ „,4L2

+(2k p —k )J~+ (2k. p —p )JB+ [k (m —p ) —2k p(m —k )]I~

+Ip'(m' —k') —ak p(m' —p')jlp), (58)
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I~(k, p) = Ic(p, k) . (59)

The 1/y terms in I~, I~, Ic, and Ir! arise from the extra 1/u! factor that occurs in the second integral of Eq. (23).
Notice that the 1/y term arises in all but the Feynman gauge. The possibility of singularities at y = 0 has consequences
as we shall see later.

8. A" calleetecg

In terms of the basic functions Jo, J~, J~, J~, J~, J@, Ig, I~, I~, ID, I@, and the ultraviolet divergent Ko, all
of which depend on the momenta k and p, i.e. , are functions of the Lorentz scalars k, p2, and q, A& can be written
completely with its p matrix and Lorentz index structure displayed explicitly:

12

A~(k, p) =) P, V, (19')

2

—2JD + (( —l)(k'Ic + m'ID —J&),

Jo —J~ —Ja+ (( —1) —+ —Ic+ Ia+ Iz ——J~—— Ja ~—
4 4 2 4 2 2

k2 p' 1 ( 3e—m Jo —k J~ —p Jgy+ —Jc+ k pJ~+ J~+ —
~

1—+ —p'
~
Ko

2 2 ( 4
m'

2 m', k' p'
k I~— p I@ ——J~ — Jgg + p'[C—+ 2 —2S]

~2 2

m2
k pID—

2
(,Jo+(( —1)

I

-m
4

7= f Jo k p'
P~ = 2m, Jo —4mJ~+ g' —l)m

~

——2k pIc+ Ic —p Ir! ——k pID — I~ —J~—
~2 )

8 (Jo k 2 P'
Py = 2m. Jo 4mJa + (( 1)m

~

—+ Ic —k .p—I~ + k I~ — I@ —Jgy ~—
( 2 2 2

P~ = (( —l)m(Ir! + I@),
P,' = (( —1)m(I~ + Ic),
P, = (( —1)m

~
p ID+ k pIc+ I@ — Ic ~—11 (, p' k'

2 2 )
k2

Ic
/2 )P! = (( —1)m

~

—k ID —k pI@+ I@——12 = ( p'
2

P = —P',
P,' = 2Jx —2Jc + (( —1)(m'Ic + p'ID),
P~ = 2J~ —2J~ + (( —1)(k ID + m I~),

( Jo k 2 P'
P! = —2 Jo + 2Jz + 2Ja —2 JD + (( —1)

~

——— Ic —k .—pID + m Ia + Iz + Jg—
~

Notice that both the integrals I~, I~ cancel out in this result. Though this expression appears to involve all 12 spin
vectors, one of their coeKcients is not independent. The Ward-Takahashi identity, Eq. (7), only involves g, P, 1 as
spin structure on the right-hand side. This means that gP and Pg terms that occur in @~I'" from Eq. (7) must occur
in the form of the anticommutator (g, P) = 2k p. Consequently, the coefBcients P; af Eq. (19) are related by

P,"= P;(p' —k . p) + P,"(k . p —k') —P," .

Formally, this campletes our calculation of the one-loop carrections to the QED vertex in any covariant gauge.
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III. ANALYTIC STRUCTURE OF THE VERTEX

A. Longitudinal vertex

As explained in Sec. II A, the longitudinal component of the vertex is determined by the fermion functions, E(p ),
M(p2), thanks to the Ward-Takahashi identity. In this section we compute these functions to O(a) by calculating the
one-loop corrections to the fermion propagator, Fig. 2. Straightforward calculation yields

(p ) =1+—&p'+
I 1+,

I
(1 —L)

a(, ( m')
4~ g p' )

(62)

M(p') = m+ ( () 3, (m'
I
1+ —

I + -(&I"—I) ——,(1 —I)4) 4 4 p2
(63)

with the same factors C and I, of Eqs. (48) and (42). Simple substitution into Eq. (9) gives the longitudinal vertex,
which we write out asa(, ( m'), ( m')~" 2&~'+

I
l+,

I
(1 —I')+

I l+, I
(1 —1.)

8m ( k~p ( p2)

+ (k"8+ k"f+p"8+p"0), , m'
I

—,——,
I

—
I 1+, I

L'+
I
l+

(64)

B. Transverse vertex

Having calculated the vertex O(a), Eq. (60), we can subtract from it the longitudinal vertex of Sec. III A, Eq. (64),
and obtain [Eq. (12)] the transverse vertex to O(a). This is given by a rather lengthy expression,

12

I'~(k, p) = —) V,
" [ai* + (( —l)a2* ]J~+ [bi' + (( —1)b2' ]Jgy

i=1

+, ', [ V + (~ - 1) l']1~ + ,~, [dl' + (~ - I)d!']1~
1

2(k2 2)( 2 m2)~2 [

(65)

in terms of the 12 vectors V, of Eq. (5) with the coefficients which are listed in Appendix B.Our task is then to express
this result in terms of the eight basis vectors defining I'T, (k, p), Eq. (12). Thus from Eq. (13) we can alternatively
write out

I z = k g[r2(p k p) &s + &6] + p )[&2(k k p) —rs —r6] + k $[r2(p —k ' p) + 7s —7'6 + rs]

+p")[~2(k' —k. p) + ~6+ &6 —&s]+ &"[&sq +76(p —k ) + ~6(k 'p)]+ t"Fg[ ~sl

+p" ri(k —k p) —v4(k —k p)(k .p) —~s + —(k —p —2k .p)2 2 ~7 2 2

2

+k 'ri (p —k p) —t4(p —k p) (k .p) + 76 + —(k —p —2k .p) + p"@[r4(k —k .p) +»]
2

+k )/[~4(p' —k .p) +»] + p"g —~, + —(p' —k') + p"P ~6 + —(p' —k')
2 2

(66)

Comparing Eqs. (5) and (65), we have 12 equations for the 8 unknown w;. Since I'~& is transverse to the vector q~,
Eq. (11),only eight of these equations are independent. A laborious solution yields expressions for the eight transverse
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coefBcients v;. Each is a function of k2, p2, q2, and (. The results are

n ]3+() 1, /*+ k. p]I ]I'+k p]I,')——m'+ k. p Jo —2S+
4vr A2 2 p2 —k2 p2 —k2

3 2 1 I +L' 1 m
[m' + k .p]rs + —(q' —4m') J, +4' 42 8 2p2k2

A: p

2 (p —k )(L, —L')

0! 4
2 2

—(( —1) —(p +k)+ (pk —m) Jo+1 — k p
m

8vr42 2 4L2 p2A 2

/p +m —/L —/k +m —/L'
x p'-k'

q p'r & k')
, [p'+2k p+k'], (I I'—q', -- m

~

———+ p'k'(L —L')
2(p2 k2) (p2

+—m 1 — L+ 1 — I

+—[k'p'(L+ L') —m'(O'L, + p'L')] + (p' —k') [(m' —p')L —(m' —k')L']
2 2

4 2
(m4 —p2k2) [(m2 —p2)L+ (m2 —k2)L'] + (p2 —k2)(m4 —p2k2) [(m2 + p2)I, —(m2 + k2)I']

—Sq (m + k p ) + 12p k (q —rn ) + 2q (k + p )m

, m q'(m' + k p) +,k'p'q'k p(q' —rn') + 2(p —k')'

mpkqk. p+ rnpk (p —k) S
J

[m' + k .p](p' —k2) 2»(( = 1) + — —b,2—
32m42 8mL2

(p'+ k' —2m2)2

8
Jo —2[m + k .p]S

k p ( m25 f m2), 1+-
I

1-
I
L+

I
1-

I

L' + -(p'- k')(L- L')k')

~[m +k p]+ (p +k)[pk +mk p]

p2k2 —m4 (p' —k')'
+-

4

m2
2 2 @2+k

+ —,, k p(k'+p') ——

3 2 k2)2( 2k2 4)

qk p
~

—+———
~

— pk q k p(L+ L—') + qm [p (p —rn —)L+ k (k —m )L']

—-q2m2[p2(k2+ m')I. + k'(p'+ m')I, ']+ -(p' —k')q'(m'+ p'k')(I. —I,')

+ (p'-k')[(p'- ')L-(k'- ')L']+ (p'-k')[k p- '](L-L')+ '(p'-k')(p'L-k'L')

(p' —k') [p2 + 2k p+ k'](I- —L')

q (p —k )[p + 2k p+ k ][(p k —m )L —(k p —m )I']
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m2
(p —k ) [p (m —k )L —k ( —p )L']+ q (p —k ) [(p — )L + (k — )I']

3
p k q (p —k ) [(p —m )L+ (k —m~)L']

+ —8m 4 +4m'(p + k )4 + 2m (p~ —k~)~[m~ —(p~ + k~)]

—2m q [m +k.p]+2p k q [m +k p]+2m (p —k )
e 0

3
,q'(p' —k')'(m' —p'k')[m'+ k p] S

, ((-1)& —1+,[m +k p] J, —,, k p8mL2 2L2 p2$2

m4—1 IL+k']

+— —
~

L ——L~—b, +3m (p —k )(L —I )
1 4m~ (k~ p~ I

p~ —k~ (p~ k~

m g , &m'
[k +2k p+p]l ———

I

—q p Ip2 Q2 (p2 k2 ) ( p4

3m q (p~ —k~)((m~ ~ p~)L —(m~ + k )L')
32 4

(p —k )(m —p k )(I —L') — (m —k p )(L+ L')
2L2 2L2
3m2 4

$(p' —m~)L + (k~ —m~)L')

—1 JI')

12m'q' 6q'
+ —20m q —2q p +k — m +A:.p+ m —pk S

Am 2 2 2

($ —1) — 4 —-(p —k ) + —[m + k p] Jo+ p +k
8mL2 4 2 p2 ac 2

+— —m (p —k ) ~

L — I
~

—b, +2m—(p —k )(L —L, )b,2 2 2 ~p I k ~ 2 2 2 2 2

x )
t' m'& t m'&. . . , , , L. . . I.'

+2m'q'
I

1 —
I
I. +

I
1 —

I

L' &'+ m'q' (m'+ k') —+ (m'+ p')—
p2 ~ g k2) p2 k2

+ q jm +k pj+q*k p ——(p~ —k*) )(I+I)'
2 2

m2
+ (gP —k~) q~m~+ 2q k p ——(p~ —k~)~) (I —I')

2 2

+ q4 (p' + k') (p'L—+ k'L') —-q'(p' —k') (p'I. —k'L')

+q'(p'+ k' —2m')(q'm~ ~ q'k p+ 2E')S

~, (( = 1) ~ (g —1) l (p —k ) —— (m —p k ) J, — [m'k - p —p'k']p2 I 2
2 2 ~ ~ 4 2 2 ~ 2

2 l8~L2

S22 2p2k2

+—mA /p —m —, /L —]k —m —, /L
~p'l

p')

+—m (k —p )[m —k.p](L+ I') —2m (k p)(p I, —k L')
2
m6 ~
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m2
k .p(p —k )[(m —p )L+ (m —k )L']

2

——p'k'q2( [k' —k p]I —[p' —k . p]I' j2
—q [p (m —k )I —k (m —p )L'] + 2m k p (k I —p L')

4 4 2 2 2 2 2 2 2 2 I+,(p'-k')(p'-k')[p'( '- k')L- k'( '- p')L']

2 2 2 2 2,p'k'q'(p' —k') [(m' + p') L + (m' + k') L']

p'k'(p' —k') ' [(m' —p') L —(m' —k') I.']
4L2

2 2 4 4p2q2(p4 —k4) [(m2 + k2)L —(m~ + p2)L']

+ 2q (p —k )[(m + p k )L+ (m + p k )L']

+,(p' —k')'[( ' p4k')I—, —(m' —p'k')L']

3 '
~ 3

+(p —k ) — q [m + k. p]+ k p q [m + k p]

—4m q + 2m q (p + k ) S (72)

Q2
+212 + +2 I 2 +2 I 2

2m
~

1 ———
~

L+
~

1 ——
~

L 6 —q (k. p)[(m —p )L+(m —k )L]
k'l ( p'l 2 2 2 2 I

+q [p (m —k )L+ k (m —p )L'] —2q (q [m + k. p]+ 24 )S

and

—I& s + ~'I~o+ 2q'~+
I
—s'+ ~ ulL + I

—"'+~ vtl')4~L2 (74)

These v., 's are given in an arbitrary covariant gauge spec-
ified by (. The Ball-Chin calculation was performed in
the Feynman gauge (( = 1), where these results greatly
simplify, see Eq. (68), for example. If we compare our 7's
with the result of Ball-Chiu, then their result needs a few
corrections: in their equation (3.8e) there should be a (+)
sign instead of a (—) sign in front of the second term; in
(3.8e) p p'/2[(1 m2)/p ]L should—be p p'/2(1 m /p2)L;—
in Eq. (3.lib) the third term with ln (p2/p'2) should
have a 2 factor in front; in their equation (3.11c) the
third coefFicient Io, (p —p'2)2/8 should be (p +p' ) /8;
in Eq. (3.12) there is an overall factor of 2 missing; in

FIG. 2. The inverse fermion propagator to one-loop order
in perturbation theory.

I

Eq. (3.14) factor s~ should be i2; in their equation (A18)
the coeKcient of the Grst term should not have a factor
of 2, in Eq. (A19) First coefficient p. p'/2 should be p p',
where the equation numbers refer to those in [4].

IV. FR.EEDOM
FROM KINEMATIC SINCULAR, ITIES

Clearly the full vertex, I'I'(k, p), is &ee of kinematic
singularities. The Ball-Chiu construction ensures that
the longitudinal part is free, so the transverse part must
be. However, after decomposing this transverse part into
eight components, it is not necessary that the individual
components will each be free of kinematic singularities.
Ball and Chiu showed that with their choice of eight ba-
sis vectors, the transverse vertex: in the Feynman gauge
possessed this property of being singularity-free. Here
we explicitly consider whether this is true in an arbitrary
covariant gauge. Indeed such checks are far longer than
the initial calculation reported above. We consider sev-
eral limits in turn.



52 ONE-LOOP QED VERTEX IN ANY COVARIANT GAUGE: ITS. . . 1253

A. A~m0

where

Jp ——Jp + JpA + O(6 ), (75)

1 k+- k22
JO 4S —2

m2+ gk2p2 k' —p'

p'+ gk'p'
) (76)

—Yj(k, p )L'
3qp(m + Qk p )Qk p2

—Yj (p, k')L —Zg(k', p')S (77)

and Yq and Zq are defined as

The proof depends crucially on the behavior of the
combination of Spence functions forming the integral Jo
that appears in every 7;.. Thus, for instance, when we
consider the limit b, -+ 0, i.e. , (k .p)2 -+ k2p, we can
deduce from Eqs. (26), (A15)—(A19) that Jp can be ex-
panded in powers of 4 as

limit A2 -+ 0, despite the appearance of explicit I/A2
and I/A4 terms.

As seen from Eq. (20) the full vertex, and hence the
transverse part, has no pole singularities when y —+ 0.
However, the expressions for 72, &3, ~4, 75, v6, and v7,
Eqs. (68)—(73), have explicit factors of I/y in all but the
Feynman gauge. As can be seen from Eq. (55) g only
vanishes if both p and k tend to m, i.e., when both
of the fermion legs, Fig. 1, are on the mass shell, then
when k m p, y = (q —4m )(p2 —m2)2. In this limit
the full vertex only has logarithmic singularities, such as
ln(l —m2/p2). Consequently, an acceptable basis for the
transverse vertex is one in which only these logarithmic
singularities occur. Explicit calculation shows that ~2, ~3,
ws, and ws, given by Eqs. (68), (69), (71), and (72), do
have only these logarithmic terms when y —+ 0. However,
both w4 and v7 have poles in 1/(p —m ) term. These
singularities are readily removed by choosing a new basis
for the transverse vertex, the SP (i = 1, . . . , 8). Clearly
this only involves changes to T4 and T7 . Note that these
singularities do not arise in the Feynman gauge (( = 1),
and so Ball and Chiu were not aware of this constraint.

We write

k2 —m2
Yj(k ) =

3(~k2 ~p2)3(m2 + gk2p2)sgk2p2

x 3~k(m —p ) + ~p(k —m ) ) (78) where

I'~~(k, p) = ) o'S,"

S,". = T,." for i = 1, 2, 3, 5, 6, 7, 8

(81)

(82)

1

qp2(m2 + Qk2P2)s(qp2 —4m2) Qk~P2

x 8m —8m
~

k +p ——gk2p2
~

.(,
)

Zg(k, p ) =—

qp = k ~ p —2+k2p2 .

4 8
+m 2qp + —Qk2p2(k + p + Qk2p2)

.-,'~', ,:),
(80)

S4 = q Ip" (P+ g) —p" —k"]+2(p —k)"k"p"op„, .

then

o., = v, for i = 1, 2, 3, 5, 6, 8

Q2 p2

4
74

(83)

Together with the known behavior of all the other func-
tions, such as L, I', and 8, it is a lengthy but straight-
forward calculation to deduce that each 7; is finite in the

g
O7 —77 + 74

2

op is then given explicitly as

(86)

nm t (, 3q4, ) q2
(( —1)~ —q' — (m'+k p) ~

J, —
8vrb 2

g 4» p2k2 p2k2

+— & —2
2 ~

————2m(p —k)~ ———
~(p' —k') g

' k'p q„' k )



1254 A. KIZILERSU, M. REENDERS, AND M. R. PENNINGTON 52

m4q4 /L[k' + 2(k .p) + p']
~

———
~2(p' —k') q p' k')

q4, (m4 5, (m4s' I, —~ I &+&' I, —&
f
I')

3 4

+
™q

(p —k2)((m2 + p2)L —(m2 + k2)L') — (p —k )(m —p2k2)(L —I')
2 4L2

6 3m2 2

4L2 (m —p k )(L+ L') +™q
(p —k )(L —L')

2
m' '

[(p —m )L+ (k —m )L'] + q k p[(p —m )I + (k —m )L']
2A2

—q [p (k —m )L+ k (p —m )L']

6m' ' 6
+ —10m q —q (p + k ) —™q -(m + k p) + (m —p k )Q2 Q2

—2q (m'+ k. p) —4q'&' (87)

o4(k, p, q2) = cr4(p, —k, q ),
which Eq. (83) ensures.

(88)

C. Asymptotic limit

It is convenient to give here the simple asymptotic limit
for the transverse vertex. In the limit that either of the
fermion momenta are large) e.g. , k )) k p )) p )) m,

t' (k. p) p' 4(k. p)') k'A» l1+»»+ k43 3 ) p

(k p)
k'

+O(1/k') .

2p2 8(k p)2 l
9k

+
9k

(89)

Consequently, the transverse vertex has the well-known
limit

(90)8~ k' gp')
Equations (67)—(74) and (85)—(87) give our results for

the transverse components. Their forms in specific limits
are given in Ref. [13]. However, it is worth noting that
they greatly simplify if the fermion mass m is zero. Then
not only do 0~, o4, o5, and u7 explicitly vanish, but the
other four cr s (i = 2, 3, 6, 8) have far shorter expressions
[»]

V. CONCLUSIONS

This paper presents the complete one-loop calculation
of the fermion-boson vertex in QED in an arbitrary co-
variant gauge. This calculation has, in fact, been per-
formed independently by the present authors. The au-

In this new basis, all the o, 's (i = 1, . . . , 8) have no singu-
larities other than the expected logarithmic ones. Note
that in this new basis, the C-parity operation of Eq. (15)
requires

thors have joined forces only to compare and check their
answer and to write this paper. The coupling of two
spin-& particles with a vector boson involves 12 inde-
pendent spin and Lorentz vectors. Each of these vectors
has a coeKcient that is an analytic function of the three
Lorentz scalars, k, p, and q, that can be formed from
the two independent four-momenta Bowing through the
vertex. These 12 components are given as functions of
the covariant gauge parameter. They have been previ-
ously calculated by Ball and Chiu [4] in the Feynman
gauge. Our results correct some typographical errors in
their publication. The vertex has only logarithmic sin-
gularities: these arise either when the external legs are
on-shell or when the internal fermions can be real.

Four of the 12 components define what is called the lon-
gitudinal vertex. This is related by the Ward-Takahashi
identity to the fermion propagator. This fact allows
three of these components to be expressed in terms of
the fermion wave function renorrnalization P(p2), and
its mass function M(p ) and forces a fourth to be zero.
Ball and Chiu have shown how to construct this longitu-
dinal vertex in a way free of kinematic singularities. This
freedom is essential in ensuring the Ward identity is the
q ~ 0 limit of the Ward-Takahashi identity. Subtrac-
tion of this longitudinal vertex from our one-loop answer
leaves the transverse vertex O(n). This can be repre-
sented in terms of a basis of eight vectors orthogonal to
the boson momentum, each unconstrained by the Ward-
Takahashi identity.

We propose a new transverse basis S,". (i = 1, . . . , 8),
Eqs. (82) and (83), which has components with only the
logarithmic singularities of the full vertex. This basis
modifies the Tf (i = 1, . . . , 8) of Eq. (13) proposed by
Ball and Chiu [4]. Though their basis has no additional
singularities in the Feynman gauge, this is not the case
in any other gauge. Equations (19), (66)—(74), and (81)—
(87) constitute our new result in QED to one loop. That
any potential singularities at L = 0 or y = 0 cancel in
the full vertex is in fact a sensitive test of the correctness
of our results. The same and/or related integrals arise
in QCD, and so this calculation could, in principle, be
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extended to non-Abelian theories in any covariant gauge
too.

Though our calculations are self-evidently only true to
O(o.), our aim is wider. The hope is that the coefficients
of each of the transverse vectors, S,", like those of the
longitudinal component, are Bee of kinematic singulari-
ties at all orders in perturbation theory and even non-
perturbatively. Just as use of the Ward-Takahashi iden-
tity specifies nonperturbatively the longitudinal vertex
in terms of the fermion propagator, Eq. (9), multiplica-
tive renormalizability too imposes relationships between
the vertex and the fermion propagator. These constrain
the transverse vertex. A start has been made in ana-
lyzing these powerful conditions. Ignoring such require-
ments and use of, for instance, a bare vertex (the rain-
bour approximation) in studies of chiral symmetry break-
ing leads to the generation of highly gauge-dependent
masses. In contrast nonperturbative enforcement of the
Ward-Takahashi identity and the constraints of multi-
plicative renormalizability dramatically reduces or even
eliminates [5,6] this unphysical gauge dependence. In-
deed, knowing the vertex in any covariant gauge may give
us an understanding of how the essential gauge depen-
dence of the vertex demanded by its Landau-Khalatnikov

transformation [14] is satisfied nonperturbatively. More-
over, having a basis for the transverse vertex with co-
eKcients &ee of nondynamical singularities is a key step
in further investigations of a meaningful nonperturbative
truncation of Schwinger-Dyson equations. For instance,
studying the behavior of just the propagators one must
have an Ansatz for the three-point vertex that embod-
ies as completely as possible the constraints of gauge in-
variance on all the higher n-point functions. Satisfying
the Ward-Takahashi identity and multiplicative renor-
malizability are essential in constructing such an Ansatz.
Moreover, in the weak-coupling limit this vertex must
agree with perturbation theory —hence this one-loop cal-
culation.
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APPENDIX A

Here we collect the results of evaluating all the integrals necessary for our calculation of Sec. IIB in d = 4+ e

dimensions:

ddt 1

(k —p)'[k'—

d"k
k

(k —p)'[k'—

d"k 1

M (k —p)'[k'—

d k

(k —p)'[k'—

( m') ( p' i= iver»i' C —
I
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(A7)
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I
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[(», —~)™]~m - p & p')
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Qig = d tU
d 1 (0)

[(p —m) 2 —m2] [(k —m) 2 —m2]m4
I( )

1 2 2 (p2 —m~)q2 + 2m~(k2 —p )
'iver p 2q + p

( 2 2)2
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(A13)

where we recall

m'~ ( p' l
~

ln
~
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J~ 1 is naturally expressed in terzns of the Spence function Sp(x),
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so that

where
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In the massless case, Jp simplifies to

2 t'p' —k p+ 5) fp' —k p —Al 1 (k p —6) f q''t
Jo = —Sp

/

—Sp
/ /

+ —ln
/

ln
r 2 &k p+&) (A18)

APPENDIX B

In this appendix the coefFicients, Eq. (65), of the 12
vectors V;" in Eq. (6) are explicitly tabulated:

I'~ = ap'(k'—
3m2p2 p2k2

a~'1 = k'(k' —m'),
(2) k 2

a2 =kk p ——(m +k),
2

ai~ ~ =k (p —m ) —2k. p(k —m )+4K

a, =m k. p+b, ——(m +p )
(3) = 2

2

a~i 1 = k (p —m ) —2k. p(k —m ),
3k2J2 m2k'

+ k p(m'+ k') —2~'
2 2 2 )

a(') = —2a'
(5}

G2 = —
)2

a = —(k +m )b,

)
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2
2

b(') = m'(k .p) —P—(m'+ k'),
2
2

=m —a + —(p —k)(7) = 2 p 2 2

2

b2(') = m[k'(k p) —(k .p) —2A'];

(BI)

(B2)

c, =m
~

(k p)' —2k'k p+ + —~m2(s) & 2 2 k'p' k4 l
2 2)

p'-k4+ p2k2k p —k'(k .p)'+ k'k p

2

c2 ——m (k —k p)m ——k(9)

(go) 3p k
c2 =m

~

—2k. p+ —~m +q k p+2&

c,' '=m m2q2 + (k' p')11 k. p k~p~

+p2k. p(k. p —k') ~,

2 2

c =m —m —k — (p +k)(&~) gv g k k p
2 2 2

d',"=0, z=1, . . . , 12,
d(' = c(') (k ~ p), d(') = .,"(k ~ p),
d&

——cz, z=5, 6,(~) (~)

d,
' =,")(k ~ p), d," = (' (k ++ p),

d,
" = -c," (k m p), d(" = -c" {k++p),
(3) ~ ~ p k m p - p2(k p)'

+p'k'k. p —m'k. p,
m4p' k2p4

+ m'p'k p —m4k. p—
2 2

~

~'+ —(k'-p')
[

{B3)

(,)
p'k' 3m'p'

Cg = — +
2 2

k4p'

2

—m'p'k'+ p'k'k. p —m4k. p,
m4k'—m'k'k .p+ + k4k p,

2

(4)
2

mk4 2
4+k p k-p —m k. p—

2
k —m

2
m'(m' —k')

)

3k4p'
+ m'p'k'

2

c( ) = m [3(k p)2 —2p'k p —k'k p)m'(7)

p4k2
+3p k k. p

2
4

—2p (k p) — —k (k p)
p k

2

=(m —k)~4 + —(k +m) —mk. p~(), , ( 2
k'
2

[-k'k. p+{k p)'] '

2
—pL ——kp2 2 ~ 2 2

2

"= —2(p' — ')'(k' —p')k p —(»' — ')&'

-2m4k p{k2- p2)
(&) { 4 4)~2 + 2(k2 2)( 2 2)2

.(;) = (m' —p')Z ' —2m'p'k - p(k' —p')
+m p'(k' —p ),

(4)
(

4 4)~2 + 2(k2 2)( 2 2)2

.(') = (m' —p')~2+ m'p2(k' —p'),
(5)

eq
——0,.(') = (p'-m')(k'- p')Z',

(B4)
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ez() = m[2p2(p2 —m )b, —m p (k —p2)],

e(" = m[2p'(p' —m') ~'+ m'p2k'(k' —p')],
e2( ) = m (k' —p') [p' —2k .p],

e&"& = m'p'(k' —p'),

ez(' ) = ms(k' —p')[2(k .p)' —p'(k p) —p'k'],
e~ = 0, i = 5, 9, 10, 11,12;

f( = —e (k++ p), f = —e (k++ p),
f = -e )(k++ p) f( = -e (k++ p)

f~ = 0, i = 5, 9, 10, 11,12,
f~' = —e~' (k ++ p), i = 6, 7, 8,
f = —e( (k++ p) f = —e (k++ p)

f = —e )(k++ p), f = — (k++ p),
f, =-e (k++p), f, =-e( (kmp),

f( = e (k ++ p), f = e (k ++ p),
f,"' = e,"'(k ~-p), i = 5, 6,

f('& = m (k' —p') [-k'p' —2k'k .p+ 4(k .p)']m'

-2k' (k' —m') b.'

y, =~([ 2am {'—,*)a,-'m'(~ —,*)]

2/p($2 m2)+2)

gq') ——0, i = 5, 7, 8, 9, 10, 11,12

(B6)

„('& = -(k'+ p'), ' = 3,4,
(6)

m242

l,"= i,"(k ~ p) = (m'+ k .p) +

0, i = 5, 7, 8, 9, 10, 11,12,
m' (1

i

—+ —
I(p2 k2 )

m'4'
2k2p2

l, (km+ p) = +m —k p,(4) m'4'
2k2p2

L(6)

2k p
fA

~2 + p )
l(' =«"(k~ p) =

)(3)

t(5)

L(6)

0,
' &1 1)

I

—+ —
I

&'
2 i p' k')

(k. p)'
m —A:-p+2

k2 p

l() =m -I -p+k'

l )=l (k )= — +1
p
k.i("& = —1,'"(k++ p) = m " —p'

k2

0, i = 1, 2, 4, 9, 10, ll, 12,
h,") = -4Z',
h',"= 2W',

I,") = —2m'',
h.~') =4m&', i=7, 8,
h2' ——0, i = 5, 6, 11,12,
h, ) = h, (k ++ p) = p'[m' —k .p]A',

h2( ) = h2( )(k ~ p) = m[—p'k p + 4' + (k .p)'],
h ) =h )(k++p) =m[k —k p]. (B8)
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