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In three-dimensional +ED with a Chem-Simons term we study the phase structure associated
with chiral-symmetry breaking in the framework of the Schwinger-Dyson equation. We give de-
tailed analyses on the analytical and numerical solutions for the Schwinger-Dyson equation of the
fermion propagator, where the nonlocal gauge-fixing procedure is adopted to avoid wave-function
renormalization for the fermion. In the absence of the Chem-Simons term, there exists a Anite crit-
ical number of four-component fermion Ilavors, at which a continuous (infinite-order) chiral phase
transition takes place and below which the chiral symmetry is spontaneously broken. In the pres-
ence of the Chem-Simons term, we Gnd that the spontaneous chiral-symmetry-breaking transition
continues to exist, but the type of phase transition turns into a discontinuous first-order transition.
A simple stability argument is given based on the effective potential, whose stationary point gives
the solution of the Schwinger-Dyson equation.

PACS number(s): 11.30.+c, 11.10.Kk, 11.15.Tk, 11.30.Rd

I. INTR, ODUCTIGN

This paper is the detailed exposition of our previ-
ous Letter [1] on chiral-symmetry breaking in (2+1)-
dimensional QED with K flavors of four-component
Dirac fermions (hereafter called QED3). Such a model
of QED3 is chirally symmetric in the absence of a bare
fermion mass term moped;, in sharp contrast to the (2+1)-
dimensional gauge theory with two-component fermions,
where we cannot define chiral symmetry [2—4]. Similarly
to the four-dimensional case [5], the chiral symmetry of
QED3 may be broken spontaneously due to the dynam-
ical generation of a fermion mass. However, the pattern
of dynamical symmetry breaking is shown to be qualita-
tively diferent &om the four-dimensional counterparts.

Recently, QED3 has found a vast region of application
in condensed matter physics as an e8'ective theory in the
long-wavelength (or low-energy) limit of a more realistic
microscopic model [6—8]. Especially, since the discovery
of high-T superconductivity and &actional quantum Hall
effect, a peculiarity of three-dimensional gauge theory,
i.e., the existence of a Chem-Simons (CS) term [9]
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has been a basic ingredient in these applications. The CS
term gives the gauge Beld a mass without destroying the
gauge invariance. And even if there is no bare CS term
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in the original Lagrangian, a CS term can be generated
by radiative corrections in three dimensions. In the pres-
ence of a CS term, parity is broken explicitly, but the
Lagrangian still keeps chiral symmetry when mope = 0.
The parity violation is a very important factor for the
anyonic model to be a candidate theory of high-T super-
conductivity [6,7]. A field-theoretic realization of such
an anyonic model consists of fermions interacting with
an Abelian statistical gauge field whose dynamics is gov-
erned by a CS term. In contrast with chiral symmetry,
it is known that the dynamical breakdown of parity does
not occur in QED3 [10—16].

In this paper we pay attention to the breaking of chi-
ral symmetry in the presence of a CS term within the
framework of the Schwinger-Dyson (SD) equation [17].
In momentum space, the SD equation for the full fermion
propagator S(p) is written as

which should be solved self-consistently and simultane-
ously with other SD equations for the full photon prop-
agator D&„(k) and the full vertex function I'&(q, p). In
order to solve these sets of SD equations actually, how-
ever, we adopt some kind of approximations as exempli-
fied. below.

There are several quantities we must specify to write
down the closed SD equation for the fermion propagator
S(p), namely, the full photon propagator D„„(k)and the
vertex function I'„(p, q), and we also have to choose a
suitable gauge. In general, both the photon propagator
and the vertex satisfy their own SD equation, and both
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depend on the gauge-6xing parameter a, if the covari-
ant gauge-fixing Lagrangian 2 (B„A") is taken. There
are also additional constraints on these n-point functions,
coming from relations such as the Ward-Takahashi (WT)
identity

Now one of the problems in QED3 is to find a consis-
tent truncation scheme for the SD equation: As a conse-
quence of the WT identity the wave-function renormal-
ization should be equal to the vertex renormalization,
which puts a constraint on the bare vertex approxima-
tion. By using

S(p) = [&„&„A(&)—B(&)] (4)

the SD equation for S(p) is decomposed into two integral
equations for A(p), the wave-function renormalization,
and B(p) Alth. ough with a bare vertex it is not possible
to satisfy the WT identity exactly, we should make sure
to satisfy the constraint A(p) 1 when using the bare
vertex approximation.

First of all, we restrict our attention to QED without
CS term. In the quenched case, in which the vacuum
polarization to the photon propagator is completely ne-
glected, the simplest treatment is to choose the Land. au
gauge a = 0 and to take the bare vertex I'„(p, q):—p„.
This quenched approximation is equivalent to taking the
N —+ 0 limit in the SD equation for the fermion propaga-
tor, since this limit eliminates the radiative correction to
the photon propagator coming &om the internal fermion
loops (with N species). Then the above SD equation
leads to the absence of wave-function renormalization:
A(p)—:1, irrespective of B(p); see, e.g. , [18]. In this
case, it has been shown [19] that quenched QED3 resides
in only one phase where chiral symmetry is spontaneously
broken, in agreement with the Monte Carlo simulation of
noncompact lattice QED3 [20].

In the quenched case, the bare vertex approximation is
justi6ed in the Landau gauge, a = 0, because this choice
is approximately consistent with the WT identity and.
satis6es the requirement that the wave-function renor-
malization and the vertex renormalization are equal. In
gauges other than the Landau gauge, however, we cannot
take the bare vertex, since A(p) deviates from 1. In or-
der to study the SD equation in a general gauge, we must
modify the vertex in such a way that the result is gauge
covariant, i.e. , independent of the gauge-6xing param-
eter a. This problem persists in the three-dimensional
case [21,22] as well as in four dimensions [23—25]. Such a
modi6ed vertex has to satisfy the WT identity exactly.

Now we can raise the question of whether the chi-
ral symmetry is restored at a certain nonzero value of
¹ In the presence of the one-loop vacuum polarization
(N g 0) the simple procedure mentioned above cannot be
applied, since there is no simple gauge choice a such that
A(p) = 1. Nevertheless, under the bare vertex approxi-
mation in the Landau gauge, Appelquist, Nash, and Wi-
jewardhana (ANW) [26] have shown that there is a finite
critical number of flavors N, above which the chiral syrn-
metry is restored. Based on a leading-order 1/N expan-

sion [27] (e = 8n/N with n being kept fixed) for the ver-
tex and the photon propagator in the SD equation, they
gave the critical value N, = 32/vr = 3.2. Furthermore,
Nash [28] claimed that the leading-order gauge in-variant
critical number of flavors is given by N, = 128/3vr2 and
that, when 1/N corrections are included, N, coincides
approximately with this result.

However, such a simple treatment of the vertex func-
tion and the wave-function renormalization function A
was criticized by Pennington and Webb [29] and Atkin-
son, Johnson, and Pennington [30]. They claimed that, if
the vertex is correctly improved, using the WT identity,
and the coupled equations for A(p) and B(p) are solved
together, a 6nite critical number of flavors does not exist.
This implies that the chiral symmetry is spontaneously
broken in QED3 for all values of N, i.e., N, = oo. On
the other hand, the Monte Carlo simulation [20] of lat-
tice noncompact QED3 seems to support a finite critical
number of flavors:i N, 3.5+0.5; see also [31].However,
it is numerically very difFicult to confirm the exponential
decrease of the dynamical mass for increasing K found
in [29,30].

The origin of this controversy stems &om the fact
that in the unquenched case A(p) = 1 cannot be de-
duced as a simple consequence of the SD equation by
choosing the Landau gauge, in sharp contrast with the
quenched case. Nakatani [32] has proposed to use a non-
local and momentum-dependent gauge function, instead
of the usual gauge-fixing term, in order to keep A(p):—1
and thus to overcome the inconsistency one has using the
bare vertex approximation in the Landau gauge. Actu-
ally the nonlocal gauge found in [33,34,16] can play ex-
actly the same role as the Landau gauge in the quenched
case, in the sense that A(p):—1 follows by choosing the
appropriate nonlocal gauge in the bare vertex approxi-
mation and that the nonlocal gauge a(k) as a function of
the photon momentum k reduces to the Landau gauge in
the quenched limit N ~ 0. Taking into account only the
leading- and next-to-leading-order terms in the in&ared
region, which is the essential region in QED3 [2,35], yields
a finite critical nuinber of flavors [16]:

N, = 128/3vr = 4.3, (5)

The N —+ oo limit (with n being kept finite) corresponds
to the weak-coupling limit P:= 1/[ee (e)j ~ oo in the lattice
gauge theory defined on a lattice with lattice spacing e.

which is the same as the leading-order result obtained by
Nakatani, and coincides with the result obtained by Nash
in a different way [28]. In this paper we use the nonlocal
gauge as derived in [16).

In the present paper the existence of a 6nite critical
number of flavors is confirmed by solving numerically the
nonlinear SD equation, using a bare vertex and the non-
local gauge as derived in [16] in order to keep A(p) = 1,
without further approximation. The parity-conserving
and chiral-symmetry-breaking fermion mass is dynam-
ically generated in QED3 and there occurs a chiral-
symmetry-restoring phase transition at N, = 128/(3vr~).
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The order of the chiral phase transition is infinite in the
sense that the dynamical fermion mass m~ and the chiral
order parameter (g@) exhibit an essential singularity at
the critical point N = N:

gg) m,
exp

3'
QN, /N —1

(6)

In the presence of a CS term, as already reported in [1],
the chiral phase transition turns into a first-order transi-
tion, in sharp contrast to the 0 = 0 case. This result is
obtained by both a numerical study of the full SD equa-
tion and an analytical study of approximated equations
using the same scheme as in the absence of a CS term.
We have also determined the critical line N = N, (0), for
this transition in the (N, O) plane, the two-dimensional
phase diagram. In this paper we give the detailed expo-
sition of this result [1] based on the framework of [16].
The Grst-order transition implies that the chiral order
parameter as well as the dynamical fermion mass show a
discontinuous change at the critical point on the whole
critical line extending from (N, O) = (N„O) in the phase
diagram (N, 0). Moreover, the critical number of ffavors
N, (0) decreases as the CS coefficient 0 increases.

This paper is organized as follows. In Sec. II we give
a description of QED3 with a CS terin. We start &om
the formulation of QED3 using four-component fermions
in the reducible representation of the ClifFord algebra for

the p matrices in 2+1 dimensions. We de6ne the chi-
ral and the parity transformations for this theory and
our decomposition of the fermion propagator into scalar
functions. We also discuss the structure of the gauge
boson propagator with the nonlocal gauge and give an
explicit expression for the vacuum polarization in the
leading order of a 1/N expansion. After these prelim-
inaries, we first discuss QED without the CS term and
subsequently study the efFect of the explicit CS term. In
Sec. III we write down the SD equation for the fermion
propagator explicitly. The SD equation is solved both
analytically and numerically. Next, in Sec. IV, we study
the efFect of the explicit CS term by solving the nonlin-
ear SD equation numerically. In Sec. V a detailed com-
parison of numerical and analytical result is given and
the numerical results in Sec. IV are con6rmed by the
analytical treatment. In order to study the stability of
the chiral-symmetry-breaking solution, we evaluate the
effective potential of Cornwall-Jackiw-Tomboulis [36] in
Sec. VI. The anal section is devoted to conclusions and
discussion. In Appendix A, we give integration formulas
which are necessary to perform the angular integration
to obtain the integration kernel in the SD equation. In
Appendix B, we supplement details on the calculation of
the ultraviolet boundary condition. In Appendix C, it is
shown that at the stationary point the effective potential
obtained in Sec. VI actually gives the SD equation for
the fermion mass function in the nonlocal gauge.

II. C}ED3 WITH CHERN-SIMONS TERM

In Euclidean space the Lagrangian is

& = @(i P + e 4 + me + 7 mo)4 + 4+pv 2&~&rsvp&~~v&p + &gauge axing .

We use four-component spinors for the fermions, and accordingly a four-dimensional representation for the p matrices
of the Clifford algebra (p&, p„f = —2b~„:

f —io'
o

o l (i~' o l &io' o
io3 I 1 'Yi =

I o &~i I 1 'Y2 =
I o &~2&I

with o (a = 1, 2, 3) being the Pauli matrices; further-
more, we have the matrix w, defined by

o l
lo

With such a representation we can define chirality just
as in four-dimensional QED, but now there are two in-
dependent chiral transformations possible, which are de-
fined by the 4 x 4 matrices p3 and p5.

&o (o
o I, &3 = wpvi&2&3 =

I 1 o I
. (1o)

Without an explicit mass m for the fermions, the La-
grangian is chirally symmetric, but the mass term m, v)@
breaks chiral symmetry. Note that the other mass term
m @wg is chirally invariant.

In this representation, the parity transformation
is defined by g(zp, xi, x2) M P@(xp, —xi, x2),
A&(xp, xi, x2) ~ (—1) " A&(xp, —xi, x2), with P
—ipspi. Then the mass term m @wg is odd under a
parity transformation. Also the CS term is odd under
this parity transformation, and so in the presence of a
(bare) CS term parity is always broken, even if m = O.

The other terms in the Lagrangian, including the chiral-
symmetry-breaking mass term, are invariant under a par-
ity transformation.

A. Fermion propagator

The inverse full fermion propagator can be written as

+-'(p) = &.(p) u + &-(p)- u &.(p) &-(p)- —(»)—
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1
X+ = -(1+~),

2
(12)

which allows us to rewrite the full propagator as

~(p) = ~+(p)~++ ~-(p)x-
A+(p) 8+ B+(p). A-(p) i+ B-(J )
A+(p)p'+ B+(p)

+ A'-(p)p'+ B-'(p)

The functions A(p) and B(p) are scalar functions of the
absolute values of the momenta, and their bare values
areA =1, AO ——0, B =m, andB =m. Inorder
to study the fermion propagator nonperturbatively it is
useful to define the matrix (projection operator)

symmetry, using the SD equation for the fermion prop-
agator. Perturbatively this will not happen, but just as
in pure @ED (without CS term), chiral symmetry can
be broken dynamically due to nonperturbative effects,
starting with a chirally symmetric Lagrangian. So in the
remainder we have put both explicit masses m, and m
equal to zero and study the behavior of Bg nonpertur-
batively. Note that in terms of B+ and B, chiral sym-
metry means B+(p) = B—(p), which gives B,(p) = 0.

The order parameter connected with the chiral phase
transition is the chiral condensate. In the presence of a
CS term there are two types of condensates: a parity-even
condensate (vga) and a parity-odd condensate (@vg).
Using the decomposition of the propagator in terms of
y~, we can write these condensates as

where we have defined

A~ ——A, +A (14)
where

y &) = («)++(«)
(4~4) = (A)+ —(A)

and

B~ ——B, +B
1 k~ B~(k)

, "'A (k)k +B,(k)

In this paper we study the dynamical breaking of chiral
I

The general SD equation is given by

d~k 1
B~(p~) = e' —Tr[p„Sp(k)I' (p, k)D„„(p—k)y~],

e~ dsk 1
A~(p~) = 1+ — —Tr[yfp„Sy(k)I'„(p, k)D„(p —k)y~].p' 2m 3 2

(20)

In QED3, the usual truncation scheme for the fermion SD equation is based on the 1/N expansion [27]. The coupling
constant e~ has the dimension of mass, and we use the large-N limit in such a way that e~ $ 0 and the product N e~

remains fixed:

e = 8a/N, (21)

with o. Bxed. In this approximation scheme, the full vertex is replaced by the bare vertex, because that is the leading-
order contribution in 1/N. In order to be consistent with the WT identity, or at least with the requirement that the
vertex renormalization and the fermion wave-function renormalization are equal, we use a suitable nonlocal gauge
function.

B. Gauge boson propagator

We use a Lagrangian with a so-called nonlocal gauge-fixing term for the gauge field: namely,

Z(A; f(x —y)) = 4I'„„—fige„„pA„B„Ap+ — d y f(x —y)O„A„(x)B„A„(y),
2

(22)

which has certain advantages above the normal gauge-
fixing term: It allows for a momentum-dependent gauge
parameter in the gauge boson propagator.

It is easy to show that this Lagrangian leads to the
inverse bare photon propagator

I

parameter as

u '(q) = fd z f(x)e (24)

So if we can simplify the actual calculations by choosing a
specific momentum-dependent gauge u(q), we can justify
this afterw'ards by specifying the gauge-fixing term as

where we have defined the momentum-dependent gauge We will reconsider this procedure in Sec. VI.
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y f(x —y)O„A„(x)B„A (y), (25) 11~-(q) =!4- — ","
l

rr (q)+.„.,—'ll (q).

d qf(*) =
2 .a '(q)"'* (26)

The conventional (local) gauge can be recovered by the
choice f(x) = b(x)/a, as can easily be seen from the
above formulas.

We can show that identities relating the different
Green s functions, like the WT identity, hold with this
nonlocal gauge in exactly the same way as with a con-
stant gauge parameter. For the (full) photon propagator
this implies, in momentum space,

q D~v (q) — o (q) qv ~ (27)

This means that also with this nonlocal gauge the gauge-
dependent part of the photon propagator is not affected
by the interactions, and that the longitudinal part of the
vacuum polarization is zero. Therefore we can write the
full photon propagator as

lD~-(q) =D (q')l 4-—

( )
q~q~

qpq~
! + Do ( 2) 'Vp

q' )
(28)

q' —IIT (q)
[q' —II (q)]'+ [ll (q) —6lql]'

'

11~(q) —0!q!
[q'-ll (q)]'+ [ll (q) -Olql]' '

where II and II correspond to the decomposition of
the vacuum polarization tensor [9]:

In the 1/N expansion the one-loop vacuum polariza-
tion has to be taken into account, because this vacuum
polarization is of order one: There are N fermion loops
contributing to the vacuum polarization and each loop is
of the order e 1/K. Starting with massless fermions,
e.g. , both the parity-odd and parity-even mass equal to
zero, there is no parity-odd part of the vacuum polar-
ization. The transverse part of the vacuum polarization
Is

q'+ nlql

q'[(Iql+ n)'+ 0'] '

Do( 2)
q'[(Iql + n)'+ ~']

(33)

(34)

This is the photon propagator we will use in this paper,
with a suitable choice for a(q) in order to keep the wave-
function renormalization equal to 1.

III. DYNAMICAL SYMMETBY BREAKING IN
PU'RE +ED

Without the CS term in the Lagrangian, we have no
explicit parity-breaking terms, and the full fermion prop-
agator will also be parity even: There will be no spon-
taneous breaking of parity [10—16]. That means that we
only have to deal with one set of two coupled integral
equations for A(p) and B(p):

IIT(q) = -nlql

Therefore the inclusion of this vacuum polarization leads
to the gauge boson propagator

2 8n d'k A(k) & T a(q)»(p q) (k q) u(q) p . k

Kp2 (2m. )s k2Az(k) + B2(k) ( q2 ) q2 q2

Sn dsk B(k) t T a(q) )
(2.) k A (k)+B (k)!(2D ('+, )!

with q = k —p.
The condition that the wave-function renorrnalization be equal to 1 leads to [16]

(35)

(36)

a(q) =2q'D (q)+ —2 —,ln!
4n 4n' (n+!q!l

!) (37)

The SD equation for the fermions thus reduces to only one nonlinear integral equation for the dynamical mass
function, which we call m(p). After the angular integration, which can be done analytically (see Appendix A), the
radial integration kernel becomes

K(p, k) = +!k+
ln

max(k, p) !
k —p'! k p q n +!k —p! )

k p(k p)' & n ) k p(k+ p)'
(38)
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and the equation for the mass function is

m(p) = dk K(p, k) .
vr2% () k2+ m2 k

f(p)m" (p) + g(p)m'(p) = 4a p'm(p)

with

(41)

This nonlinear integral equation can be solved numeri-
cally without further approximations, or it can be solved
approximately by using a series expansion for the loga-
rithms. This last method makes it possible to convert the
integral equation into a second-order diR'erential equation
and to study dynamical chiral-symmetry breaking ana-
lytically.

A. DifFerential equation

In order to solve the equation analytically we make the
replacement k2 + m (k) ~ k2 + m2(0), which is a good
approximation both for small momenta [where m(k) is
almost constant] and for relatively large momenta [where
both m(k) and m(0)2 are negligible with respect to k2].
One can also show that this replacement is in agreement
with bifurcation analysis; see, e.g. , [37,38]. For very large
momenta (k ) n) we neglect m2 with respect to k2 in
the denominator completely.

Another approximation, which is commonly made [2],
uses the fact that the integral is heavily damped for mo-
menta larger than the mass scale o.. All the essential
physics comes from the in&ared part of the nonlinear in-
teral equation. Therefore one uses a series expansion for
the logarithms in Eq. (38) for momenta p, k (( a, and in-
troduce a cutoÃ at k = o.. However, we are interested in
the behavior of the mass function for momenta p & 0; as
well, especially when we include the CS term. Therefore
we will adopt a slightly diB'erent approximation, which
takes into account the ultraviolet tail of the integral as
well.

For this purpose we expand the integration kernel
K(p, k) in powers of min(p, k)/ max(p, k). To leading or-
der this gives

f(p) = 1

K'(p, o)
'

—K"(p, o)
K'(p, o)]

(42)

(43)

p'm" (p) + 3p'm'(p) +,—m(p) = O. (44)

To solve this we substitute a solution

m(p)=p ) c,p ',
i=0

(45)

and again taking into account lead. ing order only we And
a = 0 or a = —2. It is easy to see that a = 0 is the so-
lution corresponding to explicit chiral-symmetry break-
ing, since this leads to m(p) ~ mo g 0 in the ultravio-
let region. Without a bare mass, the correct solution is
a = —2, which shows that the dynamical mass function
falls oK very rapidly in the ultraviolet region. This is also
consistent with the ultraviolet boundary condition, but
it does not provide a normalization condition.

With this knowledge we now consider an integral equa-
tion in the in&ared region, without neglecting the ultravi-
olet tail of the integraL We use

and two boundary cond. itions, in&ared and ultraviolet,
just as in the usual approximation scheme. It is easy to
show that the behavior of this differential equation in the
in&ared region is exactly the same as one would obtain
by expanding f and g for small momenta directly.

For momenta p &) n we expand the functions f (p) and
g(p), which gives, to leading order in p,

max(p, k) 2 + 2a2 + n max(p, k)Kp, k =2
max(p, k) '[n + max(p, k)]

40.2
ln [1+max(p, k)/o. ] .

max p, k 4 (4o)

Differentiating Eq. (39) with this kernel leads to a second-
order differential equation

p2

for p & o., based on the ultraviolet behavior we have just
found, and normalized in such a way that the solution is
continuous at p = o. [we do not require continuity of the
derivative m'(p) at p = n]. Using the usual approxima-
tion [2] for p ( o., we arrive at the integral equation

32 k2 m(k) 1 8a m(k)m p Bvr21V k~ + m~(O) max(k y) fdk (47)

which Anally reduces to

32 k2 m(k) 1 8m(n)mp = dk
3vr2K k2 + m2(0) max(k, p)

+ (48)



K.-I. KONDO AND P. MARIS 52

This lead. s to exactly the same second. -order difFerential
equation in the infrared. region,

ior at large momenta; only the solution with n = 1 is a
nodeless solution.

p'm" (p) + 2pm'(p) +. . . = O,
32 p'm(p)

3~2~ p2 + m2 0
(49) B. Integral equation

as that obtained. by neglecting the ultraviolet tail com-
pletely, with also the same in&ared boundary condition

m'(o) = o. (50)

The general solution of Eq. (49), satisfying the infrared
boundary condition, is given by

m(p) = m(0) 2'(a+, a, 2, —p /m(0) ), (51)

with ag = —+ 4i /N, /N —1 and a critical number of
fermion fl.avors

Alternatively, we can solve the nonlinear integral equa-
tion for the mass function, Eq. (39), numerically, without
further approximations. The integral can be calculated
numerically without any cutoK, since the integrand falls
oK rapidly for large momenta and the integral is finite.
Solving the integral equation iteratively leads to qualita-
tively the same result as the previous analysis [39].

There is a critical number of fermion Havors below
which there is a chiral-symmetry-breaking solution. The
critical number is the same as we have just found analyt-
ically,

128
3.2 (52) N = = 432,128

3vr2 (58)

m(n) + am'(a) = 8m(n)
3m2N ' (53)

as a result of the inclusion of the ultraviolet tail of the
integral. This bound. ary condition leads to a slightly dif-
ferent normalization of the infrared mass m(0) (see Ap-
pendix B for more details)

m(o)

gN. /N —1

with

, ( 1
0 = »g 1' 1+ dN. /N —1—If'(n-)

) E 2 )
(55)

above which there is no chiral-symmetry breaking. The
only difFerence is the "ultraviolet" boundary condition at
p = o.. This boundary condition now becomes

—20y
m(0)/n = exp + 0.2N', /N —1

(59)

the only difFerence being the value of the constants o,
The analytical result is o~ ——vr and o2 ——3.94, whereas
the full nonlinear equation gives O.

q ——3.1 and o.2 ——1.8.
So the main difference between the analytical solution of
the approximated equation and the numerical solution of
the full equation is an overall normalization factor. This
difFerence is due to the fact that in the first case we have
made several approximations, but these approximations
turn out not to be essential for the behavior of the in-
&ared mass near the critical point. Both in the in&ared

and also the behavior of the infrared mass m(0) is similar
as before. In Fig. 1 we have plotted the in&ared mass
or, actually, gN, /N —1 ln [m(0)/n] versus gN, /N —1
for the full integral equation together with the analytical
result. We can see that in both cases the mass behaves
like

Close to the critical number of flavors this can be ex-
panded to give

—27r
m(0)/a = exp

1 2+ 3ln2+ —sr+ —,(56)
2 7 -6

which is almost the same as if one neglects the ultraviolet
tail, in which case the term 7 in the exponent is absent.

How'ever, this is not the only solution for the bound-
ary condition; it is known that there are infinitely many
solutions if N ( N which behave in general as

-7

analytical------

—2 nut 1 2
m(0)/o = exp - + 31n2+ —~+ —,(57)gN. /N —1 2 7 0.1 0.2 0.3 0.4 0.5 0.6 0.7

close to the critical number of fermion flavors. The so-
lution with the largest value of m/n ( 1 corresponds to
the ground state, since this has the lowest energy. That
means n = 1 in the above equation, and one can also
show that the other solutions have an oscillating behav-

FIG. l. Scaling of the fermion mass and the chiral con-
densates: the quantities u 1n[m(0)/nI and w 1n((Q@)/n ) as
functions of cu = gN /N —1 for the linearized equation (an-
alytical solution, dashed line) and the full nonlinear integral
equation (numerically, solid line) in pure QED.
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and ultraviolet regions the numerical and analytical solu-
tions have the same behavior; see Fig. 2. Of course, these
approximations do make a di8'erence in the region where
p is of order o., but this is to be expected since we expand
to leading order only in p/o. and n/p respectively.

C. Chiral condensate

0.1

0.01

0.001

0.0001
E

lx10 5

numerical

The order parameter of the chiral phase transition is
the chiral condensate

lxl0 6

lxl0 '

0
(6O)

In order to get an explicit analytical formula for the con-
densate, we can use Eq. (48), which allows us to write
the condensate in terms of the mass function at p = o, .
Using the same linearization as before we get

2 (3 3~'ml
(Q@) = —

~

—+
~
crm(n).

vrz (4 32 (61)

From this equation we can calculate how the chiral con-
densate behaves close to the critical number of fermion
Bavors (see Appendix B):

608 r(I/2) -3~ 9,
n' 7~' I'(I/O)' g~ /~ 1 2

3 3+—vr +—
4 7 (62)

Alternatively, we can calculate the condensate numer-
ically, using the numerical solution of the full nonlinear
integral equation, which shows a similar behavior; see
Fig. 1.

lx10 8

0.001 0.01 0.1 1

p/u
10 100 1000

FIG. 2. The fermion mass function m(p) in pure @ED:
the analytical solution (dashed line) and numerical one (solid
line) for N = 2 and N = 3 where both the horizontal and the
vertical axes are logarithmic.

IV. EXPLICIT CHER.N-SIMONS TEAM

In this section we add a CS term for the gauge field
to the Lagrangian. This breaks the parity explicitly, and
gives rise to a parity-odd mass term for the fermions, as
well as a parity-odd part of the gauge boson propaga-
tor. We use the gauge boson propagator as discussed in
Sec. II 8, with the inclusion of the leading-order vacuum
polarization.

Again we will use a nonlocal gauge-6xing term. For
the momentum-dependent gauge function we use [16]

(2n 4ne Oiqi cr2 —0 n + 0"+'
iqi

'+ ""'" +-iqi+~" " '(-+iqi) +~ ' (63)

which leads to a wave-function renormalization almost equal to 1, the deviation from 1 being proportional to OB~,
which can be kept very small.

A. Schwinger-Dysen equation

With the above gauge boson propagator and gauge function, the SD equation can be rewritten as two decoupled
sets of two coupled integral equations for A+ and B+, respectively, for A and B . This leads to the following set of
equations:

Sn dsk 2B~(k) o p. q
~ (k) + ++(

Sn d k 1 7 a(q) A:

1V (2~)' k'A' (k) + H' (k)
( q qz

(65)
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The even and odd parts of the scalar function B(p) are

B.(p) = [B+(p) + B-(p)]/2 (66)

B-(p) = [&+(p) —B-(p)l/2 (67)

in terms of B~(p), and similar for A(p). In analyzing
these equations it is important to observe that once we
have found a solution for A+(p) and B+(p), we automat-
ically have also a solution for A (p) and B (p): namely,
the set A (p) = A+(p) and B (p) = B+(p—). That
means that we can always construct a chirally symmet-
ric (but parity-odd) solution of the SD equation, with
B,(p) = 0. The question of dynamical chiral-symmetry
breaking turns into the question whether or not there
exist taboo (or more) solutions of the set of integral equa-
tions.

Without the CS term there is dynamical chiral-
syrnmetry breaking only for N & N, = 128/(3m2) as we
have just seen. We therefore expect a similar situation
in the presence of the CS term, at least if the parameter
0 is small. That means that for N & N we have only
the chirally symmetric solution of the above equations,
but for N & N, we expect that there are (at least) two
solutions for both B+ and B possible, which can be dis-
tinguished by their behavior under the chiral and parity
transformations and by their behavior in the limit 0 $ 0.

It is also essential to note that in the presence of an ex-
plicit CS term for the gauge Geld in the Lagrangian there
is no trivial solution B = 0, as there would be without
the explicit CS term. Because of the explicit breaking
of parity, the fermions always acquire a parity-odd mass
B, even if the explicit odd mass m is zero. At large
momenta the CS term in the SI3 equation dominates (at
least if there is no explicit mass term present), which
leads to an ultraviolet behavior of the mass functions,

0
B+(p) - —B-(p) -—

p
(68)

at a perturbative level, whereas in the absence of the CS
term the mass function m(p) falls ofF like 1/p, as we have
seen in the previous section. We will discuss this point
in more detail when we are studying the breakdown of
chiral symmetry analytically.
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(1) B+(0) = —B (0) = O(m(0)) & 0, with B+(p) =
B—(p) & m(p), B,(p) = 0, and B (0) = O(m(0)). For

N & N, (0 = 0) we find that B~(p) and thus B~(p) go
towards the nontrivial solution m(p) in the limit 0 $ 0;
for N & N, (g = 0) we find that B+(p) = B (p) = O(8),
which vanishes in the limit 8 $ 0.

(2) B+(0) B (0) = O(m(0)), with B+(p) & m(p) &
B (p), B,(p) = O(m(p)), and B (p) = O(9). This solu-
tion exists for values of N & N, (0 = 0) and small (com-

B. Nurneracal results 2xl0 "-
lx10 7—

We have first solved the set of coupled integral equa-
tions (64) and (65) numerically without further approx-
imations. Depending on the values of the number of
fermion Aavors N and the CS coefEcient 0, there is
only one (chirally symmetric) solution in most param-
eter space, but we found two solutions, allowing for a
chiral-symmetry-breaking solution, for small 0 and small
N, in agreement with the above expectations. Using the
notation B~(p) and B~(p) for the two difFerent solutions
of the above equations, we have found the following so-
lutions.

0—
—1 x10 7-

—2x10 7

10
p/u

100

(c)
1000

F7~ Q rTiL.IG. 3. The numerical solutions for wave-function renor-
malization function. s A+(p) and A (p) and mass functions
B+(p), B (p), B,(p), Bo(p) at 0 = 0.4 x 10 and m(p) at
0 = 0 for N = 3. (a) 1 —A~(p), 1 —A (p), (b) mass func-
tions in the IR region, (c) the same as (b) in the intermediate
region.
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FIG. 4. The infrared values B+(0) (dashed line) and B (0)
(solid line) as functions of N for some different values of 8,
obtained numerically by solving the two sets of coupled inte-
gral equations. The dotted line indicates m(0) in the case of
0 = 0.

FIG. 5. The infrared values for B+(0), B (0), B (0),
B (0), and the chiral condensate (g@) as functions of 8 for
N = 3, obtained numerically by solving the two sets of cou-
pled integral equations. Note that the scale for the condensate
is difFerent.

pared to a) values of 8 only. There is a critical number
N, (8) ( N, (0) for given 8 or critical 8,(N) for given
N ( N, (0). In the limit 8 $ 0 both B~ and thus B, go
towards the nontrivial solution m(p): B+(p) $ m(p) and
B (p) t m(p) in this limit. The parity-breaking solution
B (p) vanishes in this limit.

(3) B+(0) = B(0) = ——O(m(0)) ( 0. The chirally
symmetric combination, which exists for small values of
N and small values of 0 only.

(4) B+(0) B (0) = —O(m(0)). The fourth possible
combination of B+ and B,also existing for small values
of N and small values of 8 only.

The typical behavior of the numerical solutions for A
and B is shown in Fig. 3. As expected, A~ is indeed
very close to 1, due to our choice of the gauge function.
The solution B~(p) exists for all values of both N and 8,
allowing only a chirally symmetric solution. The other
solution, B~(p), is the interesting one, leading to dynam-
ical chiral-symmetry breaking. The iterative process of
solving the integral equation numerically does not con-
verge to a (second) stable solution B~ for all values of N
and 0: We can find this solution only for N below some
critical value (depending on 8) and 8 below some criti-
cal value (depending on N), thus showing a chiral phase
transition at some critical 0 and N.

Our numerical results all indicate strongly that this
phase transition is a firs order phase trans-ition, in con-

trast to the infinite-order phase transition in pure @ED
(8 = 0), although it is numerically very difficult to estab-
lish the type of phase transition at the critical values of
N and 0. For fixed 0 and small N, there exists a second
solution, B~(p), as can be seen &om Fig. 4. The value at
the origin B (0) decreases rapidly for increasing N and
this solution "disappears" [without B~(0) going to zero]
at some critical value N ( N, (8 = 0), and also B,(0)
does not go to zero at this critical value. Considering
B,(0) as the order parameter for the chiral phase transi-
tion, this corresponds to a first-order phase transition, in
contrast to the infinite-order phase transition at 0 = 0.

If we look at the behavior of B (0) and B,(0) at lixed
N ( N, (8 = 0) and increase 8, we see a similar situation.
For (very) small values of 8 we find the two solutions B
and B leading to chiral-symmetry breaking. For increas-
ing 8 we find that B(0) decreasesan, d disappears at some
critical value 8,(N), without going to zero at this critical
value; see Fig. 5.

C. Condensate

Although both functions B~(p) behave like 8/p in the
ultraviolet region, leading to divergent integrals for the
condensates (@g)~, the chiral condensate is convergent
due to the fact that the leading-order contributions in
B+(p) and B (p) [or B (p)] cancel. So the chiral order
parameter is

k' B (k) k' B (k)
o (A2+(k)k2+ B+2(k) A2 (k)k2+ B2 (k))

The chirally symmetric combination [B+(p),B (p)],
with B, = 0, gives (@g) = 0, as would be expected from
a chirally symmetric solution. Note that the other con-
densate (gr@) is actually logarithmic divergent because
the leading-order contributions add up. Once we have

the numerical solutions, it is straightforward to calculate
this chiral condensate as well; see Fig. 5. The behavior
of the chiral condensate also indicates a first-order phase
transition.

However, as we mentioned before, it is numerically very
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difBcult to establish such a first-order phase transition.
In order to confirm that it is indeed a 6rst-order tran-
sition and to determine the critical parameters N, and
0, we have to study the phase transition analytically.
We can do this by solving the integral equations ana-
lytically, after pome further approximations analogously
to the approximations leading to analytic solution in the
pure @ED case.

wave-function renormalization (even if we use the non-
local gauge) is of the order of 0B~, which is (close to the
critical number of fermion flavors in the absence of the
CS term) of the order of 0, because the parity-odd mass,
generated by the CS term, is of order 0. So for a consis-
tent approximation, in order to get an analytical solution
of the equation, it is enough to expand the kernel in 0
and neglect all terms of order 0 and higher. Expanding
the nonlocal gauge in 0 gives

V. ANALYTICAL STUDY
a(q) = +2g

0!+g
4o.

)
In order to see whether there is indeed a first-order

phase transition, we have analyzed the SD equation ana-
lytically, after some more approximations. Based on the
fact that A(p) = 1 exactly if 8 is 0, and very close to 1
for small values of 0 (small compared to n), we replace
A(p) by 1; so we get the following equation for B~.

8o. dsk

(2~)s k2+ B' (k)

x s~(q)(2D*(q)+ ) ~2D (q)

(70)

The error we make in neglecting the eKects of the
I

So to order 0 it is the same as the nonlocal gauge without
the CS term; see Eq. (37). By inspection of the trans-
verse part D (q ) of the photon propagator it is easy to
see that up to order 0 this is also exactly the same as
without the CS term. That means that the second term
on the right-hand side (RHS) of Eq. (70), proportional to
D+(q), is the only O(0) contribution in the SD equation
for B~, and that for the other terms we can use the same
kind of approximations as in Sec. III on pure @ED.

So in order to study the problem of dynamical chiral-
symmetry breaking analytically, we replace k2 + B+2(p)
by k + M+2, where M~ = B~(0), in the denominator of
the integrand. In general we get

32 k2B~(k) 4n0 k dk k (k —p)
(72)

with the kernel given by Eq. (38), and z = cosP, with the angle P between the vectors p and k: p k = pk cosP. For
momenta p & o. this reduces to

B+(p) = 32 k' B~(k) 8n Bg(k)
3~2N o k2+ M2 max(p k) 7r2N k2+

4n0 k2 dk k . (k —p)
k'+ M' (k —p)'(Ik —pI+ )'

In order to get this equation, we have used the same
approximations as in Sec. III for the first term of the
integral, which is independent of 0.

order terms in min(p, q)/ max(p, q). Furthermore, we ne-
glect M~ with respect to o., which is justified close to the
critical number of fermion Qavors and for small values of
0. So in the far-in&ared region the leading contribution
coming kom the explicit CS term behaves like

A. Explicit Chem-Simons contribution

The last term on the RHS in Eq. (73), proportional to

8
Is(P) =,N ~+ &(P) (75)

4o0 k2 dk

k. (k-p)
(k —p)'(Ik —pI+ n)' ' (74)

and in the far-ultraviolet region the leading-order behav-
ior is

32 0!
Ie(p) = 3,N

—0+ &(1/p') .

can be calculated analytically; see Appendix A. For the
radial integration we expand the integration kernel for
p & q and p ) q and take into account only the leading-

This should be compared with the analysis by Hong and
Park [40] where the order 8 term was neglected from the
beginning.
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88
~ N

Ie(p) = s2e
3' N p 4p~

for p(o.
for p) o. (»)

This means that in the ultraviolet region the CS term
will dominate, since we know that the mass function
B(p) in the absence of the CS term behaves like 1/p2
in the far ultraviolet. Higher-order contributions in
min(p, q)/max(p, q) will change this result only quanti-
tatively, but not afFect the general behavior.

Based on these expansions, we use an analytical (con-
tinuous) approximation for the contribution &om the 0
term:

agreement with the ultraviolet boundary condition. This
is the same as the perturbatively dominant behavior, as
could also be seen directly &om the original integral equa-
tion, assuming that the mass function falls ofF rapidly
enough in the ultraviolet region. In order to have a con-
tinuous solution at p = o., we use the next-to-leading-
order term, and so we have

32 n n' 6 320 l
B+(p) =+, —~+ —,

I
B~(n) +3~2N p p2 3' 2N )

for p) o..

for small values of 0 compared to o.. C. Analytical results

B. Ultraviolet behavior
So we arrive at the integral equation for momenta p (

The next thing we have to calculate before we solve the
integral equation in the in&ared region is the ultraviolet
tail

8n B~(k)
(7s)

f(p)[K(p) + Ie'(p)j+ ~(p)IK(p) + Ie(p)]

but for this purpose we have to know the ultraviolet be-
havior of the mass function. From the integral equation
we can derive a second-order difFerential equation for mo-
menta p )) o.'

32 k B~(k)
37r2N 0 k2 + M~2 max(p, k)

8 f 160 88+ B~(n)
I

+3~'N g 3~'N ) ~2N' (82)

which we can now solve analytically by converting it to
a second-order difFerential equation with boundary con-
ditions.

The second-order difFerential equation is the same as
without the CS term, Eq. (49), and also the inf'rared
boundary condition is the same; the only (but essential)
difFerence is the "ultraviolet" boundary condition at p =

B+(p) (»)
8 f 160 so

B~(n) + nB~(n) =,
I +, + B~(n)

I

+
3vr'N q 3vr'N ~'N '

f(p) = —p'
4

—3p
~(p) =

4

—320o,"(") = 3. N,
648o.

3m2N s

The leading ultraviolet behavior of the solution of this
equation is either constant (which would correspond to
an explicit mass term in the original integral equation)
or

with f(p) and g(p) given by Eqs. (42) and (43), respec-
tively. In the ultraviolet region, these functions behave
like

which should be compared with Eq. (53). It is also im-
portant to keep in mind that the normalization condition
js

Bg(0) = M~, (84)

and that the SD equation does determine the sign of the
mass function as well. This is obviously not the case if
0=o.

The general solution of the difFerential equation satis-
fying the in&ared boundary condition and the normal-
ization condition is

32 0!
B~(p) = +Ie(p) = —8,

B~(p) = M~ 2'(a+, a, s; —p /M~2), (85)

which is the correct solution in this case, and also in
I

where a~ =
4 (1 +i /N, /N —1). The ultraviolet bound-

ary condition leads to the condition

M~2Eg(a+, a, 2; —n /M~) — M~ 2'(a+, a, 2; —n /M~) = +
I
1+88 ( 16

3~2N n.2N
q 9~2Ny (s6)

In order to determine M, we can plot the LHS of the
above equation divided by, ~ (1 + &,~) as function of
M for a given value of N, which gives us automatically 8
as function of M; see Fig. 6(a). From this figure we can

I

see that there are three solutions possible for B+ and H
Two of them correspond to the two solutions which we
have found numerically, and the third is an oscillating so-
lution which in the limit of vanishing 8 corresponds to the
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first oscillating solution in pure QED, n = 2 in Eq. (57).
For extremely small values of M and 0 there are more
oscillating solutions, in the region around the origin, but
these are numerically unstable, and correspond to higher
excited states, just as in pure QED.

Using the same notation as for the numerical solution,
we have B+(0) ) 0 and B+(0) ( 0, and for B the

FIG. 6. The infrared values B+(0) (dashed lines) and
B (0) (solid lines) as obtained analytically: (a) as function
of 8 for N = 3, rescaled and compared with our numerical
solutions, and (b) as function of N for some different values
of 8, which should be compared with the numerical results
plotted in Fig. 4.

opposite signs. The set (B+,B ) is the chirally sym-
metric solution which is present for all values of (N, 8).
The chiral-symmetry-breaking solution is given by the set
(B+,B ) [or, vice versa, the set (B+,B )]. In the limit
0 —+ 0, this chiral-symmetry-breaking solution behaves

B, —+m,
B = O(8).

(87)
(ss)

If we increase 8 &om zero at 6xed N, then the abso-
lute value of the second solution, B~, decreases (whereas
the other solution increases), until at a critical value 8,
this solution coincides with a third solution, and disap-
pears, but does not become zero at the critical point; see
Fig. 6(a). This clearly signals a first-order phase tran-
sition, as was also suggested by the numerical results.
For comparison, we also showed our numerical data in
the same 6gure, where we use a diferent value of n for
our numerical and analytical calculation, o.„„and a „,
respectively, in order to have equal numerical and analyt-
ical values of m(0)/ n„„ in the absence of the CS term
[note that the axes are 8/n„„and ~B(0)~/n„„, respec-
tively]. This shows clearly that both our numerical and
our analytical results are in good agreement with each
other.

We can also plot M versus N for some 6xed values
of 8; see Fig. 6(b). From that figure we can see that if
we increase N for 6xed 6I, the chiral-symmetry-breaking
solutions disappear if N exceeds some critical value N„
which decreases rapidly as a function of 0. This 6gure
shows that the chiral phase transition is 6rst order in this
direction as well: Increasing N beyond N, (8) makes the
second (and third) solution disappear, but at the phase
transition neither B nor B, = (B+ + B )/2 (which can
be regarded as the order parameter of the chiral phase
transition) becomes zero. In this figure we can also see
that in the limit 8 —+ 0 the critical value N, goes towards
N, (0) 4.32.

The critical parameters N and 0, can be calculated
by difFerentiating the ultraviolet boundary condition,
Eq. (86), with respect to M. This leads to an equa-
tion for M, as function of N, (remember that M does
not vanish at N, ),

2Ei(a+, a, —2, n /M, ) + — 2Ei(a+, a, 2, —n /M, ) — qadi(a+, a, 2, n /M, ) = 0—,Svr2N 3~2N

which can be used as input for the ultraviolet boundary
condition itself in order to calculate 0 . Although we do
not have an explicit form for 0 as function of N, we can
calculate it numerically, and have shown the critical line
in Fig. 7. In this figure we also show some estimates of the
critical parameters based on our numerical calculation.
This shows that the numerical and analytical results are
qualitatively in good agreement with each other, and the
only difference is an overall scale factor (just as in pure
QED).

For small values of M, and N, (8) close to N, (0) 4.32,
we can expand the above equation in QN, (0)/N —1,
leading to

—2' 1 8
M, /n = exp + —vr + 3 ln 2 —— (90)

QN (0)/N —1 2 21

(see Appendix B), which can be inserted into the series
expansion for 8. To leading order in QN, (0)/N —1, this
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FIG. 7. Phase diagram in the (N, 8) plane: the critical line
for the chiral phase transition obtained analytically and some
numerical estimates for the critical point.

FIG. 9. The analytical solution of the linearized equation
and the numerical solution of the full integral equation for
N = 3 and 8 = 0.4 x 10

gives the following expression for 0,

448 I'(1/2) —3 vr 3 9 4
75 I'(I/4) ' gN. /N —1 4

1 I k2 B+(k) k2 B (k) )
0 I k'+M~ k~+M* j

1
dk[B+(k) +B (k)],

7t
(93)

(91)

1 t k2 B+(k)

k'B (k)
A' (k)k'+ B'(k))

In the approximations we are using here, this reduces to
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0 I I I I

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

As mentioned before, we can also calculate the chiral
condensate which is well defined, even without cutofF.
The chiral condensate is

which can be calculated analytically, using (82) at p = n
and the ultraviolet expansion Eq. (81) for B~. This leads
to

0! (3vr N 3)
(A) = —[B+(~)+ B-(~)]

I
+ —

I~2 32 4) (94)

with B+(n) and B (a) determined through Eqs. (85)
and (86). In Fig. 8 we show the chiral condensate [to-
gether with the B,(0)] as obtained both numerically and
analytically for 0 = 0 and 0 = 10 as a function of
N. Again, they are qualitatively in good agreement with
each other, and show a discontinuity in both the chiral
condensate and B,(0) at the critical point.

In Fig. 9, we show both B,(p) and B (p), as obtained
numerically and analytically. The numerical and the an-
alytical solutions have the same behavior in both the in-
&ared and the ultraviolet regions; around p = o. there
is, of course, a kink in the analytical solution due to the
approximations we have made. There is a scale difference
between the analytical and the numerical solution for the
chiral-symmetry-breaking solution, just as in pure @ED;
in fact, if we compare this figure with Fig. 2, we can see
that the parity-even mass function is almost the same as
the dynamical mass function in pure @ED.Furthermore,
this Ggure shows very well the difFerence in the ultravio-
let between the even- and odd. -mass functions: The odd-
mass function behaves like 8/p, whereas the even-mass
function B,(p) = [B+(p)+B (p)]/2 behaves like 1/p2 as
a result of the cancellation of the terms proportional to
+0/p.

FIG. 8. The chiral condensate and B (0) as functions of N
for 8 = 10 and for pure +ED (e = 0), obtained numerically
and analytically. Note that the scale for the condensate and
B (0) is different.

VI. CJT EFFECTIVE POTENTIAL

We consider the efFective action based. on the Cornwall-
Jackiw-Tomboulis [36] (CJT) effective potential, which is
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given by

with

r[sl = r.ls]+ r.[s] (g5)

plication of the efFective potential to QED3, see [41] and
for a review, see, e.g. , [42].

We can rewrite the above expression in terms of the
fermion propagators S+ and S

r, [s] = -T (»[s-'s.]+s s —1),
2

r, [S] = Tr—(sp„D„p„s),

where D„„ is the full photon propagator, and So and
S are the bare and the full ferrnion propagators respec-
tively. At the stationary point br[s]/hs = 0, this eH'ec-

tive action actually gives the SD equation S —So
—e Tr[p„D„„p„s],as is shown explicitly in Appendix C.
Note that we have chosen the bare vertex to write the
effective action, which can be justified by taking the non-
local gauge. Furthermore, we remark that the effective
action is normalized so that ro[s = So] = 0. For the ap-

S = S+y+ + S (gs)

r, , [s] = r, ,[s,]+r, ,[s ], (gg)

ro[s~]—:—Tr in[s~ S()] + S 'S~ —1 (100)

By using the fact that y+ and y are projection opera-
tors and the relation Tr ln = ln Det, it is not dificult to
show that both re[S] and I'i[S] are decomposed into two
parts:

e2 d~p d3k
I'i [S~]—:—

2 (2vr)s (2vr)s
—T h'"S+(»)~"S+(k)~+]D~-(k —») . (101)

Now we define the efFective potential V[S] by dividing the effective action by the space-time volume f d x: V[S]—:
I' [S]/ f dsx. In momentum space, Vo [S~] is given by

V()[s~] = )»'~;(») + B;(»)~ »'~+(») [&+(») —1]+B+'(»)
» d» —ln I+2

0 l »' ) »'&'+(») + B+'(»)
(1o2)

For Vi [Sy], after calculating the trace in the integrand, we arrive at the result

d» dk
(2~)' (2~)' It' &'+(&) + B+'(»)1[k'&'+(k) + Bi(k)]

x
I

2DT (q) - + [2(q») (q k) —». k]
I
A~(»)A~(k)

l(q. ») (q k) ~(q)

l q2 q4

2Dz- q + B~ p B~ k + — q pA~ p Bg k —q-kB~ p A~ k
a(q) Do(q)

q
(1o3)

with q = k —». .At this stage we adopt the nonlocal gauge a(q) which leads to the absence of wave-function
renormalization for the fermion: A~(») = 1. Then we can write

V[B] = V[S] = V()[B+]+ Vo[B ] + Vi [B+]+ Vi [B ], (1o4)

where

[B ]
2d l„

I

» + +(»)
&I 2 +(»))»'+ B+(»)

(1o5)

d3p d3k

(27r)s (2vr)s [»2+ B~2(»)][k2+ B~2(k)]

»~(v) —,
I
&~4)&~(k—) + ((~ u)&+(~) —(~.~)&+5)I) .a(q) i Dcp(q)

q j
Actually this reproduces the SD equation for B~ in the nonlocal gauge at the stationary point bV[B]/SB~ = 0 as
shown in Appendix C.

At the stationary point of V[B], B~ satisfies the SD equation and hence B~ is given by the solution to the SD
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equation: B~ ——B+ . Therefore, at the stationary point, we obtain

dsp B~(p) [B~(p) —m, ~]
(2~)' p'+ B~(p)

(107)

Hence the efI'ective potential at the stationary point is given by

V[B-~l = VIB+']+ V[B-"'1

d'J
l &1 „B+'(p)& B+(p)[B+(p) + +1

(2 )' . &
p' r p'+B+'(p) (108)

Note that the function g(x) = 1n(1+x)—z* is positive
and monotonically increasing in x() 0). Therefore, when
m+ =0,

V[B ] d

(1o9)
is nonpositive, V[B, ~] ( 0, and all the nontrivial solu-
tions have lower energy than the trivial ones (in the case
of pure @ED). Therefore we can determine the ground
state, namely, the solution which minimizes the effective
potential, by using Eq. (109).

Without actually calculating the integral, we can eas-
ily conclude that in the presence of an explicit CS term,
the chirally symmetric solution (B+,B ) gives a lower
effective potential and is thus favored above the chiral-
symmetry-breaking solution (B+,B ). Since the efFective
potential is the sum of two nonpositive integrals, each of
which depends on B+ or B, this efFective potential is
minimized by a symmetric set of solutions (B+,B ) and
not by (B+,B ). So in the presence of an explicit CS
term the chirally symmetric phase is the ground state,
even if the number of fermion Qavors N and the CS pa-
rameter 0 are below their critical values for dynamical

chiral-symmetry breaking. This is quite surprising, since
it is well known that without the explicit CS term the chi-
ral symmetry is broken for N below the critical number,
as can also be seen from the efFective potential, Eq. (109).

In solving the SD equation we have put the external
source m, and m to zero &om the beginning. As a re-
sult, the solution for the homogeneous SD equation has
no specific direction for the dynamical mass to be gener-
ated. Actually, if a solution is found for B+, then another
solution B = —B+ is automatically obtained, and it is
this solution which gives the lowest efFective potential.
In order to study the spontaneous breaking of a symme-
try in general, one can introduce an external source JO
which breaks the symmetry in question and subsequently
consider the limit of removing the external source. If the
symmetry is broken even in this limit, which is signaled
by the nonvanishing order parameter P = limg~o(O)g,
then it is said that the symmetry is spontaneously bro-
ken. In taking this limit one must specify &om which
direction the external source is decreased to zero, J —+ 0.

In this case we must consider the two limits: m, ~ 0,
m + 0. For simplicity we keep m, and m positive,
m„m ) 0 and consider the limit m, $ 0, m $ 0, with-
out loss of generality. Then there are 6ve cases to be
examined, which are given below.

Explicit masses Condensates Solutions of SD equation

m. &m &0 m+ &m &0
m &0 m =0 m+ ——m &0
m &I, &0

m. =m. &0 m+ &O, m =0
m &O, m, =O m+ ———m &0

(A)+ & (A)- & 0

(A)+ = (A)- & 0

(A)+ & 0 & (A)-

(g@)+ & 0,

(@@) undetermined

B+(o) & o, B (o) & o

B+(o) & o, B (o) & o

B+(0) & 0, B (0) & 0

B+(0) = —B (0) & 0

B+(o) & o,

both B (0) and B (0)

Therefore the two solutions (B+,B ) and (B+,B ) are
realized in two different limits: The limit m+ ———m $ 0
leads to the solution (B+,B ), whereas the limit rn~ ——

m, $ 0 yields the solution (B+,B ). This last set of so-
lutions is, of course, only possible if the parameters N, O

are in the chirally broken phase.
Prom this consideration, the two sets of solutions can-

not be realized simultaneously. The result of which solu-

tion is realized depends on the ordering of taking the
vanishing limit, keeping the relation between m and
rn So in the prese. nce of the CS term, taking the limit
m, ) rn j. 0, we will get the solution (B+,B ) which
has a higher value for the CJT efFective potential than
that of the "trivial" solution (B+,B ). That means that
this solution is a quasistable solution of the SD equa-
tion, and will eventually decay into the "trivial" solution.
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This quasistable solution no longer exists beyond a cer-
tain value of 8, the critical value 0,(N) depending on ¹

At this point the system jumps directly to the state ex-
pressed by the solution (B+,B ), which is energetically
more favored, in a discontinuous way.

VII. CONCLUSION AND DISCUSSION

In (2+1)-dimensional QED with N flavors, of four-
component Dirac fermions, we have solved the SD equa-
tion for the fermion propagator in the nonlocal gauge
both analytically and numerically. In the absence of the
bare CS term, we have shown the existence of a Gnite
critical number of flavors, N = 4.3, below which the
chiral symmetry is spontaneously broken, in agreement
with previous analyses [26,28, 16]. In the presence of a
CS term, 0 g 0, we have obtained the critical line ex-
tending from the critical point (N, o) = (N„O) in the
two-dimensional phase diagram (N, O). Here a quite re-
markable point is that, no matter how small 0 is, this
phase transition turns into a first-order transition when
0 g 0, although the critical point (N„O) in the absence
of CS term is a continuous (infinite-order) phase transi-
tion point. Therefore the point (N„O) is the only one
point on the critical line which exhibits continuous phase
transition.

We have shown that the chiral-symmetric solu-
tion (B+,B ) and the chiral-symmetry-breaking one

(B+,B ) of the SD equation are stationary points of the
efFective potential of the CJT type. Here it should be
remarked that the trivial solution (B+ = 0, B = 0) as
a trivial stationary point (equivalently the trivial solu-
tion of the SD equation) is possible only when 0 = 0.
Although the symmetric solution (B+,B ) gives lower
efFective potential than the symmetry-breaking solution
(B+,B ), we have shown that it is possible to take the
limit of removing the external source, m„m $ 0, so
that the spontaneously chiral-symmetry-breaking solu-
tion (B+,B ) is realized. However, it is not yet clear
whether they give local minima, local maxima, or possi-
bly a saddle point of the efFective potential and whether
or not (B+,B ) gives the absolute minimum. In order to
conGrm this issue, it is necessary to calculate the second
functional derivative

can be possibly taken only at the second- and higher-
order transition points where the correlation length di-
verges (in units of the lattice spacing). Hence our result
implies that the meaningful continuum limit &om the
broken phase in the nonperturbatively regularized three-
dimensional gauge Geld theory can be taken only at the
point (N„O), i.e., in the absence of the bare CS term.
This is a novel feature of the three-dimensional gauge
Geld theory with a bare CS term, which seems to be
overlooked so far. Our result may have important impli-
cations in the application of the three-dimensional gauge
theory in condensed-matter physics as a long-wavelength
efFective theory of the microscopic model. This will be
discussed in a forthcoming paper.

This result is obtained by using a consistent expansion
of the full gauge boson. propagator and the vertex in 1/N.
In order to satisfy the WT identity (up to terms of order
1/N and of order of the dynamically generated mass), we
have adopted the nonlocal gauge function which allows
us to neglect efFect from the wave-function renormaliza-
tion. A more accurate approximation would include a
full 1/N2 calculation, similar to the analysis in [28] in
pure QED. Since in pure QED these 1/N2 corrections
do not change the result qualitatively, but only quanti-
tatively (leading to a slightly different critical number of
fermion flavors), we do not expect that those corrections
will change our present result essentially. The question of
gauge covariance can (in principle) be recovered by ap-
plying the Landau-Khalatnikov transformation rules to
the various Green's functions [45]. Therefore we expect
our present results to hold also in a more elaborate ap-
proximation of the SD equation.
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APPENDIX A: INTEGRATIONS

1. Angular integration formulas

at the respective stationary point [43]. The system at an
excited state (B+,B ) might be quasistable and might
decay into the more stable state (B+,B ) in a finite time
interval. The stability of the stationary point will be
discussed in more detail in a subsequent paper.

It is interesting to see our result &om the viewpoint
of the lattice gauge theory where the lattice spacing a
corresponds to the inverse of the UV cutofF A, a 1/A.
It is well known [44] that the nontrivial continuum limit

First we note the relation

7r p+A:

dP sin Pf (q) = dz f (q) = — qdq f(q),—1
I

—A.
I

(Al)

where qz = (p —k) = p + k2 —2pkz with z = cosp.
Then we obtain the formulas
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2 min (p, k)
pk

p+k
pk Ip

—kI
'

pk pip —ki p+ kr

1 1 p+k+n
q(q+ n) pk ~p

—k~ + n

For the calculation of the explicit CS term it is more convenient to use

f 1 1 (p+ q)'+ M'
q'+»'+ 2pqz+ M' 2» q (»

—q)'+ M'

dz
pqz p~+ qz+ Mz (p+ q) + M= 1+ ln

q +p +2pqz+M~ 4pq (»
—q)'+ M'

In pure @ED this gives, for the angular integration,

2a' ln( +') )
4

(
K(p, k) = dz

—1

2 2 o.' 1

~q (n+ q)

2a 1 n+ ~k+ p~ln
max(p, k) ~kz —p~~ k p n+ ~k —

p~

)
a ln(l + I"—ul) nz ln(1+ I"+el)

Ck cj

k p (—k + p) k p (k + p)

f 1 q 1 1 f 1 1 ) 1 +~„dz —ln 1+— ln
p+kr 2n' 1+ +„

p+k)
ln 1+

2(p+ k)' ( n r

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A1O)

2. Explicit Chem-Simons term

The explicit CS term, proportional to

k~dk k. (k —p)
k'+ Mg, (k —p)'(~k —

p~ + a)'
(q+») q

(q + n)', (q + p)' + M~z
' (A11)

can be calculated analytically. The angular integration gives

dq ( pz —q~+ M~z (p+ q)z+ M~)
(q+ n)' ( 4pq (p —q)'+ M~zr

which we can calculate approximately by expanding the logarithm for p & q and p ) q. Taking into account only the
leading-order terms in min(p, q)/ max(p, q) gives

3M~+ p " 2qz dq dq 2q
3(Mz + p ) (q+ n) (q+ n) Mz + qz '

which can easily be calculated. Expanding the result for M~ (( o. gives

I(p) = 2
~

—2aln(1+ p/n)
~

3 M~z + pz f'p~ + 2np

r3Mg+pz ~ ( n+p

+2
1 M~ ( p ) M~z (n+ p)z——arctan ln(n+ p) nz 2 (as~) (Mg+&*))'

(A13)

(A14)
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However, we are only interested in the leading-order behavior in the infrared and ultraviolet regions, and so we finally
get, for p (( o;,

I(p) = 2 + O(p/n) + O(M~/n) (A15)

or, for p )) o. )) M~,

APPENDIX 8: UV EXPANSION OF THE HYPERGEOMETRIC FUNCTION

1. Pure +ED

In pure @ED, the ultraviolet boundary condition, Eq. (53), leads to the requirement

3 —n21, ( 3 n2) — 8 ( 3 —n'&
2+iI a+ a- —,I+n 2+iI a+ a- —,

I
=, 2+iI a+ a-—'2 m2 ) q

' '2' m2 ) 3~2N g
' '2' m2 ) (B1)

with a~ =
4 6 4i,/N, /N —1 and N, = 128/(3' ). The derivative with respect to n of the hypergeometric function

gives

3 -n'l
2+iI a+ a- — . I+n 2+iI a+, a-, —,

I
=2+iI a+, a-, —.

,'2' m' ) g
' '2' m' ) ( ' '2' m' ) '

and so we arrive at

(B2)

( 1 —n') ( 3 —n'l
2Eil a+, a, —;

I

= a+a 2Fi
I

a~, a'2 m2 ) q
'2 m2 ) ' (B3)

where we have used 8/(3m'2N) = a+a . To derive the behavior of the mass m close to the critical value, we expand
Eq. (Bl) in n/m. Taking into account leading order only, we find

( 1 —n 5 I (1/2) I'(a —a+) n 2~+
(B4)

I'(3/2)I
I

a —a~)

2 m2 ) I'(a )I (3/2 —a+) m (B5)

We are interested in m/n, and so we rewrite the bound-
ary condition as

I'(a~) = I'(1/4)
I

1 p (p y i2sr + 3 ln 2) 4(u
I
+ O((u2),

(B10)
r(1+ —,

' )I'( )'(1 —
—,
'

I'(1 ——,*(u)I'(a+) '(1 —-'a+) ' (B6)

using the notation u = gN, /N —1. Since the abso-
lute value of the RHS is equal to 1, we can write it as

2i(P —nor) th

which leads to

(1 3
I

—~+ —ln2+ —
I

(u.
(4 2 7)

In this way we arrive 6nally at

(B11)

P = arg [I'(1+ zu)I'(a ) (1 —ia )]
and n integer. This leads to the equation for m/n:

(B7)

m—= exp
A

(B8)

Next, we expand P to leading order in w, using a Taylor
expansion and the Euler constant p:

I'(1 + -'(u) = 1 ~ 2~p + O((u ),

m
exp

—2n7r 2+ —~+ 3 ln2+—
2 7 (»2)

This expression is only valid for m (( o., which means
that n has to be positive. Using the effective potential,
one can show that the largest value for m/n gives the
lowest energy; therefore, the ground state corresponds to
n = 1, and higher excited (oscillating) solutions are given
by n = 2, 3, 4, . . . .

For the chiral condensate we need to know the mass
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function at momentum p = n, m(n). Using the same
expansions as above, we have

with m given by Eq. (B8). Close to the critical coupling
we can expand this in u, using

m(n) = m
( 2iI'(3/2) I (1 ——'u)

+ H.c.
i(~I'(a )I'(3/2 —a+) m

(B13) which leads to

(B14)

m(n) I (1/2) m / / vr 3 sin P
~

—1+ —+ —ln2
~

cosP—
n I'(1/4) n ( 4 2 ) (d

Finally, using the expansion for P, we find

m(n) 64 I'(1/2) m s/~

n 7 I'(1/4)2 n

with m/n given by Eq. (B12).

(B15)

(B16)

2. Chem-Simons term: Critical mass as a function of N

The equation for M, as function of N, Eq. (89), is

2+1(a+ a— 2 n /M ) + a+a —2+1(a+) a —
y 2 j n /M ) 2a+a —2+y(a+, a, 2, n'/M, ')—= 0.

We can expand this as usual for small M:
(B17)

/' n 'i +,(I'(—1/2)I'(a —a+) I'(1/2)I (a —a+) I'(3/2)I'(a —a+) ~+ a+a —2a+a + H.c. = 0,
EM, ) (F(a )F(—1/2 —a+) F(a )P(l/2 —a+) P(a )F(3/2 —a+)

(B18)

which can be reduced to

/' n ) ' + 1(a —a+) (1+a+ + a+a ) + H.c. = 0,
iM, ) I' a

3
P =

~

—sr+ —ln2 ——
~
~,

(4 2 21'

and so we arrive at

(B23)

and so we arrive at

(B19)
= exp

-2nK 1 8+ —m'+ 3 ln2 ——
QJ 2 21

(B24)

Again, we can write this as

( 2n7r+ 2P)—= exp
/

(B21)

/M, )* I'(1~ —,'a)I'(a )'(1+a +a+a ) B20
( n j I'(1 —zw)I'(a+) (1+a+ + a+a )

with n = 1, 2, 3, . . .; the term —2nvr/ur arises just as
in pure @ED, and also here there are infinitely many
solutions for each value of N. The interesting one is
the one corresponding to the ground state in pure @ED,
n = 1.

but now with
3. Chem-Simons term: Critical 8 as function of N

P = arg[I'(1+ 2ur)I'(a )2(1+ a + a+a )].
Finally we expand P in u:

(B22) Using the above approximation for M, as function of
N, we can now calculate 0 as function of N; see Eq. (86).
In general we have

+m~N
8, = M, 2'(a+, a, —; n /M, ) —a+—a M, 2I"g(a+, a, —;—n /M, )],8('+ 9."~) (B25)

which we can expand:

8. ~'N I'(1/2) /'M. ) ' f M. &
' I'(a —a+)

n 8(1+,",~) q n y ( n y I'(a )' (B26)
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We expand the I' functions as before in u and use

= e'( +~ = —(cos P + i sin P),
(M, ) '

cx
(827)

which we have just derived, to get

e. 44S r(I/2) /'M. )"
75 I (I/4)' g n ~

(B2S)

to leading order in cu, using the expression for P, Eq. (B23).

APPENDIX C: STATIONARY POINT GF THE EFFECTIVE POTENTIAL

The eBective potential given in Sec. VI reproduces the SD equation for Bp at the stationary point as follows. The
variation with respect to B~ of the effective potential is calculated as

V[B]=,—l
»+(p) ' »+(p) (2~)' ( p' ) p'+ B+'(p)

„[p' —B+'(p) l (C1)

h 2e' [p' —B~(p)] d'k I ( a(q) ) (k q)» ( ) (2 )' [p' B'(p)]' (2~)'k'+B'(k)

Therefore we obtain

(C2)

~B+(p) (2ir)' [p'+ B~2(p)]' (2~)' k'+ B~2(k)

x
[

2DT (q) +, ~
Bg(k) g 2 Dci(q)

a(q) & (k. q)

~ q2

This shows that the SD equation for B~ is obtained from the stationary condition 8V[B]/bB~ = 0 of the CJT effective
potential V [B].
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