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Relativistic top: An application of the BFV quantization procedure
for systexns with degenerate constraints
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The physical phase space of the relativistic top, as de6ned by Hansson and Regge, is expressed
in terms of canonical coordinates of the Poincare group manifold. The system is described in
the Hamiltonian formalism by the mass-shell condition and constraints that reduce the number
of spin degrees of freedom. The constraints are second class and are modified into a set of 6rst
class constraints by adding combinations of gauge-fixing functions. The Batalin-Fradkin-Vilkovisky
method is then applied to quantize the system in the path integral formalism in Hamiltonian form.
It is finally shown that different gauge choices produce diferent equivalent forms of the constraints.

PACS number(s): 11.30.Ly, 03.65.Fd, 11.30.Cp

I. INTRODUCTION

In a classical paper by Hansson and Regge [1] (cf.
also [2]) a Hamiltonian formulation of the relativistic
spherical top was derived. The description contains too
many degrees of keedom„and constraints are imposed.
In the Hamiltonian formulation the system is then fully
described by the constraints for the spin, which can be
imposed in the form suggested by Pryce,

Poincare group manifold. Section II of the paper is de-
voted to this construction.

The spin constraints (1) are second-class constraints.
We first deal with this difFiculty in the simpler case of a
massive spinning particle with the mass-shell constraint

(m, is a constant). In this case, we convert the spin con-
straints to first-class constraints by replacing them with

Q„= S„(P"—mA ") = 0, (4)

as well as the mass-shell condition that has the form [1,2]

P +-S" S„=O.
[P~ and S~ are the momentum and spin variables, re-
spectively. Our metric is

where A " is a Lorentz transformation matrix element.
Different gauge choices will correspond to the various ver-
sions of the spin constraints as reviewed in [1] Appendix
B.

The spin constraints are degenerate, since

gpgg: diag( 1) 1) ) 1)

We work throughout the paper in an arbitrary dimen-
sionality D of space-time. ]

In [1] the system was quantized by means of the Dirac
method, which implies an explicit realization of the phys-
ical subspace before quantization. This means that gauge
conditions have to be imposed and new physical variables
defined that obey canonical Poisson brackets. Manifest
Lorentz covariance is, in general, lost by this procedure.

More modern quantization approaches are the Becchi-
Rouet-Stora- Tyutin (BRST) [3] or Batalin-Fradkin-
Vilkovisky (BFV) [4] quantization procedures. An at-
tempt to use these methods on the top was carried out in
[5]. However, the noncommutative properties of the spin
variables as well as the degeneracy of their constraints
were ignored in [5]. In the present paper, these compli-
cations of the problem are fully considered. We do this
by using as coordinates the canonical coordinates of the
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In order to quantize the system in a manifestly covariant
way we thus have to use the version of BFV quantization
appropriate for degenerate constraints [6]. The details
are contained in Sec. III of the paper.

In Sec. IV we finally consider the quantization of the
relativistic top. The complete set of first-class constraints
is here determined as

S„(P"—qA ),
/2 + 2

—-S" S —S A S AP
2 pv vp

We have found. it convenient to introduce an extra aux-
iliary variable with conjugate momentum g and an ex-
tra constraint. We then demonstrate how various gauge
choices lead to the appropriate forms of the mass-shell
constraint (2). An appendix contains supplementary ma-
terial to Sec. II.

Throughout the paper we work with Poisson brackets.
The quantum-mechanical commutators or anticommuta-
tors are then obtained by the usual replacement.
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II. GROUP THEORETICAL SETTING

For an arbitrary Lie group with structure constants
C~ p we introduce the matrix P

The inverse vielbeins u p, u, and u„" are con-
structed &om the structure constants as described above.
The generators and momenta are related through [cf.
(»)]

II„=u„P
where (~ is a canonical coordinate on the group manifold.
The inverse vielbein u will then, near the origin of the
group manifold, be given by

i ApII„—u„„Mpp+ u„Pp . (2o)

This ensures by the Cartan-Maurer equation that the
generators satisfy the appropriate Poisson brackets rela-
tions:

and hence satisfy the Cartan-Maurer equation

b/~up —Bpu~ = u~ up C

(io)
(M„,M ) = C~"„-Mg„,

(M„,P ) = C~„P(,

(21)

The conjugate momentum to the group manifold coordi-
nate (~ is II and is related to the generator Ip through (P„,P )=0.

II =u ~Ip. (12)
The physical space-time coordinates, denoted. x, have
to be defined through

Poisson brackets are found from

(»)

A v

in order to obey the Poisson brackets relations

(24)

The generators satisfy, by the Cartan-Maurer equation, (x",P„) = 8„" . (25)

(I,I&) = C' &I, .

In [1] the description of the relativistic top was made
in terms of physical quantities such as the space-time co-
ordinate x" and the conjugate momentum P„ together
with Lorentz transformations A~ and the spin variables
S„.The description can, however, be made on a more
fundamental level in terms of the canonical coordinates
of the Poincare group manifold and their conjugate mo-
menta.

The Poincare group generators are denoted P„(trans-
lations) and M„(rotations and proper Lorentz transfor-
mations), and the nonvanishing structure constants are

C„=b g„—b„g

M„=L„+S„
with

The Poisson brackets involving L„are

(L„,P)=C „Pp, (2s)

(29)

and

The spin variables S~ are introduced through the fol-
lowing decomposition of M„:

~In gC ~n gn

b pC „+b pC~„ (16) Therefore,

(I~- I.-~'1= 2C'"~-,-~4n . (3o)

The Poincare group is parametrized by the variables a"
(translations) and A~ = —A"~ (rotations and proper
Lorentz transformations). The corresponding conjugate
momenta are denoted II~ and II~, respectively. With

a proper Lorentz transformation is given by

(s„„,P ) =o.
In the Appendix we also prove

(S„., x.) = o.
By combination of these Poisson brackets relations we
get

AA (
—

P) A (is) p~& ~pk 2 P»~P

For a Lorentz transformation A we also prove, in the
Appendix,

For a summary of the basic concepts, see, for example, [7]. (S„,A )=C~„„A g.
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Finally we list the vanishing Poisson brackets:

(x„,x ) = (A"„,A ) = (x„,A ) = (P„,A ) = 0 .

(35)

In the framework of [6] the system is called first-
stage reducible. The system can be quantized using the
method of [6], provided the constraints are first class.
This brings us to the second difFiculty. Inspecting the
mutual Poisson brackets of g~ by means of (39) we find

We also introduce the associated quantity 0.I':
(QI, Q„) = P S„+P„@„—P @„, (41)

Pv fA —l)P, AAu 1 jPcr Pv—
2 +P~ (36)

which is the space-time equivalent to the angular velocity
in Euclidean space. The classical action S in first-order
formalism is

and we see from the first term on the right-hand side that
the constraints are second class.

To see how this obstacle can be overcome, we consider
in this section the simpler case of a massive spinning
particle with the usual mass-shell constraint:

S= d~ a II +-A" II„ (37) r'+m' =O (42)

where, from (19) and (20),

The action (37) describes a particle moving on the
Poincare group manifold parametrized by canonical co-
ordinates.

The main point of this section is that we have demon-
strated the convenience of the canonical Poincare group
coordinates and their conjugate momenta for the descrip-
tion of the spinning top. Our approach is equivalent to
that of Hanson and Regge [1] [thus our Poisson brack-
ets relations (23), (25), (31), (32), (33), (34), and (35)
are identical to [1] Eq. (3.11)]. However, by avoiding the
use of A"„as a canonical coordinate, we also avoid the
diFiculties related to the constraint AA = g.

We conclude this section by listing the Poisson brackets
that are required in Secs. III and IV:

with m a fixed-mass parameter, postponing the treat-
ment of the constraint (2) to Sec. IV. From (41) we see
that the constraints are now first class for m = 0. To
make the constraints first class also for m g 0 we modify
them as follows:

@„=S„„(P"—mA ") . (43)

(Q„,Q ) = (P + m )S„+P„vP„—P vj)~ .

The constraints are now first class. Notice that the new
constraints are also manifestly Lorentz invariant, since A
transforms as a Lorentz vector under S& only in its sec-
ond index [cf. (34), and [1], the remark after Eq. (3.11)].

The system is still first-stage reducible, and the re-
ducibility condition now reads

The Poisson brackets of the new constraints are again
obtained &om (39) supplemented with AA+ = g:

(S~- S-~) = &~-S-~ —&-S~~+ &-~S~- —&u~S-
(P" —mA ")g„=0. (45)

(S„„,A ) = rI„A „—rI„A „,
(P„,P„) = (S„,P ) = (P„,A ) = (A, A ) = 0 .

III. QUANTIZATION OF MASSIVE SPINNING
PABTICLE

Quantization of the system is carried out using the
BFV method for the case of degenerate constraints [6].
Ghosts and Lagrange multipliers and their corresponding
conjugate momenta are introduced. In the following, all
the new degrees of freedom are listed, with coordinates
first and conjugate momenta last as (. . . , . . .).

The ghosts and antighosts corresponding to the con-
straints @„are (ghost number 1, —1, respectively)

In [1] the relativistic top was shown to be fully de-
scribed in terms a set of constraints for the spin vari-
ables,

s„p =0,

(c" &-) (P c~)

and to the mass-shell constraint

(c &) (& c).

(46)

and the mass-shell constraint,

I'+-'s~ s„.=o.2

When quantizing the system by the BFV method there
are two difIiculties. First the constraints are not linearly
independent, since

All these ghosts and antighosts obey Fermi statistics. La-
grange multipliers (that are bosonic) for the constraints
and their conjugate momenta are introduced:

(A", vr ), (e, vr) .

The ghosts and antighosts corresponding to reducibil-
ity of the spin constraints (ghost number 2, —2) are

P"g„=- 0 . (40) (c' 'P') (P' c') . (49)
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These ghosts and antighosts obey Bose statistics. For
the ghost variables of the spin constraints we also need
a constraint and, hence, a Lagrange multiplier and its
conjugate momentum (that obey Fermi statistics):

An extra Lagrange multiplier and its conjugate mo-
mentum

(A", 7r")

(with Bose statistics) are, furthermore, introduced to 6x
the gauges of (A", vr„). Likewise, an extra ghost and its
conjugate momentum

present instance all the higher-order structure functions
turn out to vanish.

Q has nonvanishing Poisson brackets with the gener-
ators M„of rotations and proper Lorentz transforma-
tions. However, we can redefine M~ by addition of terms
involving ghost variables:

M„m M„—c„p + e„p„,
such that the redefined generators have vanishing Poisson
brackets with Q and still satisfy the appropriate structure
relations {21).This shows also that the quantized theory
is Lorentz invariant.

The Hamiltonian H of the theory is given by the gen-
eral expression [6]:

(
/I PI/)— (52) H = (C, q),

(with Fermi statistics) fix the gauges of (P",c„).
The complete BRST charge Q is now determined by

the procedure described in [6]:

Q = Q; + ~„p"+ 7r P + 7r'P' + 7r"p"

with

where 4 is the gauge fermion (since the theory is deter-
mined by its constraints [1], no further terms occur in
H). H has vanishing Poisson brackets with the BRST
charge Q,

(H Q) =o

Q; = Q„c"+ (P + m') c
P„c"c"P—„+(P —mA ")c'p

—2S„c"c"P+ (P„+mA „)c"c'p'
+c"c'P„P —(c')2'P P' .

It is nilpotent,

because the constraints are first class.
The presence of structure functions (not constants) in

the constraint algebra will, in general, give rise to higher-
order ghost terms in the BRST charge. However, in the

because of the nilpotency of Q. The general form of @ is

4 = c„(y"+ A") + c(X+ e)

+c (~'+ j ') + c '(~" + p")
+&"&+p„A" + p~+ p'W'.

Here y" and y are the gauge-fixing functions correspond-
ing to the spin constraints and the mass-shell condition,
respectively. y' fixes the gauge for the ghosts c~ that are
gauge variables due to the reducibility of the spin con-
straints. y" can be considered a gauge-fixing function
for the Lagrange multipliers A", and G a gauge-fixing
function for the antighosts c„.

With this choice of 4 the Hamiltonian H has the form

Hg ——e(P + m ) + A [@„—S„c P —c"('P'P„—P„P ) —c'P'P„+ c'P'(P„—mA „)]
—A'[(P" —mA ")'P„+'Pc"'P„+ 'P'c" (P„+mA „)—2c'P'P],

H2 ——pp+ p„p" + p'p', (60)

Hs = ere++„A" + sr'A'+ x"A" +Pc+'P"c„+P' +cP"c~ + —'(cP+ c„'P"+ c"P'+ c~'P"),
d7-

H, = ~~+ &~~„+~'~'+ &"~" + m" + c(~, q) + c„(&~,q) + c'(~', q) + c"(~",q}+ W" (G, q) .

This expression is quite complicated; the important
thing about it is that; Hq contains a linear combination
of the constraints, while 84 contains a linear combination
of the gauge-fixing functions. —7 (coordinate time gauge), (61)

The familiar possibilities for choosing the parameter w

emerge through the gauge choices:
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y = x+ —i (light-cone gauge), (62) 0 0y„=A „—b „— =0.
m (68)

y = x + 1 (covariant proper time gauge) .

The gauge choices corresponding to the spin con-
straints are more interesting. In [1] three equivalent
forms of the spin constraints were mentioned. One is

This means that diff'erent forms of the constraint (43)
are obtained for difFerent gauge choices. This nice fea-
ture comes &om the fact that we were forced to make
the constraints gauge dependent through the modifica-
tion (43) in order to make the constraint algebra first
class. In the case m = 0 it is customary to use light-cone
quantization, which emerges by the gauge choice

(often referred to as the Pryce constraint). It emerges
from (43) by the gauge choice (cf. [1])

P„y„=A „+ =0.
m

y„=A „—b „=0.+ +

The particle propagator is given by

(x, &, &]Ix', &', O) = f]d PI]d Q"]"

(69)

Another possible version of the spin constraints is

~l
gOj g/j 0I'0+ m

(65)

0 0y„=A „—b „=0. (66)

Finally, the spin constraints

S'& =0
result from (43) by the gauge choice

which arises naturally in Wigner's classification of the
representations of the Poincare group [8]. It can be ob-
tained from (43) by the gauge choice

d~(P„g" —a) ~, (70)

where dP and dQ denotes integration in all variables:
physical, ghosts, and Lagrange multipliers. Likewise the
sum P~q+ runs over all variables. The Hamiltonian
II provides the gauge fixing, and it is known [6] that
(x, A, i ~x', A', 0) is independent of the choice of the gauge
fermion 4'.

We conclude this section by computing the propaga-
tor from the above expression for the gauge conditions
(61) and (66) supplemented with y' = c, y" = A, and
G = t" . As was mentioned above, this gauge choice
is preferred in connection with Wigner's analysis of the
representations of the Poincare group. After integration
over ghost and Lagrange multiplier variables and their
conjugate momenta we obtain the expression

( l, &] xA', O) =x]doe]]do&I]]do&o r&&eA]]d & '&&'&&] ( A) exp
]

i d7(x"P„+ 2o"-S„)
~

with

D —1

A = 2P b(x —7-)b(P + m ) h(A, )(I
~

S '— P
/
).

P +m

Here and in (70) the time interval [0, t] has been cut in small subintervals in the standard manner, with one factor A
for each subinterval.

The integrations over the coordinates A" and their conjugate momenta are eliminated by means of (18) and (20) and
by using in the initial and final states of the path integral, instead of configurations of A-coordinate eigenstates with
eigenvalues labeled (n) and (n') of the Cartan subalgebra of the little group Lie algebra in a particular representation.
Using finally (19) and (20) to change integration variables we obtain the standard expression for the propagator (cf.
[9]):

(x (rr) &]x (e') 0) = b& '&, & & f]d x]]d p] ( op d(x —x)d(p + re )) exp] & dxdep„
0

(73)

with b~ ~ g ~
Kronecker's b.
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IV. THE RELATIVISTIC TOP

%e now turn to our main concern: BFV quantization
of the relativistic top. The relativistic top is, as noted in
the Introduction, fully described by the two constraints
(1) and (2). The constraint algebra does not close, and
the modification (43) alone is not sufficient to make the
constraint algebra close. To see how this comes about,
we compute the Poisson brackets

@„=S„(P —qA ), (sl)

Q2 + 2 (s2)

new degree of freedom. In this way we can avoid tak-
ing the square root of (76). The new spin constraints
are obtained from (43) by replacement of m with g. The
constraints of the relativistic top are, in this formulation,

(2S" Sp, S„pA P) = 2S„pS"~A p, (74)
and

where again (39) was used. This result shows that the
modified spin constraints (43) combined with (2) do not
constitute a set of erst-class constraints.

However, (39) also implies the Poisson brackets rela-
tion

X= ' —-'S&"S —Sv'A' S A"
2 A vp (83)

The mass-shell constraint is JM —&.
These constraints are 6rst class since the Poisson

brackets of JM and 'R with all other constraints vanish,
whereas

(S "A ), S„pA P, S„A ) = 2S„pS—PA
p . (75) (g„,Q„) = MS„+P„@ —P„g„. (84)

Thus, the combination

-S" S +S A S AP
2 pv A vp

has vanishing Poisson brackets with S„A . Further-
more, it follows from (39) that

(S "A pS„pA P, S„)= 0; (77)

i.e. , the quantity S" A pS pA p is a Lorentz scalar, as is
also, by the same ind. ication, 2S" S„.

A possible mass-shell constraint is thus

The BFV quantization of the relativistic top is a trivial
extension of the BFV quantization of the massive spin-
ning particle in Sec. III because the new constraint 'R

has vanishing Poisson brackets with all other constraints.
Thus, BFV quantization is carried out as in Sec. III. The
only new feature is the extra variables corresponding to
the constraint 'R: ghost and antighost variables

(c, P), (P, c)

(that obey Fermi statistics), and a Lagrange multiplier
and its conjugate momentum

I'+-'S& S +S'A' S A'P=0
2 (78) (A, ~) . (s6)

Before we turn to the Anal formulation of the constraints,
we discuss the appearance of (78) in the gauges listed in
Sec. III. For A ~ = P„/m the sp—in constraints reduce
to S~ P = 0; this means that (78) reduces to (2).

In the gauge where A ~ = b „we get

The new BRST charge is

Q = Q;„+~„P"+ ~''P+k P+ ~'P'+ ~"'P"

with

(s7)

-'S& S +S A' S A"=-'S Spv A vp

where the summation on the right-hand side runs over
only spatial indices; i.e. , the right-hand side is the square
of the spin in the ordinary spatial sense. The mass-shell
constraint (78) thus becomes

~'+ -'S'&S,,- = 0.2 (so)

As mentioned in Sec. III, this gauge leads to signer's
representation theory of the Poincare group, and the
mass-shell condition (80) gives, when 2S'~S;z is replaced
by its eigenvalue, a relationship between mass and spin
quantum number. The mass-shell condition (80) in this
gauge is equivalent to the condition (2) in the gauge
where Ao~ = P~/m [cf. [1], the —remark after (3.60)].

We conclude that (78) is the proper replacement of (2)
as the mass-shell constraint for the relativistic top.

In order to generalize the constraints formulated in
Sec. III to the top, we introduce an auxiliary coordi-
nate ( with the conjugate momentum variable g, and
we introduce an extra constraint to eliminate again the

Q;„=g„c"+ Mc+ 'Rc

P„c"c P + (P"——qA )c'P„
2S„„c"—c P+ (P„+GAIA

„)c"c'P'
+c"c'P„'P —(c')'P P' . (ss)

Also, in the gauge fermion 4 we now need some extra
terms:

4 ~ @+c(y+ A) +PA, (89)

where y is a new gauge-Axing function that is conve-
niently chosen according to

'R = q —f( 'S" S„„+S""A-S A P) (9i)

with f an arbitrary function, without changing any of

(90)

(y is the coordinate variable conjugate to q. ) The con-
struction of the Hamiltonian and the propagator now
runs exactly as in Sec. III; we leave out the details.

It should be noticed that (83) can be generalized to



N. K. NIELSEN AND U. J. QUAADE

the steps in the BFV construction. The corresponding
general form of the mass-shell condition was the one con-
sidered in [1]. ( u4) A g~o (

(t—u)4)

V. CONCI, U SION dt du(e"4')r (et&)„.&&, (A3)

Our main results in this paper are the following ones.
First, we have shown how the Poisson algebra relations

(or commutators) necessary for the quantum theory of a
spinning particle or a relativistic top naturally emerge
&om the phase space related to the Poincare group man-
ifold.

Second, we have shown that the constraints defining
a spinning particle or a relativistic top, though initially
second class, can be modified to make them erst class.
What we use is that we are allowed to add to the con-
straints combinations of gauge-Axing functions. Accord-
ingly, we show how our modified constraints reduce to
the previously known versions by specific gauge choices.

Finally, since the systems we consider are entirely de-
fined by their (degenerate) constraints, we have found
it convenient to employ the BFV quantization procedure
in Hamiltonian form, generalized to deal with degenerate
constraints. Our results give a simple and yet nontrivial
example of the application of this quantization scheme.

where (bpP is given in (17) and

By considering

where, using the Poisson brackets

(II„„,AP }= (b„Pb„——b„Pb„),

we obtain

(II„,up" }aP =—

(e(i—")t4') (ap

(A4)

(A6)

1
2

uP) (q~A ( t4) t' p
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(II„,A }= dt(
—(1—t)4) 7 ~A (

—tQ) p

which is compared with

(II„,A }= 2iu„~"(M—(„,A }.

and thus (32).
For a I.orentz transformation A we And

1

(A8)

(Ao)

APPENDIX We conclude

We here give some details of the derivation of (32) and
(34). The inverse vielbeins of the Poincare group have
the explicit integral representations

(M„,A }= (S„,A }= C~p„A t . (A10)

In order to deduce (A3), (A7), and (AS), we used the
identity

(Al) (A11)

1
A dt( t4) A (A2)

with P defined in (9). This identity is a direct conse-
quence of the Jacobi identity of the structure constants
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