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We formulate @CD in d+1 dimensions using Dirac's front form with periodic boundary conditions,
that is, within discretized light-cone quantization. The formalism is worked out in detail for SU(2)
pure glue theory in 2+1 dimensions which is approximated by restriction to the lowest transver8e
momentum gluons. The dimensionally reduced theory turns out to be an SU(2) gauge theory coupled
to adjoint scalar matter in 1+1 dimensions. The scalar field is the remnant of the transverse gluon.
This field has modes of both nonzero and zero longitudinal momentum. We categorize the types of
zero modes that occur into three classes, dynamical, topological, and constrained, each well known
in separate contexts. The equation for the constrained mode is explicitly worked out. The Gauss
law is rather simply resolved to extract physical, namely, color singlet states. The topological gauge
mode is treated according to two alternative scenarios related to the elimination of the cutoff. In
one, a spectrum is found consistent with pure SU(2) gluons in 1+1 dimensions. In the other, the
gauge mode excitations are estimated and their role in the spectrum with genuine Fock excitations
is explored. A color singlet state is given which satisfies Gauss law. Its invariant mass is estimated
and discussed in the physical limit.

PACS number(s): 11.15.Tk, 11.10.Ef, 12.38.Lg

I. INTRODUCTlON

It remains notoriously difBcult to understand the low-
energy regime of quantum chromodynamics (QCD) in
terms of the simplistic but otherwise successful con-
stituent quark picture. In line with the formulation of
Feynman's parton model [1] in the infinite momentum
frame [2,3], a promising approach could be that of Pauli
and Brodsky [4,5] which adapts Dirac's "front form"
Hamiltonian dynamics [6] for nonperturbative quantum
field theory. Perhaps a misnomer, the method carries the
naine discretized light-cone quantization (DLCQ). Nu-
merous applications have been carried out with reason-
able success in extracting bound state spectra and wave
functions for both 1+1 dimensions in Abelian [7,8] and
non-Abelian gauge theories [9—13] as well as for higher
space-time dimensions [14—18]. DLCQ combines the as-
pects of a simple vacuum [2] with a careful treatment of
the infrared degrees of &eedom. The latter are controlled
by the finite volume regularization of the method. There
is legitimate hope that one can thus get both a man-
ageable treatment of the "vacuum problem" and explicit
invariant mass spectra and wave functions for physical
particles.

In this paper we concern ourselves with more than just
the vacuum problem, which in this context manifests it-
self as the so-called "zero mode problem. " Contrary to
the original expectations of the framers of DLCQ, the
zero momentum modes of the Lagrangian field operators
have proved far more than just a "set of measure zero. "
Indeed, in the P4 theory in 1+1 dimensions they are cru-
cial in reproducing the vacuum properties of the theory,

namely, spontaneous symmetry breaking and a vacuum
condensate [19—25]. This is achieved in the DLCQ frame-
work by the property of the zero mode of P being, not
dynamical, but satisfying a constraint [26]. This pre-
serves the simplicity of the vacuum and thus the partonic
picture of light-cone field theory. The desired symmetry
is explicitly broken upon solution of the constraint by
nonperturbative approximation and substitution in the
Hamiltonian [23—25]. Now the four-point coupling of glu-
on8 suggests at least some aspect of this feature will be
present in (3+1)-dimensional QCD (QCD3+i). We thus
set out in the sequence of papers [27—30] to disentangle
the constraint problem &om that of the gauge symmetry
of the non-Abelian theory. Constrained zero modes oc-
cur even in Abelian theory [27,28] for which one requires
gauge fixing to solve [29] and that gauge choice may not
in general be that on the nonzero modes. But not all
zero modes in a gauge theory are constrained. Less sig-
nificant in QEDs+i, some of these dynamical modes are
intimately related to the nontrivial topology of both the
hypertorus implicit in DLCQ and become important in
the presence of non-Abelian gauge groups [30]. We thus
And a diverse range of zero mode types, all of which will
evidently be present in QCDs+i. Treating these types
together in a single theory, albeit a still simplified one, is
the subject of this paper.

The essential principle we shall use for getting to sim-
pler theories from QCDs+i was espoused in [30]. Lower
dimensional "regimes" of a higher dimensional theory
can be systematically explored because of the finite vol-
ume regularization: zero and nonzero momentum modes
can be cleanly distinguished and so one can, for exam-
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pie, excite one and not the other. One thus obtains ef-
fective theories in lower space-time dimensions that are
not identical to the original theory defined a priori in
lower dimensions. This is essentially dimensional re-
duction" [31,32]. A similar idea for the instant form was
recently suggested by [33]. In [30] we examined (1+1)-
dimensional pure SU(2) gauge theory coupled to external
sources in DLCQ. We suppressed all momentum excita-
tions and obtained a (0+1)-dimensional, quantum me-
chanical, theory of a single gluon zero mode whose dy-
namics depended on external sources coupled to the glu-
ons. This mode corresponds to the quantized Aux loop
around the circle defining space. The mode is purely of
topological origin, and thus the theory was manifestly
isomorphic to a quantization in the instant form defined
on the analogous topology [34,35]. This is one of the
types of zero modes discussed above.

The "next step, " taken in this paper, is to begin
with (2+1)-diinensional SU(2) theory and looking at the
nested (1+1)-dimensional theory by suppressing trans-
verse gluon momentum excitations. The topological
mode appears here again, but now coupled to true dy-
namical field modes that are the Fock modes of the trans-
verse gluon component. As well, other types of zero
modes appear. This is now the simplest type of non-
Abelian gauge theory we can construct in which all the
types of zero modes encountered previously couple to-
gether into a nontrivial dynamical problem. Many of the
structures we unveil here were already foreseen in 1981
by Franke et al. [36,37] in 3+1 dimensions. It will become
clear in the course of the present work that these types of
models, first discussed in DLCQ by [11,12] but without
zero modes and assuming only color singlet string states,
enable insight into how to overcome the obstacles that
impeded Franke.

The aim of this work then is twofold. The first is a
formal aim: to show how a treatment of the non-Abelian
gauge theory can be achieved which keeps the advantages

I

of the &ont-form approach while controlling the infrared
problem. This we succeed in doing insofar as we can give
a Hamiltonian in which the nature of all modes, zero and
nonzero, is clarified and their means of solution at least
understood. Sections II—IV deal with these formal as-
pects. In particular, in Sec. III we make the restriction
in the gauge Gxing to the so-called "fundamental modular
domain" [38]. The second aim is to gain insight into the
physical spectrum of the aforementioned Hamiltonian of
the pure glue theory by at least semianalytic methods.
Here we relax rigor and make several simplifying assump-
tions within the context of a cutoff regularization of the
large momentum region of the theory. A point-splitting
treatment will be presented elsewhere [39]. Several in-
sights into the spectrum are obtained. The purely con-
traction parts of the Hamiltonian lead to the potential for
the Schrodinger equation in the gauge zero mode sector.
This is the analogue for the problem we solved in [30].
Two alternative methods are described for dealing with
the singular structure of the potential, either keeping the
cutoff or "renormalizing" the potential. In both scenar-
ios, we are able to simultaneously diagonalize the energy
and momentum operators. This is discussed in Sec. V.
However, in the absence of a definite counterterm for
the renormalization approach we use the solution to the
gauge zero mode keeping the cutoff and implement it in
the particle sector of the theory. We give a color singlet
state which is an eigenstate to part of the Hamiltonian.
The invariant mass squared of this state is seen to diverge
when all cutoffs are taken to their physical values. We
comment on this in the discussion.

II. FORMULATION FOR PURE SU(1V') GAUGE
THEE) HY

Consider an SU(N) gauge theory without fermions in
d + 1 dimensions defined by the Lagrangian density

8 = ——Tr(F" F„„) with F" = 0"A —0"A" +ig A", A" = 8"A" —D A" .

The A~ are the SU(N) vector potentials. We shall reserve
the term "gauge potential" for something else, discussed
below. The energy-momentum tensor is derived &om
Eq. (1) in the usual way [40] by 0" = 2Tr(F""F„)—
g""Z. This and the notation are explained in more detail
in Appendix A. But at this stage we keep the discussion
general for SU(N) for arbitrary number of colors ¹ In
the front form, it is convenient to separate the Lorentz
indices p(v) into longitudina/ values n(P) = +, —and
transversal values j(i) = 2, 3, . . . , d. The indicial sums in
the Lagrangian and the (light-cone) energy density 0+
then disentangle cleanly:

I

respectively. The dimensionality of the problem is not
manifest but resides in the dimensions of the fields.
Working in dimensions of length I, we have for the
field and coupling the usual dim[Ai'] = l~ &~2 and
dim[g] = l~" sl~2. The energy density in 3+1 and 2+1
dimensions has the simple structure

es++i ——Tr(F +F ++ F F )

and

0+;, = T (F-+F-+) .

2 = —2Tr(F PF p+ F'~F;~ + 2F ~F ~)

0+ = -'Tr(F PFp + F'~F,~), (2)

As in previous work [27,28] it is convenient to disentan-
gle such an expression into "zero modes" and "normal
modes. " A zero mode of some function f(x,x~) with
respect to any one of the space coordinates, say y with
interval length L„, is defined by
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1
(f(*))o =

2~ Af(*,v),
The model theory then takes the form of a (1+1)-
dimensional non-Abelian gauge theory covariantly cou-
pled to scalar adjoint matter:

where x are the remaining spatial coordinates not being
integrated over. When y is the longitudinal direction x

0
we shall denote the zero mode by 1' . The normal mode

is, in geiieral, the complement f = f —(f)o. We see
then that since P involves an integration of the density
with respect to the spatial coordinates x, it is like evalu-
ating the transversal "zero mode" of the energy density.
Taking the zero mode with respect to any spacelike co-
ordinate, one realizes that the Hamiltonian is additive in
the zero and normal mode contributions: i.e.,

Z=Tr —2F ~F p+D CD

The covariant derivative D is implicitly defined in
Eq. (1). A similar treatment of this theory in DLCQ
was recently given by [11,12]. The equations of motion
in the two parts of the theory can be deduced from the
sourceless color Maxwell equations and are

Dpp~ = gJ~, with JM ———i C, D C and

T (F-+F-+).= T ((F-+),(F-+),) D D 4=0. (10)

+T (F
—+F—+), .

Of course one should not take this too far, since zero and
normal modes of the individual quantum fields can (and
do) reside in both terms of this expression. However the
separation allows for a conceptual simpli6cation: By lack
of insight, the original formulation of discretized light-
cone quantization (DLCQ) was formulated in terms of
only the normal modes. It should be useful and even
complementary to analyze the theory in terms of only
the transversal zero modes.

We therefore consider a model which only has transver-
sal zero modes by requiring

t9;A" = 0 for all p . (6)

This is to be regarded as a genuine dynamical restriction
on the full theory. Of course this theory will now involve
both zero and normal mode longitudinal gluon excita-
tions. Since the lengths L~ and I are now decoupled in
scale, it is convenient to readjust units by scaling out the
transverse length L~.

A" Av (21 )
(~—i)/2

and

. y &(21. )( —)/

A~ = (A+, A-, A') = (V, A, C ) . (8)

In the sequel the tilde is dropped. The dimensionality
resides then only in the Lorentz indices. For simplicity
we now restrict ourselves to consider the original theory
as having been formulated in 2+1 dimensions. The re-
sult of the assumption Eq. (6) is to have dimensionally
reduced the 2+1 theory to 1+1 dimensions. However a
reminder of the original 2+1 structure resides in the con-
tinued presence of the transverse gluon component A .
In the spirit of Siegel [31,32], who introduced dimensional
reduction for regularizing supersymmetric theories, we
identify this gluon as a scalar field 4 transforming under
the adjoint representation of the color group. To corn-
pletely avoid playing with Lorentz indices we go further
and introduce the notation

Note that the "matter current" JM is not conserved,
c) JM g 0, whereas the total "gluon current" J&
JM

—i F ~, Ap is conserved. To quantize the theory in
terms of as few redundant degrees of freedom as possible
it is essential to Six the gauge. We follow the procedure
given in [30] and find that A+ only has a zero mode, i.e. ,
c) A+ = 0. At this point we specialize to SU(2). Then
a single rotation in color space suKces to diagonalize the
SU(2) color matrix A+. The simple way to see this mode
cannot be gauged away is that it is related to the Wilson
loop for a contour (line) along the x space: a gauge
invariant quantity that cannot be set to a fixed value by
gauge choice. There remain a set of "large" gauge trans-
formations which generate shifts in V known as Gribov
copies [41,42]. These matters are discussed further later
and in Appendix B. In the instant form this gauge has
been used by a range of authors, [34,35,43,44] to list a
few. In a context related to the front form it has also
been used by [45]. Finally, the diagonal zero mode of
A (xo+) can be gauged away [30] at some fixed light-
cone time xo . For writing the Hamiltonian later, it is
convenient to choose this time as xo ——0, the null-plane
initial value surface on which we specify the independent
fields.

In this gauge then, F + = 8+V —D A. The first of
our three equations of motion, o. = +, is simply Gauss'
law, D F + = —D A = gJ~, realized here as a sec-
ond class constraint in the nomenclature of Dirac [46—48].
In the absence of gauge fixing these are first-class con-
straints. They are a consequence of, and generate, gauge
symmetry. With the gauge fixing, these can be realized
as quantum operator constraints with an exception which
we discuss below. This aside, we can be cavalier and solve
this equation strongly yielding

The exception is a remnant first-class constraint, namely,
the zero mode diagonal part of Gauss' law. The reason
for this is that in selecting out the color-three direction
we have factored the group SO(2)CRSO(2) from SU(2) [lo-
cally isornorphic to SO(3)], leaving a subgroup of SO(2)
rotations which leave the preferred axis invariant. This
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itself is isomorphic to U(1). In other words we have a
residual symmetry with respect to global Abelian gauge
transformations. It means in the quantum theory there
are redundant states in the Hilbert space corresponding
to the "fibers" or "orbits" in gauge configuration space.
Unique representatives on these orbits must be selected
by projecting a "reduced Hilbert space" out of the larger
space by requiring the selected, so-called "physical" [46],
state vectors have vanishing "charge" qo ~phys) = 0.
The charge here is the zero mode of the matter density
JM &, Although this does not necessarily imply that
~phys) is an actual state in the physical spectrum, states
outside this subspace render the theory a priori inconsis-
tent. Analogous constraints can be found in many other
contexts, for example, in [49].

The second Yang-Mills equation of motion, with o. =
—,is a genuine dynamical equation for V, i.e. ,

ct~ 0+V + 2gi [A, 0+V —oI+0 A —ig A, 8 A

the true ground state having zero P upon subtraction
of the zero point energy. On all these pseudovacua there
will be a rich structure of matter states that are allowed
by Gauss' law. For example, they include, but are not
exhausted by the string states discussed in [11,12].

III. C}UANTIZATION AND MATTER,
CURRENTS FOR SU'(2) CAU'CE THEORY

The construction of the field 4 is quite complicated in
SU(1V') for any lV ) 2. This is the primary stumbling
block to formulating a large N analysis in the presence
of the zero mode of A+. The extension to SU(N) in
the Chevalley basis [50,51] is easier and wi11 be presented
in a future work. In the sequel we will thus proceed to
analyze the model for SU(2). We will use a color helicity
basis of the form

@'=7 P3+& I'++7 P—

—ig V, 8+A + g A, V, A = gJM . —(12)

Since we are ultimately interested in a Hamiltonian treat-
ment of the dynamics of V, we do not address ourselves
to solving dynamical Euler-Lagrange equations.

Next we discuss the equations in the scalar field sector,
D 0 4 = 0, which reads explicitly

a (a, + D, ) C +'g( a, V, e + A, D.C ) = 0 .

+L
d*-T (a V —D A)'

dx Tr
~ 8+VAN+V —g JM 2 JM ~,

I. —
+L

S+ = 2 dxT (D C)' —= —k.
(14)

/1

The quantity K is independent of the two-dimensionful
parameters I and g. The Hamiltonian describes the in-
teraction of two scalar matter currents via an instanta-
neous gluonlike interaction [11,12]. The instantaneous
gluon is "dressed" by the zero mode of A+. This zero
mode, a color singlet object as shown in Appendix B, acts
like a "screening mass. " Above all, 1/D is never singu-
lar. The system has what we will call a set of pseudo-
ground-states generated by the zero mode operator V.
All these states have zero P+ but only one of them is

I

The zero mode of its color-diagonal part will turn out
to be a true operator constraint equation, occurring as
second class in the Dirac procedure.

We complete this overview of the theory with the
Hamiltonian and light-cone momentum operator. One
calculates them to be, respectively,

for all field matrices. This is explained in more detail in
Appendix A.

By gauge choice, the zero mode matrix V is diago-
nal; thus, V = vrs. The component v = v(x+) is a
quantum-mechanical operator which we treat in the man-
ner of [52]. We have previously encountered it in DI.CQ
in [30] where, we showed that in the absence of dynamical
quanta it is the basis of a topological Beld theory isomor-
phic to equal-time quantization. The quantum v has a
conjugate momentum p = hl/8v = 2IB+v and satisfies
the commutation relation

v p = v, 2kB+v (17)

In the following it will be useful to invoke the dimension-
less combination

Gribov copies then correspond to z ~ z+ no for no some
even integer. The odd integers are "copies" generated
by the group of center conjugations of SU(2), namely,
Z2 symmetry [53]. The finite interval 0 ( z ( 1 is
called the fundamental modular domain, see for exam-
ple [38]. We emphasize the otherwise trivial fact that z
is an operator, better denoted z. In the subsequent anal-
ysis it is understood that we work in a representation
which diagonalizes that operator. Thus z~z') = z'~z')
and (z'~Ii~z") = —i&, b(z' —z"). In the sequel we shall
drop the b functions, that is, we shall work in Schrodinger
representation.

The diagonal components of the Hermitian color ma-
trix 4 are y3. The quantization, with the exception of the
zero mode Ps ——ao/Q4w, is canonical. Any real-valued
boson field subject to periodic boundary conditions can
be represented by

a x+ OO

ps(x+, x ) = + ) [a„(x ) vi„e ' ~ + a (x+) iv„e+* ~ ] .
g4~
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The factor 1//2vr is of course arbitrary but will turn out
to be convenient. The natation a (x+) should indicate
that the creation and destruction operators depend on
the (light-cone) time. The momentum field conjugate to
p3 is pure normal mode since 7t = 8 y3. The quantum
commutation relation at equal x+ for the normal modes
is

1- 3 1 — — 1
Ps(x), ir (y) = — h(x —y ) —,(20)

&+—y+ 2L

where the last term ensures consistency for the commu-
tator restricted to normal mode fields [27]. The Fock
modes must consequently satisfy a, at = h (n, m =
1, . . . , oo) and the coefficients must be iu„= 1/~n. The
Kronecker b„ is equivalent to 6 . The commutation
relations of the zero mode ao ——ao cannot be determined
by any of these relations: the mode obeys the "constraint
equation" given below, with a commutator [ap, a ] g 0
that must be solved for via the constraint.

The o8-diagonal components of 4' are complex valued
aperators with Ip+(x+, x ) = p (x+, x ). With vr

(ct + igv)&p+ as the momentum field conjugate to p
and ir+ = (8 —igv)Ip conjugate to rp+, they obey the
canonical commutation relations

Following Franke [36,37], this is achieved by the expan-
sion over the momentum modes

C x+(+ -) )- C(& )., ;V'41+ I

with

[C„(*+),C„',(*+)]= a„" sgn(n+. ), (22)

~+Zmp ~ X ) . C (z+)
QIm+ z —mpI

with

where the set of all integers is denoted by Z
(0, +1,+2, . . . , +oo), as opposed to set of ail half-integersH:—(+2, +2, . . . , +ooj, to be used below. We want to
go beyond Franke by explicitly introducing particle and
hole operators. But this is met with difFiculties, because
sgn(n + z) is a very asymmetric function of n for arbi-
trary values of z. It is however always possible to shift
the summation index in Eq. (22) by n = m —mp, with an
arbitrary but given value of mp = mp(z). Relabeling the
operators C, = C by matter of convention gives
identically

1 1
(*) ~ (y-), , =

—, ~+(~) ~+(y) [C,Ct, ] = b sgn(m+ z —mp) . (23)

1=-~(* -y ) .
2

Now we need only define the shift constant mp(z) E H
in terms of the "stair-function" st(z)

mp(z) = st(z) —
2 ((z) = z —mp(z) with st(z) =1 [z] + 1 for z & 0,

(24)

Since st(z) + st( —z) = 1, we can derive the fundamental
relations

mp(z + 1) = mp(z) + 1, mp( —z) = —mp(z),

C( + 1) = C(.), 4(-.) = -C( ) (»)
Important is that —

2 ( ((z) ( — for all values of z
because this allows one to rewrite Eq. (23) as

~+imp ~ z

l

The real coefficients u (z) = 1/i/m+ ( and v (z)
1/i/m —( depend on z through (. Finally one notes
that a large gauge transforn1ation z ~ z + 1 produces
only mo ~ mo + 1 and thus only a change of the overall
phase in Eq. (26). Most importantly it does not change
the particle-hole assignment and thus the Fock vacuum
defined with respect to b and d is invariant under
these transformations.

The Gauss law can be rewritten in terms of its explicit
components, namely,

—8 As ——gJs+, —(0 + igv) A+ ——gJ+, (28)

+ dt v e+'

i.e. , in terms of particle and antiparticle operators, 6
and d, respectively. The analogy with the (com-
plex) Dirac spinor components [7] is intentional, but the
present particles obey boson commutation relations

and the Hermitian conjugate of the latter with (J+)" =
J+. One would like to invert them to express A3 and
A~ in terms of the currents J—:JM, which according to
Eq. (10) are defined as

+ 1
Js+ ———. (p+7r —p 7r+)

and

[b„,bt ] = [d„,dt ] = S„-
1

J++ = —.(y, sr+ —p+7r, ) (29)

[b, d ] = [b„,dt ] = 0. (27) The index s indicates that noncommuting operators in
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this product and in general must be symmetrized in order
to preserve Hermiticity. Before the inversion of Eqs. (28)
one should investigate the zero mode structure of the
currents. An effective way to do so is to consider their
discrete Fourier transforms J, defined for convenience by

kqZ

(30)

One verifies that [J3+(k)]t = J3+(—k) and [J+(k)]t
J++(—k). In order to notationally disentangle ap from
the dynamic modes we introduce composite "charge op-
erators" Q which are independent of ap and the sym-
metrized remainders Bk = (apbg + byap)/2 and D)
(apdI, + disap)/2: i.e. ,

J+(k)—:q, (k), J++(k) =—Q+(k) +

and

-J+(k) —= q, (k) +
&I

(31)

The explicit expressions for the operators Q can be found
in Appendix C.

Because of the boundary conditions, the first of the
Gauss equations (28) can be solved only if the zero mode
(J3+)p = Qp on the right-hand side (RHS) vanishes. This
cannot be satisfied as an operator, but must be used to
select out physical states, i.e. , qp~phys) = 0. In second-
quantized form this gives

QD]i@by~) = ) (bt b —dt d )]pbys) = O .
1m=2

It is thus simple to find states -satisfying this: they must
have the same total number of 6 and d particles. The
resemblance to the electric-charge neutrality condition
is because the residual global gauge symmetry we are
factoring out of the Hilbert space is, as mentioned earlier,
Abelian.

To complete the specification of the Hilbert space we
give the momentum operator in second quantized form.
Evaluating the trivial integrals in Eq. (15), one gets the
dimensionless operator

K = ) n ata„+ ) (m+() bt b

1m=2

+(m —() d~ d

We finally turn to the constraint equation. Taking the
zero mode of the matter field equation (13) explicitly
yields three equations. Two of them give true dynam-
ical equations for the zero modes yg, which for rea-
sons given above we do not wish to solve explicitly so
we do not give them here. The third equation, with
c = 87r Tr (w D D C) b/pg, becomes, after some alge-
bra,

and is the constraint equation. Insertion of the above
yields

) uq (Bqtbg + bbgbt) +n„(Dtqdg + Dgdt): ) (u„]Qt (b)bg + btb) (b)] + u~]b)~~(—b)dg + dtqQ~(b)]) (bb)
1 1I(:—2 k=2

This is the most compact expression for the constraint.
It is clearly linear in ao and therefore quite difI'erent in
structure from the constraint equation of Pi+i. It is not
clear then how it could give rise to spontaneous symme-
try breaking in the scenario of [19—25]. Despite its lin-
earity, Eq. (35) is still complicated to solve as a quantum
operator constraint. At this point, we therefore isolate
this part of the overall problem and return to it in a fu-
ture treatment. For example, under active consideration
now is a solution via Fock space truncation methods as
employed in [23—25].

We end this section by summarizing the zero mode
"zoo" of this theory. The complex field p+ actually has
no true zero mode in the sense of vanishing eigenvalue of
P+. Second, there is the topological zero mode z which
must be treated by diagonalizing its Hamiltonian. Third,
there is the constrained zero mode, ao. It must be solved

I

at the level of the constraint equation (35) and its pres-
ence in the Hamiltonian eliminated in favor of the true
degrees of freedom.

IV. THE HAMILTONIAN FOR PURE SU(2)
GAUGE THEORY'

The front-form Hamiltonian, Eq. (14), rewritten in
terms of the components becomes

(36)

Note that the zero mode of A3 does not occur since this

+L
P = L(0+v) + — dx 8 A38 A3—

2 I
+ (o) + i gv) A+ (8 —igv) A

+()9 —i gv) A (o) + i gv) A+
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field always appears here acted upon by a space deriva-
tive. Because of periodic boundary conditions one can
integrate by parts and eliminate A in favor of J—:JM
using Eq. (28): i.e. ,

Hamiltonian to normal ordered form. Commuting the
operators Qt with Q in the substitute of Eq. (38) leaves

us with the contribution HF,k to the Fock space part of
the Hamiltonian HFock —~Fecg + ~Foe]

+L
p g w ] nP-= —— dx- J, , J,
4L 2

1 1
+J+

(g )2
J + J—

(& )2
J+ (37)

Notice that the operator has no ill-de6ned singulari-
ties. This expression is best written in discrete Fourier
space. We can factor out all dimensionful parameters

by P = 2L(g/4m) H, which defines the dimension-
less Hamiltonian H. The discrete Fourier transforms
Eq. (30) of the currents can be used and the subsequent
momentum sums expressed over positive values of k by
Js(—k) = Jst(k), J+(—k) = Jt (k), and J (—k) = J+t(k).
In terms of the coefficients u and v the result is

HF,q
= 2) mI Qs(k)Qs(k)

k=1

+2 ) vt, Q+ (k) Q+ (k)

+2 ) uq Qt (k)Q (k) .
k=2

(40)

Vp = ) u)q 0 Qs(k), Qst(k) 0
k=1

The VEV of the leftover commutator term generates the
gauge mode potential:

OO

H = —4, + ) u)„Jst(k) Js(k) + Js(k) Jst(k)

+. ) vi, J+t(k) J+(k) + J+(k) J+t(k)
k=q

)::(
k=q

+) u„(0
k=2

Q+(k), Qt+(k) 0

q (a), q'{a) 0). (41)

+) u'„J'(k)J (k)+ J (k)J'(k) . (38)

H - ~ —= —4d, , + (oIHIo)

—:—4 + Vp(z) .
dz

(39)

We extract the expression for Vp(z) by bringing the

This result resembles in many respects the structure
found in treatments of gauge theory on a "cylinder" in
standard instant form Hamiltonian quantization [43]. In-
sofar as [11,12] omit zero modes, it disagrees with their
expression for the Hamiltonian. We now look in more de-
tail at the separate contributions to this expression from,
respectively, the gauge mode z, the Fock operators, and
the constrained zero mode. In particular, in the next
section we shall be especially interested in the vacuum
expectation value (VEV) of the Hamiltonian. This will
guide our present analysis.

First we consider the pieces which do not involve the
constrained zero mode ag. This is simply achieved by
replacing, in the above Hamiltonian, the currents J with
the operators Q via the definition (31). Inspecting the
expressions for Q given in Appendix C one observes they
all annihilate the Fock vacuum l0), while Qtl0) g 0. So
the full Hamiltonian has a VEV, henceforward denoted
by Vp(z). Since it depends on the quantum operator z, Vp

cannot be removed by the usual trivial vacuum renormal-
ization. Rather the VEV plays the role of a "potential
energy" in what we call the "gauge part" of the Hamilto-
nian which also includes the kinetic term for z: namely,

This is analyzed in detail in Appendix D and represented
in Fig. 1. Subtracting Eq. (41) from the comznutator
expression gives the other contribution to the Fock-space
Hamiltonian:

H( ),q
= ) urq Q (k), Qst(k)

k=1

+) ' Q+(k) Q'(k)
k=q

+) ' Q-(k) Q'-(k) -V( ). (42)

40, &i
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FIG. 1. The gauge potential G(z) = Vp(z) —Vp( —) in the
fundamental modular domain depicted for the two scenar-
ios: (a) (solid curve) with the cutolF dependence removed; (b)
(dashed curve) with the cutofF dependence kept. In the latter
case the cutofF s = 131 leading to the potential Vp(z —2)
In this oscillator well we give the lowest energy eigenvalue
Eo ——25.66.
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Thus far it would appear to suffice to consider the Q
operators and z for the determination of the spectrum.

This changes if one addresses the constrained mode ao
as the constraint cannot be expressed purely in terms
of Q operators. From Eqs. (38) and (31) one finds
ao makes its appearance in the Hamiltonian both lin-
early and quadratically which we separate into H, „,t, ——

Hconstr + Hconstr ' The term li

H, „„,= 2 ) uk BktQ (k) + Qt (k)B),
A;
—-'—

2

+v~ D„Q~)k) + Q~(k)Da (43)

The term quadratic in ao is

(2)
Hconstr = ) ~ ui, (ByB„+B„B),)

+u.' (D.D„'+D„'D.) . (44)

H, „,t, could have a nonzero VEV that could contribute
to the potential of the gauge mode. There are two pos-
sibilities where such nonvanishing contributions could
arise. The erst is when an ao appears either to the ex-
treme left or extreme right in H, „,t, . However, prelim-
inary studies of the structure of the constraint suggest
that no nonzero VEV of ao or (ao) can arise. Thus,
the role played by this mode is quite different from that
of its counterpart in the (1+1)-dimensional P [(P )i+i]
theory. The second possibility of nonzero contribution to
the gauge potential is when the zero mode lies between
an annihilation operator on the left and a creation opera-
tor on the right, such as (0~bi, aoaob&~0). A nonzero VEV
could potentially arise from such contributions if [ao, bg]
and [at), b&) are nonzero.t

This completes the analysis of the light-cone Hamil-
tonian. In summary though, we have reexpressed the
Hamiltonian as a sum of three contributions, i.e.,

H = Hgauge + Hpock + Hconstr (45)

In the next section we will see how far analytic methods
can take us in diagonalizing parts of the Hamiltonian.

Finally, we should emphasize that we have refrained
thus far &om ad hoc approximations to de6ne a consis-
tent Hamiltonian and Hilbert space. As we are unable
to give here exact analytical solutions we consider their
numerical simulation as a challenge for the future. In
the sequel we therefore will continue with several simpli-
fying assumptions which will allow us to solve part of the
Hamiltonian analytically. The most drastic among them
is the omission of the constraint part. We thus will con-
centrate efforts in the following on solving approximately
Hg „g, and HF,k subject to the omission of H, „,t, .

V. APPROXIMATE SOLUTIONS IN THE
GAUGE SECTOR

The potential energy Vt)(z) which appears in Hs „s, via
Eq. (39), i.e. , Hs „s, = —d2/dz2+ Vt)(z), is what we shall
loosely refer to as the "gauge potential. " As analyzed in
Appendix D it is invariant under large gauge transfor-
mations. One therefore can restrict oneself to calculate
it only for the fundamental modular domain 0 & z & l.
In Fig. 1 it is displayed for the two cases explained below.
In either case, because of the singular behavior at z = 0
and z = 1, there will be a discrete spectrum of excita-
tion energies in this potential. These will be labeled by
a quantum number N. Generalizing the representation
in [30] we use wave functions 4~(z)—:(z~%) so that we
address ourselves to solving the Schrodinger equation:

Hs „s,tII~(z) = E~@~(z) .

The symbol E~ will be reserved for the vacuum normal-
ized eigenenergy, namely, E~ —Eo.

In the fundamental modular domain the potential is
symmetric about z = 2. As mentioned, it is singular
at z = 0 and 1. It has a minimum at z = 2, how-
ever the value of the function there is actually divergent.
Moreover its curvature diverges at that point, that is,
Ve'( —) oc ADO ln s, s ~ oo, where s is the value of a dimen-
sionless regulator truncating sums. The precise meaning
of this divergent behavior, namely, whether it is physical
or formal, is unclear to us. Lacking a definite answer, we
pursue below the two alternative scenarios, labeled (a)
and (b).

Scenario (a) —Cutoff Independen-t Approach Let us.
take the point of view that the divergent lns behav-
ior of the potential should be canceled by a counter-
term in the Lagrangian. In fact we do not know what
this counterterm should be and the answer may come
from the, as-yet unavailable, solution to the constrained
zero mode ao. We therefore proceed by simply nu-
merically subtracting the function tDO lns (z —2) from
the explicit expression in Appendix D. We plot the
so-obtained function in Fig. 1. Upon inspection, one
notes the very flat base in the vicinity of z = 1/2.
A good approximation might therefore be the infinite
square well. Restoring units, the problem is expressed
by L(g/27r) (d /dz—)4~ = E~tlr~. After a vac-
uum energy subtraction, the eigenenergy densities eN =
E~/(2I ) are g (n —1)/8. We thus recover the spectrum
for SU(2) pure zero mode glue in 1+1 dimensions as ob-
tained in [34,35], and verified by us on the light cone in
[30]. Wave functions respecting boundary conditions are
then sin(¹rz) up to normalization. As for subtleties con-
cerning this choice over the cosine we refer the reader to
[30]. Thus we have succeeded in diagonalizing the gauge
part of P . As the vacuum part of P+ has no depen-
dence on z these wave functions are also eigenfunctions
of P+ with momentum zero.

Scenario (b) —Cutoff-Dependent Approach. For rea
sonably large values of the cutoff 8, the lns term dom-
inates, as mentioned, over the 8-independent part and
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thus here the latter can be omitted. As discussed in
Appendix D, with the cutofF finite but large the gauge
potential can be approximated by

Vp(z) = Vp(2) + 4(u (z —2) with cu = (up lns .

(47)

and

Ik; 3 &) —= qt (k) lo),

Ik +) = q+(k)lo)

Ik;-) -=q'(k)Io)
The numerical value of uo is given in Appendix D, while

Vp(2) is an unspecified constant. The eigenvalues and
eigenfunctions are now those of the harmonic oscillator:

E~ = Vp(z) + 4u)(2N + 1)

to which we shall refer collectively as lk;a). We men-
tion already here that only one of these, lk; 3), satisfies
Gauss' law. Using the approximate b-function behavior
of the gauge wave functions, the toy states are seen to be
eigenstates of P+: i.e.,

4'~(z) = A~H~[~(u(z —-')] e (48)
and

Klk;3) = klk;3), Klk;+) = klk;+),

respectively, where the H~ are the Hermite polynomials
of order N, and where the Aiv normalize all eigenfunc-
tions to unity. The state with lowest energy has % = 0,
by inspection, and has to be identified with the true "vac-
uum. " The vacuum-renormalized eigenvalues and lowest
energy eigenfunctions are thus

Klk; —) = klk; —) . (52)

Are they also eigenstates to the full P ?
In general, the commutators of charge operators q (k)

acting on the vacuum can be separated into c-number and
operator parts:

E~ ——E~ —Ep ——8N(up V'ln s (49)
q-(p) q'(k) lo) = [~- ~-(k)~."+ &- 4» k)]lo)

(5o)

In the limit 8 —+ oo the eigenfunctions degenerate into,
roughly speaking, b "functions, " namely, the wave func-
tions strongly localize about z = 2. This extremely sharp
peaking implies that the operator z can be replaced by
the number 2 everywhere but in the gauge Hamiltonian, a
significant simplification. It is what makes this scenario
radically difFerent &om the former. As a consequence,
the gauge excitations @~(z), the "gaugeons, " have for
finite but suKciently large 8 a finite and nondegenerate
(light-cone) energy but strictly zero mass.

VI. APPROXIMATE SOLUTIONS TO THE
GAUGE PLUS FOCK SECTOR

with the c-number coefBcients S defined in Appendix
D. The operator part Q g(p, k) is complicated to write
down in full and is generally nonzero. However, for p = A;,

Q b
——G. Taking this as a hint, we shall assume that the

efFects of 0 g are in some sense small" and set the entire
operator to zero by hand.

With these simplifications now, the commutator Hp
vanishes and all three toy states lk; a) become eigenstates
of Hp, &, such as, for example,(~)

H,"..„Ik;3) = 2 ) v„' q' (&) q (p), q, (k)t lo)
1P=2

+2):~„'q'(P) qs(P) qs(k)' Io)
p=l

+2).u„' q' (p) q-(p) qs(k)' lo)
1P=2

—lnklk;3),
4

(54)

In the remainder we address ourselves to finding eigen-
states to Hg „g + HF,k. In the absence of a com-
plete picture for the renormalization in scenario (a), we

implement here the conclusions of scenario (b) for the
gauge mode: we substitute z =

2 where appropriate.
The Hilbert space will be spanned by the product states
of gauge eigenfunctions 4iv(z) and "Fock states. " The
product states 4'~(z) IO)F~,~ are what we loosely call
pseudovacua. The true vacuum is lo) = ~1'plo)Fock

b(z —i) Io)F,~. On top of it we now build Fock space
excitations.

I et us consider three types of two-particle Fock-space
excitations, the toy states

2P+P lk; a; N)

g
2

ln k + 2 kN~O V'la s) ~
k; a; N ),4~1~

(55)

for sufficiently large values of k, according to Eqs. (D8).
Recall that the continuum limit is reached [4,5] by the
limit A: ~ oo. The combined action of the energy and mo-
mentum operators H = K(Hs „s +HF,g) becomes thus

HI&; a) = 4 ln AIR; a). The action of the mass-squared op-
erator 2P+P on the toy states gives finally, after restor-
ing units according to Eq. (7):
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with

independent of the longitudinal interval length I. This
then is an approximate mass spectrum of the model in
the two-particle sector with all cutoffs large but finite.
How does it behave as cutouts are removed? We take
the necessary limits as follows. (1) There is no meaning
to the transversal continuum limit in the present model
so we consider L~ as arbitrary but fixed. (2) Since it is
meaningful to consider physics in a Rnite volume or inter-
val, s should be taken to its physical limit before L. This
removes from the spectrum all the "gaugeon" excitations
N. (3) As mentioned, the longitudinal continuum limit is
defined by k ~ oo, L -+ oo, but p+ = mk/L fixed. Since
the longitudinal length does not appear one has to take
the isolated limit k ~ oo. Thus the degenerate triplet
of states with N = 0 also diverge in the continuum limit
and do not survive in the bare spectrum.

VII. DISCUSSION AND PERSPECTIVES

Let us brieffy restate the approach we took here. Be-
ginning with SU(2) gauge theory in 2+1 dimensions in
the &ont form we suppressed transverse momenta of the
gluons and obtained a (1+1)-dimensional gauge theory
coupled to adjoint scalar matter. Gauge fixing of this
theory revealed for the content many dynamical nor-
mal modes of the scalar field, a topological gauge zero
mode, and a constrained zero mode. The constrained
mode satisfies a linear but nonetheless complicated oper-
ator constraint. The gauge fixing involved. a space-time-
independent color rotation that reduced the remnant
Gauss law to be implemented to an Abelian global sym-
metry generator. We succeeded in specifying the space of
states which would be annihilated by the Gauss operator,
namely, that of color singlet states built from the Fock
or parton operators. Not performing the gauge rotation
would not even permit one to easily solve Gauss' law. We
succeeded in diagonalizing both P+ and P in the gauge
mode sector in two separate approaches which, respec-
tively, involved keeping or removing an ultraviolet cut-
oA in the calculation. The cutoK independent approach
lead to gauge mode wave functions that were unlocalized.
With the cutofF, the solution of the gauge mode problem
in the Fock space sector reduced to substituting in the
Fock sector the minimum value of its potential by the
value ( = 0. We approximately and analytically solved
for the invariant mass of three composite states, one of
which satisfied Gauss' law. Even for this one, the energy
diverged in the continuum limit.

We now interpret the meaning of this result. It might
be that some aspect of the nontrivial renormalization re-
quired in full 2+1 dimensions manifests itself even in this
(1+1)-dimensional subregime. While the theory is su-
perrenormalizable by virtue of dimensionality the struc-
ture of the (finite) number of divergences is not of the
usual two-dimensional QCD-type but reflect some sub-
structure of the higher dimensional theory and its renor-

malization and scaling properties. Recalling that every
Lagrangian field theory has an open scale, only mass ra-
tios can be meaningful quantities. If our toy states reffect
correctly the behavior of the lowest energy singlet state,

2

namely, running as ~z ink, then renormalization of the
spectrum is achieved. by "renormalizing the coupling con-
stant. " This would then read explicitly

g = g „,/ink (57)
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leading to a lowest excitation of mass "1" in arbitrary
units.

We now return to the question of the diagonalization of
the gauge part of the Hamiltonian in scenario (a). It leads
to a more complicated treatment of the z mode when in-
cluding the Fock space excitations. There is nothing in
principle hindering a full solution of this but we leave
it for future work. What remains to be understood is
what type of counterterm could remove this divergence.
It is possible that the omitted constrained mode con-
tributions assist in the renormalization of the potential.
We are presently exploring this in the context of Fock
space truncation approximations [23—25) for solving the
constraint. That the constrained zero mode can provide
renormalization counterterms is not without precedent,
for example, this has already been seen in perturbative
QED in [29]. On the other hand, the picture emerging
in scenario (b), of a special role for the value ( = 0, has
also been seen via point-splitting regularization of Gauss
law and the momentum operator. This will be reported
elsewhere [39].

More can be done analytically: evidently some non-
trivial linear combination of the Q (k) operators could
build a color singlet for which an approximate eigenvalue
might be obtainable. Nevertheless, the treatment of the
erst four sections has prepared the way for treating the
theory with the full power of standard DLCQ numerical
techniques, now including zero modes. Such numerical
work is underway.

Going beyond the present theory would mean address-
ing dimensionally reduced QCDs+i where all the features
discussed here will continue. The hope that DLCQ can
allow us to understand QCD in an intuitively simple way
but with its full richness remains undiminished.
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APPENDIX. A: NOTATION AND
CC)NV ENTIONS

Equations and Constants of Motion for QCD. In quan-
tum chromodynamics the gauge fields are traceless Her-
mitian 3 x 3 matrices A~. More generally for SU(K),
they are N x N matrices parametrized in terms of "color
vector potentials" A~, i.e. , A" = T A~. The glue index

I

(Ai ), — Ai + iA2

a (or r, s, t) is implicitly summed with no attention paid
to the lowering or raising and runs from 1 to N —1.
The quark field 4 is a color triplet spinor, i.e. , 4
but the Dirac index o. and the color index t" = 1, . . . , %
are usually suppressed. The color matrices T, obey
T,T~, = if ~T;,, and Tr(T T ) = 2h i, . They are

related to the Gell-Mann matrices A by T = ~ A . For
SU(2) the A are the Pauli matrices o', and for SU(3)
one has, e.g. ,

A4 —iA,")

~sAs )
The Lagrangian density for QCD can thus be written in two equivalent conventions:

2 = —2Tr(F" F„)+ 2 4'(i "'Dm,„—m)4+ H.c. with F""—:0"A" —8 A" +ig A", A",
2 = —4E""E„+2 t4'(ip" Vm„—m) 4' + H.c. with I"""—:8"A —0"A" —gf "'A„"A,

(A2)

(A3)

The covariant derivative matrix is (17"),= h„~8~'+ ig(A~), . The variational derivatives are

J 0"A~ (A4)

Canoiucal field theory yields straightforwardly to the color Dirac equations (ip~'D~ —m) iII = 0. It also gives the color
Maxwell equations, which are given here in two conventions: i.e. ,

B„F" = g3 with

D„F" = g 3@ with D„—:0„+ig A„,*

3 = —iIF ",A„+4~ T 4T
J& ——4p T CT and

(A5)

(A6)

The color Maxwell current J~ and the quark matter cur-
rent J& have diferent conservation laws. In particu-

JP 0 The stress tensor O~ P v QP K gv QQ +
4ip"8 4'+ H.c. —g" 8 is, at first, is not manifestly

gauge invariant. But with the Maxwell equations one de-
rives I"""0A = I'""I"' + g J"A + gf "'I'""A"A' +
0„(F""A"),and thus

0" = 2Tr(F" F„)+ —,
' iIi~"D"@+ H.c.

—g" C —20„Tr(F""A ) . (A7)

All explicit gauge dependence resides in the last term.
For periodic boundary conditions it vanishes upon inte-
gration. The generalized momenta "on the light cone"
become then manifestly gauge invariant: i.e. ,

d(u [2Tr(F+"F„)—g+ 8

+-,'(eip+D"e+ H.c.)j . (As)

Integration goes over all spacelike coordinates (dio) and
0 denotes the integration volume. This was first shown
in [40]. Note that all this holds rigorously for SU(1V') in
d + 1 dimensions.

Light-Cone Coombnates. We follow the convention of
Kogut and Soper [54], in particular with x+ = (x

i)

Color IIelicity Basis. We de6ne the color helicity basis
for SU(2) by the Pauli matrices o

3 37 = —o', T = (o 6 zo )2~2

We can turn this into a vector space by introducing ele-
ments x such that tilde quantities are defined with re-
spect to the helicity basis, and untilded the usual Carte-
sian basis:

x') x x

(Alo)

A=
~

.
/

and gi, =(t'0 i)
1 —x) (All)

The metric to raise and lower indices in the helicity basis
becomes x~ = x+. The color algebra looks formally like
the Lorentzian structure in light-cone coordinates.

The relation between the tilde and untilde basis can be
written x = A&x and x = Abx where A = At. With
these elements we can construct the metric in terms of
the tilde basis. Essentially we must demand the invari-
ance of the inner product of any two vector space ele-
ments, x y = x y . Using the fact that the metric in
the a = 1, 2 basis is just the Kronecker delta b g and the
transformed metric is g~i, = A'h, gA&. Thus
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APPENDIX B: GRIBOV COPIES, CENTER
CONJUGATIONS, AND FOCK SPACE

Gribov Copies. Because of the torus geometry of our
space and the non-Abelian structure of the gauge group,
there remain large gauge transformations which are still
symmetries of the theory [41,42] despite our complete
Axing of the theory with respect to small gauge transfor-
mations. These are generated by local SU(2) elements

Q, (k) = —) ) 6 d„
1 1n=2 m=2

+) )
1 1n —2 m —2

) d„'d
1 1n=2 m=2

(CI)

V(z ) = exp
(

—ino~ 7s ), Q+(k) =+) ) a„d
n=1 m —1

2

no an even integer, (Bl)

which satisfy periodic boundary conditions. Another
symmetry of the theory is Z2 center symmetry which
here means allowing for antiperiodic V or alternately n0
odd. In both cases one preserves the periodic boundary
conditions on the gauge potentials. On the diagonal com-
ponent of A+ it generates shifts that are best expressed
in terms of the dimensionless z, namely, z m z' = z+n0.
On the scalar adjoint Beld and its momenta the effect of
the transformation is

Q (k) =+)
n=1

) a„b

+)
n=1

) atb
=1m=2

+& ).utz (
"+" )s„"„,

n=l m 2

& ..t» ( "+"")s"„,
n=1 m=1

(C2)

7t
'p3 M (p3 and y~ M p~ exp gin0 —x (B2) ) a„d' (cs)

and ~+ +~+exp +in —x- .OL ~ (B3)

Color Property of z. We now show that the gauge
mode z can be written in terms of an explicitly color sin-
glet object, thus demonstrating that it itself is a color
singlet and a viable physical degree of freedom. We con-
struct the Wilson line by a contour C along the x direc-
tion &om —I to I:

APPENDIX D: ANALYSIS OF THE GAUGE
POTENTIAL

The gauge potential Vo(z) was defined in Eq. (41). We
express it here conveniently

= TrPexp ig
+r,

d~X+

W = TrP exp
~
ig dx„A"

~c )

(B4)

Vo(z) = ) Ss(k)m„
k=1

I

+ ). S+(k)~~+ S-(k)u~
A;=21

(Dl)

In the gauge employed in this paper, this is simply
W = Trexp(2izvr7 ) = 2cos(2irz), and one can re-
late z to W modulo the integers, z =

2 arcos( 2 ) . The
integer shifts are nothing but the Gribov copies discussed
earlier. Observe that the dynamical quantity R' attains
its minimum value at z =

2 matching with the minimum
in the Fock vacuum potential. Since R' is explicitly con-
structed in terms of a color trace, z is a color singlet.

APPENDIX C: THE CHARGE OPERATORS

with

2vn=) &:("„--

S+(k, z)—:(Oi Q+(k), Qt+(k) ]0)

=»::(. -":)'~'.

(D2)

En the text we introduced the operators which are the
discrete Fourier transforms of the scalar current compo-
nents with the constrained zero mode removed. The ex-
plicit expressions for these in terms of the various Fock
operators are

S (k, z) = (Oi Q (k), Qt (k) iO)

=»: .(. -":)'~-".-
—

2

(D4)
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in terms of the commutator functions S(k). Thus

2
tU

All these functions depend on z through ((z) in the coef-
ficients u (z) = I/gn+ (, v (z) = I/gn —(, and to

I/~n. The gauge potential is thus manifestly invariant
under large gauge transformations. By inspection, it has
singularities at all values z C Z, particularly at z = 0
and z = 1. Noting that the coeKcients have the symme-
try u (—() = v (() and v (—() = u ((), one observes
another symmetry, namely, Vo( —() = Vo((). This implies
that the gauge potential is symmetric around z =

2 in
the fundamental modular domain, having there a min-
imum. It is thus reasonable to renormalize the gauge
potential by G(z) = Vo(z) —Vo(z). One can expand
Vo(z) around its minimum at z = —.The first derivative
vanishes there, and the second can be cast into the form

2

(n —()'(m + ()'

2 2
+ +

n(m —()' n(m, + ()'
24

(n+ m —()4
24

(n+ m+ ()' (D6)

The first two terms in each line diverge as 8 ~ oo. A
measure for the curvature at g( —) = 0 is obtained by
means of Riemann's zeta function ( [not to be confused
with ((z)]: namely,

1
)~

( l)3

7((3) ln s

8.4144 ln 8

(dp ln 82

We have thus analytically obtained the divergent s-
dependent part of the gauge potential.

Finally, we analyze the commutator functions at ( = 0.

S.(k) = ) )
1 1n=2 ~=2

S (k) = ) )
n=1 771 —1

2

m~' „
+

For sufficiently large values all of them approach S(k)
2k ln k.

I

Direct evaluation of Eqs. (D2)—(D4) yields the positive
values
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