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Chem-Simons vortices in an open system
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A gauge-invariant quantum field theory with a spacetime-dependent Chem-Simons coefFicient is
studied. Using a constraint formalism together with the Schwinger action principle it is shown that
nonzero gradients in the coefBcient induce magnetic-moment corrections to the Hall current and
transform vortex singularities into nonlocal objects. The fundamental commutator for the density
fluctuations is obtained from the action principle and the Hamiltonian of the Chem-Simons field
is shown to vanish only under the restricted class of variations which satisfy the gauge invariance
constraint.

PACS number(s): 74.20.Kk, 73.40.Hm

The study of Chem-Simons theories is motivated prin-
cipally by two observations: namely, that important as-
pects of the quantum Hall phenomenon are described ef-
ficiently by a Chem-Simons theory, and that a viable
theory of high temperature superconductivity should
be characterized by a parity-violating antiferromagnetic
state [1]. Symmetry considerations alone suggest that
such an interaction should be present in these systems.

In the case of the superconductor, where electrons are
effectively two dimensional by virtue of the layered sym-
metry, neighboring planes can be expected to play a non-
trivial role on the dynamics of the two-dimensional sys-
tem. In particular, donor sites and irregularities in neigh-
boring two-dimensional systems could have a suKciently
coherent influence on a two-dimensional system that the
physical properties in the two-dimensional superconduc-
tor are modulated by the presence of their neighbors.
This would suggest an effective field theory with position-
dependent couplings. In a similar vein, it was suggested
by Jacobs [2] that certain desirable features might be
achieved if the Chem-Simons term was coupled, not by a
coupling constant, but through an "axion" field i.e., a
spacetime-dependent coupling. In a continuum theory of
the quantum Hall effect, a stepping Chem-Simons coefIi-
cient is also natural in the vicinity of the edges of the Hall
sample where the statistics parameter passes through a
sequence of values dictated by the Landau level structure.
Recent work by the author [3,4] has lead to a formalism
for dealing with the apparent inconsistencies in the inter-
pretation of such a theory. Although originally motivated
on other grounds, the formalism is easily adapted to the
problem of Chem-Simons particles (the anyon system [1])
which has been investigated in Refs. [2,5].

The apparent difIiculty with a variable Chem-Simons
coefBcient is that the resulting theory is not explicitly
gauge invariant. One might argue that this is because one
starts with the action S which is not a physical object.
One could, after all, simply start with the field equations
and make the Chem-Simons coefIicient spacetime depen-
dent. However, in present day quantum field theory the
action is increasingly regarded as being a physical ob-
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L(q) dt t

Prom this relation one infers both the operator equations
of motion

&
——0, for dynamical variables q and the gen-

erator of infinitesimal unitary transformations G which
is obtained from the total time derivative in bS. S is
an action symmetrized with respect to the kinematical
derivatives of the dynamical variables. From this, one
obtains the variation of any operator A on the basis ~t):

bA = —i[A, G].

Consider first the usual Chem-Simons theory for con-
stant p. This will serve as a point of reference for the
remainder of the paper. It can be noted that the present
formalism bears a certain resemblance to the Schrodinger
quantization examined by Dunne, Jackiw, and Trugen-
berger [7] and reproduces the relevant results. The pure
Chem-Simons theory is described by the action

S = dtd x
i
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where J~ is a gauge-invariant current operator and p
is constant. The variation of this action operator with
respect to A~ leads to the operator equation of motion

ject, not only its variation. The Chem-Simons term is a
case in point. It is therefore important to secure a for-
malism which guarantees consistency between variations
of the action and the dynamical structure of the theory
at all levels. Such a formalism was recently constructed
and the physical meaning of the procedure identified as
being that of closing an open physical system through
the use of a constraint. The formalism is easily adapted
to the quantized theory by adopting Schwinger's action
principle [6]. Let us therefore begin by examining the
formalism.

The fundamental relation in Schwinger's quantum ac-
tion principle is
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and the generator of infinitesimal unitary transforma-
tions on the field variables [8]:

G(o) = f d»„pc" A"„BAq.

Taking o to be a spacelike hypersurface, with unit nor-
mal parallel to the time t, one obtains the fundamental
commutator for A„ trivially by considering bA„ in (2):

The generator G((T) is not obviously gauge invariant
but, if one ignores the source J~ for a moment, it is clear
that the constraint B = 0 can be satisfied by A; = (9;(,
for some scalar field (. If one uses this in the generator,
it is evident that there is no dynamical evolution unless

[Di, 82]( g 0. This indicates that vortex singularities
play a special role in this theory and that a nontrivial
generator with B = 0 could only be satisfied by a point-
like source J", as in the flux line singularities of anyon
theory.

More generally, if one solves the field equations giving

[A, (x), A, (x')] =i@ e,,b(x, x'). (6) A ( )
e~'~gp(&)

Q2p

No restrictions are placed on the Ao component which is
therefore not a true canonical variable, rather it should
be understood as a Lagrange multiplier which enforces
the relation pB = —p.

and uses this to express the gauge field purely in terms of
gauge-invariant operators, one obtains an implicit equa-
tion for the commutator of the density operator, thus
identifying density fluctuations as the basic excitations:

(3C —3C«~ (3C' —3C«'»
d«p~d(», «') = f d'«" d'z"'[p(«")p(z"')]sr, ',
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or
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[p(x", t), p(x"', t)] = 4vr pO 'ib (x",x'")ei~
3C —3C 3C —3C

(9)

where 0 has the dimensions of volume. Since the Chern-
Simons action is linear in the time derivative, it possesses
no dynamics independently of J" and thus its sole eÃect
is to induce certain symmetry relations on the field op-
erators, a fact which is manifest in the above expression.
In deriving (9), a number of relations concerning vortex
Huxline singularities have been used. It is convenient to
state these for the record:

(x —x')
tang(x —x') =

X —X (10)
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f
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(12)

0 is formally the winding angle between two flux singu-
larities and satisfies the curious relation

[Bi, (92]8(x —x.') = 2mb(x —x'). (14)

S= dV —axe" A„O„Ap — x J A„. 15
1

These relations will be a useful reference later when in-
terpreting the equations of motion for the field opera-
tors. (Note also the discussion in [9] concerning these
relations. )

Let us now turn to the case in which the coefBcient
p(x) is an arbitrary function. As shown in Ref. [3], this
necessitates an additional variable coupling to the source
in order to satisfy a suitable gauge-invariance constraint:

I

Since both couplings are position dependent, this rep-
resents a phenomenological system rather than a funda-
mental one. In order to proceed, one needs to apply a
physical boundary condition to the source. As explained
earlier [3], the consistency of this theory then requires
that the source be adjusted in such a way that gauge
invariance is maintained and energy is conserved. Since
we do not want the source coupling to vanish when p is
constant, the natural boundary condition in this instance
is f(x) = p, (x)/n, for some constant mass scale n. Thus,
after a convenient rescaling, one may write

~&V A g A JvA
2

(16)
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2

and the generator of infinitesimal gauge transformations

where p(z) is now a dimensionless field. The role of p(x)
is to present the system through a "distorting glass. " The
physical picture is that of a two-dimensional gas of par-
ticles influenced microscopically but smoothly by sites
in neighboring planar systems. The special form of the
action together with the constraint results in the preser-
vation of gauge invariance.

The allowed class of variations of the action is deter-
mined from the consideration of an infinitesimal gauge
transformation A„~ A„+ 8„(, which provides us with
an operator constraint. We shall assume that the current
J" is conserved and that the variation of ( commutes
with the field. On varying the action with respect to 8(,
one obtains the constraint
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Gg = do —ApE ~ &A; —pJ(2 )
These are gauge invariant, indeed one sees how the for-
malism which includes the physical boundary condition
repairs the canonical structure of the theory in the pres-
ence of variable p(x). The solutions to (17) determine
now the class of variations under which the quantum the-
ory will be gauge invariant. Choosing the Coulomb gauge
to eliminate the unphysical degrees of &eedom &om the
field operators, one may solve (17) to get

to vanish. The Hamiltonian for the Chem-Simons action
can be computed &om H = —

&&
and is indeed found

to vanish under the restricted class of variations in (19).
Under general variations, it is nonvanishing when p(x) is
spacetime dependent. The time variation may be deGned
by

(24)

where, to first order,

A~ = 2n d x'E'~ppl9 J x' g x)x

The variation of this result now yields the allowed val-
ues for hA„. Returning to (16) one may thus vary with
respect to the dynamical variable A~ to obtain the gauge-
invariant equations of motion for the field operators:

OJJ = o!ebjE + os (c)jp))M

(20)

(21)

[Oi, b92]0(~) - 2vrB - 27r8(~) (22)

since p —o;B. The translational invariance of the Geld
0 has also been assumed. This "rough and ready" last
step serves mainly as a guide to physical intuition and
shows that (21) predicts a nonlocal generalization of the
vortex lines in the theory with constant p.

Extracting the generator of inGnitesimal unitary trans-
formations &om the variation of the action operator, one
easily determines that the commutator analogous to (8)
is given by the implicit equation

ban 'x b(x, x') = f d*x"d*x"'fp(x"),p(x"'))

(~ ~bd)l (~t ~/I/) j
X cg& x —x x

Finally, since the Chem-Simons term imparts no dy-
namics to the system, the Hamiltonian must be expected

The first of these equations clearly describes a modiGca-
tion to the Hall current of the system. The spatial gradi-
ent of p makes the current dependent on its own curl in
precisely the manner of a magnetic-moment interaction
[10,4,11]. It is interesting to compare this form to the
parallel theory [11] in which the gauge field couples di-
rectly to the source through a parity-violating term. The
same magnetic current loop interaction appears in both
cases. The time gradient term leads to an additional in-
duction eKect.

To ascertain the meaning of the second equation, it is
useful to define a field 6) by analogy with Eq. (11). Now,
integrating by parts and assuming only weakly varying
p, one obtains

bp(x) = ht,Op
Ot

bA„—F bx . (26)

The latter gauge invariant transformation is required to
generate the symmetrical, conserved energy-momentum
tensor for the theory [12]. The Hamiltoinan operator is
therefore

(27)

(Opp)B+ (8;y)e"E~ = 0, (28)

which has decaying solutions in the manner of the
I angevin equation. Thus the interpretation of the sys-
tem is fully self-consistent.

To summarize, a Chem-Simons field theory coupled to
a gauge invariant current J~ through the field p(x) is
only gauge invariant and unitary under a restricted class
of operator variations. This can be understood as aris-
ing &om an interaction with an external system. The

On using the solution of the operator equations of motion
(19) this is seen to vanish as required. The reason has
already been described in earlier work: the interpretation
of the naive unconstrained theory is that of an open sys-
tem and the energy is therefore not automatically con-
served. One would therefore encounter a nonvanishing
Hamiltonian.

An interesting feature of the present vortex system is
that the gauge invariance constraint (17) does not involve
the spacetime-dependent field p, (x) unlike the Maxwell-
Chern-Simons theory in Ref. [3,4]. This has an impor-
tant implication —namely, that, in the absence of exter-
nal magnetic fields, the flux lines can form arbitrary sta-
ble gradients in p without violating gauge invariance.
This must be understood as a topological phenomenon
since the relations provide no dynamical reason for such
behavior. It might be possible in certain cases to iden-
tify these with spin textures. The obvious information
we are missing which decides these gradients is the de-
tails of the neighboring system(s). One would expect, on
the basis of experience with the Maxwell-Chem-Simons
system, that when the coupling to the external system
is removed, the Chem-Simons coefIicient would have to
decay to a constant value. This is indeed the case. If
one relaxes the imposed boundary condition and takes
f(x) -+ const, then the gauge invariance condition leads
to the familiar equation [3]
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restricted theory can be explored with the help of a con-
straint formalism applied to the Schwinger action princi-
ple. The corrections to regular Chem-Simons theory in-
dicate a modification of the Hall current for vortex lines
in a manner which resembles a magnetic moment inter-
action term and an induction term. The sharp nature of
the vortices is distorted by the gradients in p(x) but the
basic excitations are of a similar nature.

It should be possible, by supplementing the source
terms with extra impulsive sources, to compute the
many-body Green functions for this theory directly from
the Schwinger action principle. These may then be used
to determine the corrections to the thermodynamical and
transport properties of this model, particularly the eKect

of the gradients in p, (x) on the conductivity in a model
for a superconductor. The present results are model inde-
pendent, but agree well with the specific model presented
in Ref. [2] and back up the work of Ref. [4].

The present model, motivated essentially by symme-
try considerations and its connection with the widely dis-
cussed anyon model, has been simplified as far as possible
for the sake of illustration. A more realistic model would
be more specific about the origin of the source terms and
must provide some empirical estimate of the strength of
the coupling, perhaps using data for the observed mag-
netic moment interactions in high-T, superconductors.
These points turn out to involve some subtle issues and
will be pursued elsewhere.
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