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It is likely that nucleon-nucleon elastic scattering at large, fixed |t| can be described by the
Landshoff three-gluon exchange mechanism. However, a phenomenological normalization rules out
the possibility that the Landshoff mechanism is involved in producing the sharp structure of the
two-spin asymmetry Ann, observed experimentally at piab &~ 13 GeV/¢, or that it is involved in
producing the oscillations observed in do/dt at 90° in the c.m. frame. A simplified analysis of the 90°
amplitudes shows that it is likely that some subasymptotic mechanism interfering with the dominant
quark-interchange amplitudes is responsible for both these intriguing phenomena. While the large-
angle data show evidence for amplitudes approaching those of exclusive QCD, the Landshoff region
in pp — pp shows no evidence for Sudhakov suppression nor evidence for effects associated with the
running of the QCD coupling. We suggest that a measurement of the energy dependence of the
polarization asymmetry at large | — t| can greatly enlarge the understanding of exclusive QCD.

PACS number(s): 13.85.Dz, 13.85.Lg, 13.88.+¢

I. INTRODUCTION

The study of exclusive hard scattering processes of-
fers a formidable array of theoretical challenges. Exist-
ing data on fixed-angle differential cross sections at high
energies [1] confirm that the regularities

d
lim 22 (AB — CD) ~ f(0)s?~(ratnptnctnn)

s—oo dt

(1.1)

of the constituent scaling rules [2,3] are observed in
all measured processes. The success of the constituent
counting rules of scale-invariant field theories suggests
that the existing data on exclusive hard scattering may
be in a kinematic regime where hadronic amplitudes have
the potential to be calculated perturbatively. There are
enormous technical difficulties in these calculations, but
it is important to persist in the attempt to understand
the dynamical foundation for exclusive processes in QCD.

A brief menu of some of the problems in the calculation
of the amplitudes for pp — pp scattering can be instruc-
tive. The complexity begins with calculation of the Born
amplitudes. Because of combinatorial factors, there are
more than 300 000 distinguishable Feynman diagrams for
6g — 6g processes, so that enumeration and evaluation
of the graphs requires considerable computational power
[4,5]. The predictive capability of the leading-order cal-
culation is impaired by the high degree of renormalization
group dependence associated with the factor (a,/7) [5]
which appears in the Born term. In fact, since the per-
turbative expansion is an asymptotic series, there may
be intrinsic barriers to a sensible interpretation of higher-
order corrections to these specialized multiparticle pro-
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cesses. There also exists a closely related issue concern-
ing the sensitivity of the calculation to the factorization
scheme which absorbs the infrared and collinear singular-
ities of the 6¢ — 6q amplitude into the proton wave func-
tions. The specific definition of the wave function affects
the normalization of pinch and end point singularities
in ways which are not yet fully understood. The result
of this ambiguity is that small changes in the hadronic
wave function can be seen to result in large changes in
the normalization of an individual scattering amplitude.
With the current level of understanding, there is no con-
trol over the normalization of subasymptotic (nonleading
twist) corrections to the asymptotic behavior of the am-
plitudes. With all of these problems, there is little chance
of a reliable “first principles” calculation for pp — pp
fixed-angle scattering based on the present technology of
QCD perturbation theory.

In many respects, the proton-proton process is too
complicated for a direct confrontation with this bar-
rage of theoretical problems. Similar scattering processes
must be subjected to quantitative calculations in order to
test theoretical techniques. For example, detailed analy-
sis of perturbative calculations of the nucleon form factor
can shed light on many of the theoretical problems men-
tioned above. In fact, if the proton form factor at large
momentum transfer were well understood theoretically, it
is possible that a “reduced-amplitude” formulation based
on sophisticated combinatoric tools could provide a con-
sistent normalization for pp — pp amplitudes.

However, in the absence of a well-defined perturba-
tive calculation, there are valid reasons to continue the
study of pp — pp elastic scattering. High intensity pro-
ton beams and a clean signature for the elastic scattering
process make this one of the best studied set of exper-
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imental cross sections. Spin-dependent observables and
the spin-averaged cross section are accurately measured
over a wide range of kinematic variables. In addition,
most of the normalization problems discussed above are
not sensitive to quark combinations. This implies that
the ratio of helicity-conserving amplitudes can be pre-
dicted [6]. For a given Jacob-Wick helicity amplitude [7],
it is possible to do a phenomenological analysis where
the normalization of the amplitude is fit to data at one
point while its s and ¢ dependence are extracted from the
theoretical calculation. This approach leads to a large
number of asymptotic predictions and has not yet been
fully exploited.

The reason for this omission may be that there has
been some confusion over which mechanisms are impor-
tant. In Sec. II we review how the normalization of the
Landshoff three-gluon mechanism amplitude [8] can be
reliably specified at high energy and fixed-¢ from elas-
tic scattering data at the CERN Intersecting Storage
Rings (ISR) and the CERN collider. From the known
kinematic dependence of the Landshoff amplitude, this
phenomenological normalization definitely rules out the
possibility that the Landshoff mechanism is involved in
either the sharp structure of the A data in large angle
scattering or the oscillations of the spin-averaged cross
section observed at 90° in the c.m. system [9-12]. A
consistent normalization of the theoretical amplitudes de-
mands that the scattering is dominated by a “quark in-
terchange” mechanism in kinematic regions where sharp
structure has been observed. In Sec. III, we show that
if we assume the basic validity of a quark-interchange
model (QIM) approach at large angles, it is possible to
use the symmetries which occur at 90° in the c.m. system
to do a simple amplitude analysis which can extract the
basic features of the subasymptotic mechanism responsi-
ble for the structure observed. This may have important
ramifications for studies of nuclear transparency and for
the study of other exclusive processes.

We argue that the structure of the elastic amplitudes
within the framework of the constituent-based hard-
scattering model can be severely constrained by measure-
ments of the elastic polarization asymmetry at large s
and for |t| > 4 GeV2. In the traditional Regge theory
approach to asymptotic amplitudes, the factorization of
Regge residues means that the polarization asymmetry
vanishes at large s. In contrast, the hard-scattering ap-
proach allows for possible helicity-flip effects associated
with the hadronic wave function. These effects vanish
at large | — t|, but the helicity-flip amplitudes can share
the same s dependence as the helicity-conserving ones.
This leads to a polarization asymmetry which is almost
s independent and hence, falls off only as a function of ¢
[13].

Eooking in more detail at the shape of the cross section
for pp — pp in the Landshoff region, it is interesting to
note that the data give no support to a running QCD cou-
pling. There is also no evidence for ¢-dependent suppres-
sion associated with a Sudhakov form factor [14]. The
search for these effects in the data must be considered
one of the challenges for the construction of a reliable
phenomenology for exclusive hadronic processes.

II. PHENOMENOLOGICAL NORMALIZATION
OF LANDSHOFF AMPLITUDES

We shall define observables for NN — NN elastic
scattering in terms of the following Jacob-Wick helicity
amplitudes:

(s, t) = (+ + | M|+ +),
®2(s,t) = (++ M| - —),
®3(s,t) = (+ — |M|+ —),
Pa(s,t) = (+ — M| —+),
D5(s,t) = (++ | M|+ —).

(2.1)

Other helicity amplitudes are related to these five in-
dependent amplitudes using parity conservation, time-
reversal invariance, and identical particle symmetry.

The differential cross section is given in terms of these
amplitudes as

do _m™ [
dt ~ 2s(s —4m?2)
+|®4* + 4|®5 /7],

[®1]% + |@2/% + | @3]
(2.2)

while the expressions for the spin dependent observables
are given in terms of these amplitudes by [13]

do
¥ =s(s— 4m2)E,
PY = —Im[®5(P1 + P2 + P53 — 4)],
AsLY = —Re[®%(®1 + 5 — 3 + B4)],
ANNE = Re[®, 85 — &3P} + 2|®s5|?),
Agsy = Re[@1<1>; + @3@2],

1
ALty = §[|¢’3|2 +®4)% — |@4]% — |@2]?].

(2.3)

In discussing these observables, we make the basic as-
sumption that we can separate a soft, coherent Regge
contribution, ®F(s,t), for each independent amplitude.
These Regge amplitudes dominate the observables at
small t. We also assume there exists a “hard” component
for each amplitude which obeys the Brodsky-Lepage fac-
torization [15] at large ¢. For the hard constituent-based
component, it is convenient to separate the amplitudes
by the number of quarks exchanged in the ¢ channel. For
example, the Landshoff mechanism corresponds to three-
gluon exchange with no quarks in the ¢ channel [8]. By
crossing symmetry, we also have to include three-gluon
exchange in the u channel and hence, three-quarks and
three-antiquarks in the ¢ channel. The quark interchange
mechanism corresponds to either ¢g or ¢gqq in the t chan-
nel. For each helicity amplitude, we therefore have the
decomposition

®;(s,t) = ®F(s,t) + BL(s,t) + B (s,1)
(:=1,...,5), (2.4)
where R, L, and Q stand for “Regge,” “Landshoff,” and
“quark interchange,” respectively. It is important to note
that the separation suggested in (2.4) is largely a matter

of convention. The coherent Regge components should
be exponentially suppressed at large t, reflecting the size
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of the individual proton. However, it is possible to ab-
sorb part of the coherent portion of the amplitude into
the hard, constituent-based component and change the
extrapolation of the hard component to finite ¢ values.
This is one of the necessary complications in the process
of combining formulas applicable in different asymptotic
regions, which preclude an unambiguous theoretical nor-
malization of the various components. With our present
knowledge, it is necessary to fit the normalization to data.
The s and t dependence of the Landshoff and QIM am-
plitudes are specified by simple QCD calculations, and
the assumption we will use for our calculations is that
the proton is well described by its minimal three-quark
Fock state. For pp — pp, the Landshoff amplitudes at
large t and small angle (=t — 0) can be written in the
form

L ~ (3%[1 +0(t/s)),
(2.5)
L ~ %[1 +0(t/s))-

Since % is dominated by the u-channel contributions we
assume that & = 0 in this region. For convenience, we
also parametrize the helicity-flip amplitudes as

23L(t)

L ~ —e(—t)3 @m2 t)5[1+0(t/s)], (2.6)

with the double spin-flip amplitude, ¢& ~ 0, since it is
down by an additional factor of (—t)~'/2 at large —t.
In Egs. (2.5) and (2.6), L(¢) is a normalization factor
which involves a convolution over the proton wave func-
tion. The parameter € in (2.6) is assumed to be small,
reflecting the size of the known polarization data [14].
The physical significance of this parameter will be dis-
cussed in Sec. IV. In the absence of effects associated
with Sudhakov form factors [15], L(t) would be constant
at large |t|. However, it is expected that asymptotically,
L(t) shows the behavior [12]

L(t) = ct™P, (2.7)
where B is a slowly varying function of t and —t/s.
We will not assume a specific form for L(¢) in this
work. Combining (2.2) and (2.5) in a region where the
Landshoff amplitudes dominate, (i.e., m2 < —t < s) we
have the phenomenological expressmn

g 2 g+ ] 29

where the second term in square brackets is associated
with |®5|? and other terms are suppressed by additional
powers of §

Comparing (2.8) with data at large s and with —t out-
side the coherent Regge region is the first step in a phe-
nomenological normalization. Donnachie and Landshoff
[17] have done a thorough phenomenological study of the
differential cross sections for pp and pp at high energies.
We shall review here some aspects of that analysis in

order to fix our notation. In the approach of Ref. [17],
the dip in the differential cross section at | —¢t| = 1.3
GeV? is understood as an interference between double
Pomeron exchange and the triple-gluon exchange ampli-
tudes given in (2.5). At larger —t, (| —t| > 4 GeV?),
the three-gluon exchange mechanism dominates. In this
kinematic regime, there is strong experimental support
for an approximately energy-independent component of
the cross section which behaves as t~8. This can be seen
in Fig. 1 where we plot t8(do/dt) for different energies.
Note that the ¢t =8 behavior persists to the largest values
measured, so that there is a region where (2.8) is valid.
Experimentally, the numerical value extracted from these
data is

|L(t)|? >~ 30 mb GeV [14],
—t~5 GeV?

(2.9)

which can be used to normalize this mechanism.

A significant confirmation of the identification of the
triple-gluon Landshoff mechanism in the data comes from
a comparison of the pp and pp channels. The Pomeron
and two-Pomeron contributions to the amplitudes have
even charge conjugation while the three-gluon mechanism
has odd charge conjugation. The interference effect lead-
ing to the dip structure in the pp data should therefore
not be present in the pp channel, since the Landshoff
amplitude will change sign. The pp measurements at the
CERN Super Proton Synchrotron (SppS) collider have
confirmed these expectations. No dip is seen in pp data
taken by the UA4 Collaboration [1]. A comparison of the
pp and pp differential cross sections in the region of the
dip can be found in Ref. [17].
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FIG. 1. A Plot of ts%% for pp elastic scattering at the

CERN ISR. The squares and error bars correspond to the
data at /s = 23.4 GeV, while the circles correspond to the
data at /s = 30.5 GeV. The solid line is an average approx-
imation to the data showing the approximate t® behavior of
the differential cross section, characteristic of the Landshoff
mechanism.
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It is important to note that the |t| range of these high
energy collider data overlaps with the [t| range of the
low energy, large angle data, where striking structure
has been observed in the two-spin observable Ayxn [18]
and where oscillations around an approximate s~ 10 falloff
have been found in the 90° c.m. differential cross section
[1]. Given the known s dependence of the three-gluon
amplitude, we can definitely rule out the possibility that
the Landshoff mechanism is involved in these low energy
structures. Since this possibility has been widely consid-
ered, we will discuss the normalization issue here in some
detail.

Since the Landshoff normalization factors |L(t)| are de-
pendent only upon —¢, we can use existing cross section
data at various s for comparable —t values to phenomeno-
logically determine their behavior. We can then extrap-
olate the Landshoff amplitudes back to the kinematic re-
gion where these t values correspond to known 90° c.m.
data to find their effect on the oscillations of the cross
section and Ay spin asymmetry. For the purposes of
this exercise, we have fit elastic pp data from the Argonne
Zero Gradient Synchrotron (ZGS) and CERN (ISR) for
various 4/s ranging from 3 GeV/c to 62 GeV/c and for
—t from about 2 to 6 (GeV/c)2. In analogy to previous
analyses of the ISR data [1], we have constructed fits to
the differential cross sections having the form

do

= (ub/GeV?) = Bexp| 3], (2.10)
where (3 is an overall constant. When the differential
cross sections are written in this form, we can extract
the behavior of the Landshoff normalization amplitudes
in a straightforward way.

The ANL data [19] at 90° c.m. covers a range of /s
from 3.3 to 5.1 GeV/c. There is a marked change in
structure of the cross section for —t near 7 (GeV/c)2.
Our fit to the data is

d
d—:(pb/GeVz) = 6836 exp[—1.59]t]],
3.8 < —t <6.8(GeV/c)?
= 24 exp[—0.76|t[],
7.3 < —t < 11.3(GeV/c)2.

(2.11)

The top line corresponds to the —¢t region of our analysis.

Our fit to CERN PS data [20] at pp = 19.2
GeV/e,4/s = 6.15 GeV/c, and large angle (60-90 de-
grees) gives

(—fi%(y,b/GeVZ) = 38.5exp[—1.65[t[],

1.4 < —t < 5.0(GeV/c)?. (2-12)

The original analysis of the ISR data [1] was
parametrized in a slightly different form and gave the
differential cross section in (mb/GeV?2). Our analysis
is equivalent, and we have written the cross section in
(ub/GeV?) for consistent comparison with other data
over a similar —¢ range. Our results at each /s for 2.0
< —t < 4.5 GeV? are

V/3(GeV) §(GeV~2) B(ub/GeV?)
23.4 1.71 £+ 0.05 1.55 + 0.20
30.5 1.54 £ 0.09 1.00 = 0.25
44.6 1.71 £+ 0.09 1.60 £ 0.40
52.8 1.77 £ 0.04 2.05 £ 0.20
62.1 1.77 £ 0.08 1.85 + 0.40

(2.13)

which agree favorably with those in Ref. [1].

For comparison, we note that Donnachie and Landshoff
[17] give the normalization of the cross section for the
three-gluon exchange mechanism in the form

d Pt
(d_‘t') = (7 x 108)aft_8m, (2.14)

where P is related to the g-q scattering probability and
R is an effective three-quark system radius. Our |L(¢)|?
factor therefore corresponds roughly to Landshoff’s fac-
tor: af(P*/R'?) x 10%. Note that the contribution of
the three-gluon mechanism is dependent only on —¢ and
is independent of s, as is the experimental cross section
at large s. This observation confirms our claim that, al-
though the treatment of Ref. [17] applies to the region
of fixed —t and smaller angles, the strict —t dependence
of the normalization allows us to extrapolate the three-
gluon contributions down to energies of the ANL at 90°
c.m. for similar —¢ values. We can then determine the
relative importance of this mechanism to the elastic pro-
cesses there.

We assume that the ISR data are in a region domi-
nated by the Landshoff mechanism. Using Egs. (2.11)
and (2.13), we can calculate a ratio of the cross sections
between the ISR and ANL data:

da’) (do) 4
— — = (2.4 x 10™%) exp[—0.12]¢|].
(dt ISR/ dt ) snv

(2.15)

When considering the effects of the Landshoff mechanism
at 90° c.m., the u-channel terms become important, but
are correctly accounted for in our full parametrization.
Thus at ANL energies, the total Landshoff contribution
is at most about four times the value in Eq. (2.15), or
about 6 x 10~* for this range of t values. Thus, although
the Landshoff contribution to the ISR cross section may
be large, its effect on the ANL 90° data is down by a
factor of 10~%. We conclude that another mechanism
must be responsible for the structure of the data in this
region. We now turn to an analysis of the amplitudes at
90° c.m.

III. STRUCTURE OF THE AMPLITUDES
AT 90° c.m.

The normalization of the Landshoff mechanism given
as determined from ISR data in the analysis of Sec. II
rules out the possibility that this mechanism is instru-
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mental in determining the “low energy” structure ob-
served in the large angle cross section. There are two
distinct types of phenomena which have been observed
in the 90° c.m. cross section for pp elastic scattering and
have presented theoretical challenges to our understand-
ing: (1) oscillations in s'°do/dt as a function of s and
(2) structure in Ayn as a function of energy.

There have been attempts [9-12] to describe each of
these effects in terms of an interference effect between
a Landshoff amplitude and a quark-interchange ampli-
tude. Based on the discussion in Sec. II, it appears that
we must search elsewhere for the explanation of these
unusual structures.

There are ample reasons to believe that a description
of the amplitudes in terms of a constituent-based hard
scattering mechanism in this kinematic region is sensible.
As mentioned earlier, the cross section shows an approx-
imate s~!° behavior, characteristic of a short distance
process. As discussed by Brodsky, Carlson, and Lip-
kin and by Farrar, Gottlieb, Sivers, and Thomas [6], the
most natural approach to these amplitudes is the quark-
interchange model, or QIM. Using the symmetries of the
minimal three-quark state in the proton and the conser-
vation of quark helicity in the underlying hard scattering,
the ratios of different pp-helicity amplitudes can be spec-
ified.

We would like to consider the possibility that the ba-
sic symmetries of the QIM model are reflected in the
large angle amplitudes and that the structures that have
proved so puzzling can be understood as corrections to
these amplitudes. There are certain simplifications of the
problem which occur because of the symmetries at 90°
c.m. For example, since ¢ = u here, we have the kine-
matic constraints that

®, = —Q3a
®; = 0. (3.1)
In addition, we would like to implement the assumption
that the double helicity-flip amplitude, ®,, can be ne-
glected at the energies where the data exist. This im-
poses the constraint of hadronic helicity conservation at
90° c.m., which the data and our previous analyses have
shown to be a reasonable approximation. Helicity con-
servation therefore implies that the observables at 90°
can be understood in terms of only two independent am-
plitudes. For the observables we consider here, the ex-

pressions are simplifications of those written by Hendry
[21]:

by

N | =

[[@1] + 2|®s5/?],

2|®3)?

[ + 2152 (3.2)

ANN =

We now implement the constraint that the amplitudes
asymptotically approach the QIM result: ‘I>? = 2‘I>3Q at
90° c.m., to write

o, =289 + 3,
@3 == @Q + ‘i3,

(3.3)

where ®? is a smooth power-law behaved amplitude
which characterizes the asymptotic observables, while ®;
and ®3 are subasymptotic corrections. If we write

1
Lo = 56|<1>Q|2, (3.4)
then
1]®3)2  1]8° + &;)2
¥ /%) = = == ,
Awv(5/50) = 5190 =3 Taep
(3.5)
C1]@y2 2|29+ 182
(1 - ANN)E/EO = g |<I,Q|2 3 |¢>Q|2

At this point it is convenient to factor out the overall
phase of &2 and write

ANNE/Zo

1 N
gll =+ a3|2,

(3.6)

2 1+1a
3 271

Il

K

(1-AnN)E/Z0

where &3 = f—;’% and & = %QL. Using a smoothed version
of the data, we have separately extracted

— léllz 1, 2
B = pgep =1+ 3%l
(3.7)
_ |®s)? 5
Rs = igam = 1+’

from these expressions and have shown them in Fig. 2.
At this point, we note that our simplified approach to
“amplitude analysis” has relied only on the symmetries
present in the 90° amplitudes and the assumption of
hadronic helicity conservation in order to separate ob-
servables depending on ®; and ®3. The QIM constraint
that (I>1Q = 2<I’3Q at 90° enters indirectly into the coeffi-
cients in (3.6) and (3.7). If the data are correct, they
show interference effects in both amplitudes with the
structure in ®; occurring at a lower energy than that
in @3.

The structure of Ay for the range 4 < |t| < 7 GeV?2 is
relatively flat. The value of Ayx however, differs signif-
icantly from the QIM prediction of %— In this region, we
find |®1|% > |2@9|2, while |®3]% < |®9|2. Whatever sub-
asymptotic mechanism is invoked to explain these data,
its impact on |®;| and |®3| can be seen directly in Fig. 2.
The differential cross section in this region exhibits a rel-
atively steady —t~1° behavior. If we make the ansatz
that o = 3.5 x 108/(—¢)'°, then ¥ has the same ¢ be-
havior. This is a measure of the relative strength of the
mechanism which “interferes” with the QIM amplitudes
in this region to cause Ayxy to dip below the QIM pre-
diction. Over a considerable t range, the “corrections”
are comparable to the QIM amplitudes.

In the region |t| > 7 GeV?, the slope of the cross section
changes and Ayy simultaneously begins to rise sharply.
The differential cross section exhibits more of a ¢t~ be-
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FIG. 2. Behavior of the ratios R, = J%‘Q—l% (solid curve)

B
and R; = 'I:glli (dashed curve) with —t, extracted from 90

degree c.m. data.

havior in this region. The amplitude $3 now becomes
more significant here, since J;—;Ff ~ 1 for [t| > 8 Gev2.
The mechanism responsible for the “oscillation” of the
cross section and the rapid rise in Ay now appears to
enhance ®3 and suppress ®; over their QIM values. It is
possible to understand this switchover as an interference
effect, where the phase and magnitude of the subasymp-
totic amplitudes are changing. Both |&;| and |&s| are
of comparable magnitude here. Unfortunately, the data
stop before we can confirm our hypothesis that |&;| and
|&3| vanish at higher energies.

We have not discussed the specific dynamical mecha-
nisms which may be responsible for these effects, except
to rule out a significant contribution from the Landshoff
three-gluon exchange diagrams discussed above. We note
that Brodsky and deTeramond [22], have discussed the
structure of Ayny in terms of a specific dibaryon reso-
nance, which couples to ®3, but not to ®;. A dibaryon
resonance with different quantum numbers may turn out
to be the most economical explanation for the structure
in ®; at lower t. If we are to identify deviations of &; and
a3 from zero with nonpointlike scattering configurations,
then the structure in Fig. 2 indicates that existing data
are not in a regime where “nuclear transparency” should
be a feature of pA — pp(A — 1). This implies that it is
important to push for experiments at higher energy on
nuclear targets to see if nuclear transparency emerges in
a regime where &; and &3 — 0.

The idea of Jain and Ralson [23] concerning the space-
time structure of nuclear transparency imply that the
subasymptotic corrections associated with &; and &3 are
suppressed in the nuclear environment. In their ap-
proach, the pointlike cross section, ¥ is a more use-
ful quantity for understanding nuclear effects than is the
physical cross section. Further discussion of this can be

found in Ref. [23]. An important requirement for under-
standing these effects is to seek new data at higher ener-
gies. For many years, there have not existed experimen-
tal facilities with polarized proton beams to continue the
experimental program responsible for these data. Fortu-
nately, it is now possible to advocate new experiments to
continue this study.

It is interesting that the quark interchange mechanism
(QIM) is dominant over the three-gluon exchange dia-
grams in the region. This is confirmed by the fact that
%{}%—z—g < 5—10 in this kinematic regime. This small ratio
is consistent with quark interchange mechanisms. If
Landshoff diagrams were important, the ratio would have
to be much closer to unity. The evidence for contri-
butions from nonleading twist or subasymptotic mecha-
nisms which we have extracted from this analysis is quite
indirect. Further experiments are necessary in order to
confirm this basic approach. One place where subasymp-
totic dynamics is more accessible involves the measure-
ment of the polarization asymmetry. We now turn to a
brief discussion of the expectation for this observable.

IV. THE POLARIZATION ASYMMETRY
AT LARGE ENERGIES

The expression of Eq. (2.3) for the polarization asym-
metry can be written

—Im[@;(@l + &y + &3 + @4)]

P = .
@117 + |@2% + | @3? + [@4[* + 4|Ps|?

(4.1)

Our parametrization of the helicity-flip amplitude, @5, in
terms of the helicity-conserving amplitudes

—e(—t)1/2

o5 =
5 2m12,—t

[‘I)l(s,t) + @3(S,t) + ‘§4(3, t)]

(4.2)
1/2
—e(—u
77513_)—1‘[—‘1’1(3,” + @3(s,t) + Pa(s, 1))
P
is based on the idea of restructuring a proton wave
function from scattered quarks which are approximately
collinear. This approach builds in the constraint of
hadronic helicity conservation so that at fixed angles, the
polarization asymmetry vanishes: namely,

C
1 = —. 4.3
Jm o P=r (4.3)
t/s fixed

Note that the form (4.2) for ®5 is also consistent with the
kinematic constraints of (3.1) at 90° c.m.. However, at
fixed t, the s dependence of ®5 in our approach becomes
asymptotically equal to the s dependence of the helicity
conserving amplitudes, since the form factor

—e(—t)Y/?

4.4
2m2 —t (4.4)

ft) =

is a function of ¢ only.
As discussed in Refs. [9] and [13], this form factor rep-
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resents the effect of a convolution over internal quark mo-
menta with quark helicities conserved, but with the rela-
tive transverse momenta of the quarks within the proton
taken into account. The (—t)!/2 represents the sin(6/2)
factor which must appear in a helicity flip amplitude, and
the denominator is chosen to match dimensional counting
rules. The complex parameter, €, represents the overlap
of a multiquark state with a proton. In an exact SU(6)
model, € would vanish. The approximate success of SU(6)
for static properties of the proton suggests that € should
be small. The fact that Eq. (4.4) represents a convolution
over phases makes it natural that € should be complex.
Our approach leads naturally to a polarization asymme-
try which becomes independent of energy at fixed t.

It must be questioned whether this result is reason-
able, given the known prediction from Regge theory that
the polarization asymmetry should vanish asymptotically
at fixed t. This Regge prediction is associated with the
phase-energy relationship. For each ®; in (4.1) we can
write

Re[®(s,t)] = / Im[®(,t)] 5,

RH r— S8

Im['l%(:c,t)] -
+/LH Im{®i(, )] 4 (4.5)

T—s
where the integrals are over the right-hand and left-hand
cuts in the complex s plane. If asymptotically

Jim Im(®y(s, )] = Cis™,

(4.6)
lim Im[®;(s,t)] = £C;s™,
38— —00

Eq. (4.5) guarantees the Regge asymptotic phase satisfies
Re[®;(s,t)] _ cos(ma;) F1

slg{olo Im[®;(s,t)]

sin(ma;) (4.7)
In the Regge region, factorizable Regge residues would
require that ®5 would have the same asymptotic phase
as ®; and ®3, so that the bilinear in (4.1) would van-
ish. With a general multiquark exchange, however, there
is no unique continuation from the left-hand cut to the
right-hand cut, so there is no distinct phase factor for the
different amplitudes. In this sense, it is quite reasonable
for the parameter € in (4.2) to be complex.

In our phenomenological approach, we can reproduce
the existing polarization data [14] with a value

le| ~ 0.15, (4.8)

using (4.1) and (4.2). In this approximation, € is pre-
dominately imaginary. The behavior of the polarization
at large energies can therefore be summarized as follows:

(1) Small |¢t|. There is an overall (—t)!/2? factor. In
addition the polarization should fall off with energy, re-
flecting the coherent behavior of factorizable Regge poles.

(2) Large |t|. Outside the coherent region, the polar-
ization becomes asymptotically energy independent. In
order to be consistent with quark helicity conservation,
the polarization should behave like (—t)~%/2 as t is varied
at large s.

Those polarization measurements which exist are con-
sistent with these predicted regularities [24]. Further
measurements of the polarization asymmetry at high en-
ergies are needed in order to test these underlying prin-
ciples and to normalize the subasymptotic effects. There
may be some unfortunate preconceptions about the im-
portance of polarization asymmetry measurements which
prevent their systematic study. While our basic approach
of including helicity nonconserving effects with an empir-
ical form factor is only an approximation, it provides an
interesting guide to the type of information these mea-
surements provide. The important thing is that helicity-
nonconserving amplitudes are not zero, in contrast with
the Regge prediction, but are small with a ¢t dependence
predicted from underlying principles.

The behavior of the polarization P (or Ay) as a func-
tion of —t can be measured in elastic polarized pp scatter-
ing at Fermilab or the lower proposed energies, reached
at the BNL Relativistic Heavy Ion Collider (RHIC),
where the cross sections and luminosities would allow
for a reasonable distinction from nonzero values. Spe-
cific predictions for values of P as a function of phe-
nomenological parameters are given in Ref. [13]. The
main emphasis here is that, if our assumptions about the
helicity-nonconserving amplitudes are correct, we should
see nonzero polarizations at large enough —t values to be
outside the coherent region.

V. SUMMARY AND CONCLUSIONS

Elastic scattering of hadrons has provided a wealth
of information. Pursuing this information has been a
process frought with false leads and complicated puzzles.
For proton-proton elastic scattering, some regularities as-
sociated with the hard scattering region are beginning
to emerge. Several independent phenomenological argu-
ments support the identification of the ¢t ~8 structure ob-
served in the data at |t| > 4 GeV? and t/s — 0 with
the three-quark scattering mechanism first proposed by
Landshoff. There is some concern that the data are not
in a truly “perturbative” regime since there is no evi-
dence of a falloff associated with the running of the QCD
coupling within the factor af(¢) which appears in the
cross section. Nor is there any evidence for an additional
falloff associated with the Sudhakov form factor. There
is no doubt that further study targeted at these effects is
warranted and is necessary before we can be completely
confident that a constituent-based mechanism can be iso-
lated in the elastic scattering data.

In this paper, we have used the normalization of
the Landshoff-model-helicity amplitudes which are taken
from the phenomenological studies mentioned above and
continued the amplitudes to smaller s values. There is
little uncertainty in this exercise since the s dependence
of the Landshoff amplitudes are well specified by the
model. The continuation shows that the Landshoff am-
plitudes are too small (by 1072 at the amplitude level)
to be involved in the oscillations observed in do/dt at
90° c.m. or in the sharp structure observed in Ayy.
The most natural explanation of these striking phenom-
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ena involves the interference of some asymptotic mecha-
nism with a dominant QIM model amplitude set. Brod-
sky and deTeramond have long advocated this type of
explanation for the structure of Axy. They propose a
dibaryon resonance in ®3 associated with the opening of
the pp — ppDD threshold. The definitive test of this
proposal involves measurements in other inelastic chan-
nels.

Using the symmetries in the amplitudes at 90° c.m.
along with the assumption that the double helicity-flip
amplitude can be neglected, we have expressed the data
in terms of ®; and ®3. Using the QIM relation ®; = 2®4
as a starting point, we find the data suggest a struc-
ture which interferes with the dominant QIM amplitudes.
This interference occurs at a lower energy in ®; than in
®3, but is approximately the same magnitude in each
amplitude. The data disappear in a kinematic regime
where there is a lot of structure, and it would be in-
teresting to continue these measurements at some higher
energies. There exists a real opportunity to do these mea-
surements at the Brookhaven Alternate Gradient Syn-
chrotron (AGS) with the addition of a partial Siberian
snake to allow for polarized beams. It will be interesting
to see whether the data approach the value of Ayy = 1
as predicted by the QIM model and whether the cross
section oscillations fade away at higher energy.

Another type of measurement which can provide new
insight involves the single-spin polarization asymmetry.
Using factorizable Regge poles, the asymmetry should
fall with energy at fixed —t. However, outside of the co-

herent Regge region, dynamical mechanisms based upon
multiple quark scattering, such as the Landshoff or QIM
mechanisms, allow for a nontrivial phase between differ-
ent amplitudes. Hadronic helicity conservation implies
that the amplitude ®5 should have a different power be-
havior than the helicity-conserving amplitudes. However,
this can be accommodated with a rather mild ¢~1/2 falloff
of the polarization observable. Existing data are consis-
tent with this behavior but do not provide a stringent
test of the basic idea. Our simple model relates differ-
ent amplitudes using a spin-flip “form factor” involving
a small parameter related to SU(6) breaking.

Finally, within the context of our model, we have
looked at the data for evidence of nontrivial behavior of
the observables associated with the running of the QCD
coupling or with the falloff of Sudhakov form factor. We
could find no evidence of these effects. This may indicate
that while constituent based models can provide impor-
tant insight into the structure of pp — pp amplitudes,
the data are not in a kinematic regime where perturba-
tive calculations can be attempted.
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