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Quantum source of the back reaction on a classical field
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Pair creation in an external electric field is presented in terms of the localized events which
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The problem of the back reaction on a classical Geld
due to a quantum process is to a great extent an unsolved
problem in modern physics. Ignorance of the solution is
(at the least) one of the barriers towards the solution
of the so-called unitarity problem posed by black hole
physics [1]; i.e. , how does the black hole evaporation en-
gendered by gravitational collapse convey all the informa-
tion that has gone into the initial conditions describing
the quantum state prior to the collapse?

The state of the art of black hole reaction physics is
at present rather primitive. For example in the black
hole problem one calculates the expectation value of the
energy-momentum due to Hawking radiation [2] (for a re-
view see Ref. [3]), i.e. , the thermal radiation that occurs
at large Schwarzchild times where the collapsing body
bugs the horizon inGnitely closely. This expectation value
then serves as a source to the classical Einstein's equa-
tions [4—6]. Clearly the fluidlike description characteris-
tic of this semiclassical approach begs the question of the
details of how the gravitational Geld, better that part of
the wave function which describes gravity, reacts to the
quantum process, i.e. , tunneling [7], which results in the
emission of a single (or a few) Schwarzschild quantum
(quanta). At best the semiclassical theory describes some
coarse-grained. mean evolution. So it is very dificult to

imagine that such an approach to the unitary issue can
reveal the information, phases among other things, being
sought.

The considerations of this paper are conceived as a
(very small) step towards the solution of this problem.
We study the source of the back reaction on the elec-
tric Geld due to production of pairs induced by its pres-
ence. As pointed out by several authors [8—11], this
problem, owing to the presence of horizons (caused by
the constant acceleration induced by the Geld on charged
quanta), bears many analogies to black hole evaporation.
Indeed, the amplitudes for production in the two cases
have essentially the same mathematical structure. But
there are profound differences which cause the black hole
problem to be more diKcult. For example the "member"
of the pair that is not measured (or measurable) by the
Schwarzschild observer is hidden &om him by the hori-
zon (except if it turns out in the end that the complete
back reaction destroys the horizon; but then the prob-
lem is even more complicated). Of course in the electric
case both members of the produced pair are accessible
to observation and subtle problems of loss of information
do not arise (provided one allows for ubiquitous mea-
surement). Nevertheless interesting nontrivial problems
occur even in this case when one delves into the quantum
mechanics of the production of a single pair.

The problem of how to deal with electroproduction in
the mean has been dealt with by Cooper et al. [12] in a
semiclassical approach similar to that brought to bear in
black hole physics. Their approach is valid in the pres-
ence of large density of pairs. Our purpose here is to ask
more detailed questions appropriate to the opposite case
where pairs are rare. How does one isolate the counter
electric Geld carried by a localized pairs And how does
this counter electric Geld modify the probability of find-

0556-2821/95/52{2)/1119(15)/$06. 00 52 1119 1995 The American Physical Society



1120 BRGUT, MASSAR, PARENTANI, POPESCU, AND SPINDEL

ing the next pair? We recall that a pair is created by
tunneling [13,9,10] out of a region of spatial dimension
lAxl, which is of order a i where a is the acceleration
(= E/m), E being the electric field with the charge of
the field quanta absorbed into its definition, and m their
mass. For lAxl ) a i the produced quanta propagate
on mass shell in opposite directions, and one expects in a
wave packet description that this asymptotic region can
be adequately described in conventional terms. But what
happens as the pair is created in the tunneling region?

In our e8'ort to answer these questions we found diK-
culty for the following reason. If in the distant past one
has vacuum, then in the future, pairs are produced ev-
erywhere and all the time. Since the Gnal state is not a
single pair state we must address the problem of how to
isolate the source of the change of the Geld E produced by
a single pair. The solution to this problem is to consider
only those outcomes wherein a specific localized pair is
produced. Hy considering only this restricted set of final
states one will learn information about the pair, isolated
IIrom all the other pairs.

In order to isolate the current carried by 'the pair and
to prove its physical relevance we ask specific questions,
such as how is the probability of creating this pair mod-
iGed by a modiGcation of the external electric field'? It is
seen that, in Grst order of perturbation theory, the answer
to all such questions depends on a certain nondiagonal
matrix element of the current operator. Thus this ma-
trix element controls the back reaction in that particular
channel exactly as the mean value of the current controls
the back reaction when no further specification of the. G-

nal state of the system is required. It is these matrix
elements which we study.

These nondiagonal matrix elements were first analyzed
in detail by Aharonov et al. [14] in the context of mea-
surement theory. These authors fix both the initial and
the Bnal state of a system. They then inquire into the
response of a measuring device which interacts "weakly"
with the system at an intermediate time. The answer
is given in terms of these nondiagonal matrix elements.
The repeated appearance of these matrix elements in a
large variety of physical problems is what motivates our
detailed analysis of them.

In brief what we obtain is a description of the cur-
rent density and charge density of the pair a8 it is pro-
duced. When the two members of the pair are on shell,
the matrix elements are real and are localized around the
classical trajectories. There is also a production region
of dimension Ax x At 2a x 2a . In this region
the nondiagonal matrix elements of the charge and cur-
rent are complex and oscillate. This reflects the highly
quantum nature of what is taking place in this region: a
vacuum fluctuation is being converted into a pair. The
complexity has a natural interpretation in the context
of the questions we ask about the pair (for instance, a
small modiGcation of the external electric Geld modifies
the probability of Gnding the pair only if the electric field
is difFerent where the charge and current are complex, i.e. ,
in the production region). These results are depicted in
Figs. 3(a)—3(e).

Some of the paper is concerned with technical matters

which rely on previously published material. To keep the
paper self-contained, relevant previous work is presented
in Sec. II and Appendix A. Section II contains a resume
of the mode decomposition in the presence of an E Geld,
Sec. III the description of particle production in terms of
wave packets, Sec. IV our most interesting new results,
an analysis of the current carried by a localized produced
pair given in terms of nondiagonal matrix elements. Ap-
pendixes A and B contain, respectively, a summary of
the weak value theory of Aharonov et al. and an analysis
of the Hadamard subtraction procedure adapted to the
present problem.

II. QUANTIZATION IN AN X FIELD

We summarize, in this section, quantization in the
presence of an E Geld. To facilitate the presentation we
Grst proceed formally by giving the mode decomposition
in the presence of an E field which is constant in both
space and time. The relevance of this idealization to
the case where the E Beld is switched on at some time
and whose efFects are investigated at some later time is
then discussed. It will then be seen that temporal efFects
arise through a proper mode counting procedure. For the
sake of clarity we shall develop the formalism by treat-
ing two difII'erent gauges which we shall call the x gauge
(Ao —— Ex, A =—0) and t gauge (Ao ——0, A = Et).
Wave packets are constructed in Sec. III and are gauge
independent up to an irrelevant phase factor.

We shall work with the simplest example, a complex
scalar field in 1 + 1 dimensions. The Klein-Gordon (KG)
equation is

('D„17"+ m )P = 0,

where B@ ——0„+iA„where the electric charge e has
been englobed in the definition of A„.In the x gauge the
KG operator commutes with Oq and the modes are of the
form

y (t, x) = Ce' 'y (x) = Ce' 'y(x —(u/E),

where C is chosen to norm p to unit charge
(~ IdxlCI'[~.*(&o~-) —(&o~.*)v-l = 1) ~-(x) obeys
the equation

a2
+ E (x —~/E) y (x) = m y (x). (3)

I&l'+ ITI' = 1. (4)

Upon dividing by —2m one comes upon a Schrodinger
equation describing tunneling of a particie of mass m. in
an upside down oscillator potential centered at x = w/E
whose curvature is —E2/2m. The energy of the particle
is —m/2 so that its classical turning points are at (x-
w/E) = +a where a is the acceleration (= E/m) In.
this efFective Schrodinger problem an incoming particle
(in a wave packet) gives rise to re8ected and transmitted
waves of fm. ux B and T, respectively, and for unit incident
Aux we have the unitarity condition



QUANTUM SOURCE OF THE BACK REACTION ON A. . .

We record here the well-known result [ll]
—~m /2E

Since these two branches accelerate in opposite directions
we surmise that in the KG context they correspond to
particles of opposite charge and that the reflected and
incident wave have the same charge.

This identification is borne out by an analysis of the
motion of localized wave packets of the modes ip (t, x),
that is, linear combinations of the form f dw f(w-
uro) &p (t, x) (rather than the usual sum over energy eigen-
functions of the Schrodinger equation). This construc-
tion is carried out explicitly in Sec. III. For example, if
E points to the right and if an incoming packet from the
right carries unit positive charge one establishes that the
transmitted wave having an amplitude P carries a nega-
tive charge (with Hux ~P~ ) and the reHected wave with
amplitude n carries a positive charge (with Hux —

~n~ ).
Charge conservation yields.

l~i' —/0/' = 1

p "„'(x,t) = p'"*„(x, t)—,

(p "'(x, t) =- p'"*
p( —x, t).—

Since for each w the set y'"„and p'" is complete one

may express the p " 's as linear combinations of p'"'s.
One finds [10]

V'~, p
= oV'~, p + /3'p~, a~

out in+ in
p~, a = Pp~, p + et@~,a~

im/—4e wp, —/2
O.' = p in/2 —vr p,

I (1/2 + ip, 2)
(12)

Inserting Eq. (11) into the expansion

out out + boutt out+)O',„V'

reversed versions are clearly the right set and these are
given simply by

As explained in Refs. [10,11], the relation between
Eqs. (4) and (6) is established through the swap of inci-
dent and reflected waves necessitated by the movements
of the wave packets. Thus one obtains Eq. (6) from
Eq. (4) by dividing the latter by ~B~

2 with o. = 1/B,
P = T/R. In this way P is identified with the amplitude
for pair production.

The modes y (t, x) satisfying the above iiutial condi-
tions (incident Hux in the direction of E) provide basis
functions for the in-quantization scheme since they cor-
respond to the propagation of a single particle in the past
and a particle plus a pair in the future. Its parity conju-
gate obtained by (x —u/E) -+ —(x —w/E) then corre-
sponds to the presence of an antiparticle in the past, once
more yielding an additional pair in the future. Introduc-
ing labels p and a for particle (antiparticle) and following
the standard convention for Whittaker functions [15] we

thus have the in-basis functions

one finds the Bogoliubov transformation

out + in ~+ pinta —0! a
gout w gin ~w int (14)

As in Eq. (9) the operators a " and b " define the out
vacuum by

a "'io).„,= o, b "'io)„„,= o.

It follows from Eq. (14) that the in vacuum is a super-
position of out states given in terms of produced pairs:

~0);„= —exp — a"'tb —"'t
~0) „t. (i6)

The probability to And no out particles in the future
is then found to be [16]

F, (* t) = V' —,( t)
(7)

= exp —Qln(l+- ~P~ )

ITE= exp — ln(1+ ~P~ ), (17)

where p = m /2E The second-. quantized field is then
written, following the usual rules, as

& = ).(a'"V '.",„+b'"'V'",*.).

The operators a'" and 6'" defin the in vacuum by

a'"iO);„=O, b.'"iO);„=O.

Since the in-basis functions contain a particle plus a
pair in the future they are not useful to describe quan-
tization in terms of single quanta in the future (i.e. ,

those which would be registered in counters). Their time-

where IT is the volume of the spacetime box over which
E is nonvanishing. See the end of this section for the
proof and discussion of g = (2m) iLTQ.

We now sketch the corresponding analysis in the gauge
A = Et, Ao ——0. It is in this gauge that we have carried
out our computations. Here the modes are of the form
Cex™(y(t),where (y(t) obeys the same type of equation
as y (x). This is obtained by replacing x by t and w by k.
The term m y on the right-hand side (RHS) of Eq. (3)
becomes —m (~. Thus the eKective Schrodinger equa-
tion is the same but for the sign of the energy (+m/2
rather than —m/2). Tunneling does not exist in these
modes, rather it is replaced by back-scattering in time.
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A packet moving forward in time in the distant past gives
rise to a transmitted wave propagating forward in time
and a refIected wave moving backward in time. Follow
ing the analytic procedures of [15] one readily confirms
that the amplitude of this backward wave is equal to the
amplitude of the transmitted wave in the corresponding
tunneling problem. Furthermore, analysis of wave pack-
ets confirms one's expectations that the role of the trans-
mitted wave in x gauge is played by that of the refIected
wave in t gauge. Therefore up to a phase the coeKcients
o.'and P remain the same, and the whole previous analy-
sis of quantization in 2 gauge is applicable as such. One
simply changes to the basis functions e'" (q(t) which in
terms of 'Whit taker functions are

—vrp /4
pq"„(t, ) =, '"*D;„. i [

* i v 2E(t + k/E)].

With this choice of function and using the same definition
for the antiparticle functions and the out-basis functions
as in Eq. (7} and Eq. (10) the n and P coefficients are
equal in both gauges and given by Eq. (12). In this gauge
the sum P in Eq. (17), becomes the P& which will now
be shown to be equal to LTE/27r, as well.

Until now we have proceeded formally with E = const.
In consequence one has come upon the undetermined ex-
pressions g or g&. (Note that the coefficients n and P
are independent of the mode indices in these formal ex-
pressions. ) We also remark that in the formal method of
functional integration of Schwinger [16] one comes upon
a volume factor LT with I the length of the system over
which E is nonvanishing and T the duration of time from
switch on of E to the observation (which may or may not
correspond to the switch off of E)

The origin of a temporal description in this formal
mode analysis has been the source of some confusion to
several of our colleagues so we shall now dwell at length
on this point. We discuss the physics in the two difI'er-

ent gauges. Before the Geld is switched on, the vacuum
fIuctuations move to the left and to the right with equal
weight. After the field is turned on (say in the left di-
rection) a certain number of right- (left-) moving particle
(antiparticle) fluctuations reverse their direction (in the
sense of a wave packet) during time T. It is only the Ruc-
tuations in this class which result in particle production.
To make this point clear we note that we are working
in a specific frame: the field is produced by a pair of
condenser plates at rest, separated by a length L . The
coefficient P, which encodes pair production, arises froin
tunneling (in the x gauge) or back scattering (t gauge),
these phenomena occur only near turning points, and
the space position of these turning points are calculated
in this frame. Therefore it is necessary to qualify all
the formulas presented. so far since, as written, they are
valid only for E =- const. Clearly the modes we have
derived are good approximations to the physical modes
(i.e. , those that respond to a field switched on at time
zero by producing pairs in the interval T) provided they
have turning points well within the space-time volume:
0 & x & I and 0 & t & T. Quantitatively, "well within"

means removed from the edges by O(a ) since the pro-
duction event occurs on this scale. (This is also discussed
at the end of Appendix B.)

Thus the sums P or P& are evaluated by counting
the number of modes whose turning points lie within 0
x & I and 0 & t & T. One then gets an asymptotic
formula valid for L && a and T )) a . To count these
is an easy matter. In x gauge P =

2 f du and since
the turiiing points occur at xq ——~/E and 0 & xq & L
we have f du = EL so that P = ELT/2vr. Similarly
in t gauge one has P& ——

2 I dk = ELT/27r since the
interval of k for which there are turning points in the
interval 0 & t & T is —Et & A & 0.

More amusing is the following physical argument. Us-
ing classical mechanics to describe the trajectory of
the incoming wave packet, one has, in t gauge, p
mdx/d7 —A = mdx/d7 —Et where r is the proper
time. Since p is constant, the action being independent
of x, we have mdx/d7 —Et = k. The constant k is
thus identified with the velocity times the mass mdx/dr
when the field is turned on at t = 0. Turning points
(dx/dr = 0) which occur in the interval 0 & t & T thus
correspond to —ET & k & 0 as stated. In this variety of
ways one recovers Schwinger's formula [16] for the case
of 1+1 dimensions.

[An interesting aside is that this last counting pro-
cedure is precisely what one can use to get the axial
anomaly in 0+2 dimensions. Here one erst computes
the final velocity of the vacuum of fermions in 1+1 di-
mensions induced by an E field turned on during a time
T over a length L. Since this is jgpopigdx and poli
is the Minkowski analogue of p~ p2 one has by analytic
continuation the anomaly in the presence of a magnetic
field perpendicular to the (12) plane. ]

We note that our Bogoliubov coefricients may be unfa-
miliar to some readers in the sense that our asymptotic
waves are not plane waves, but rather accelerating waves.
This, however, is irrelevant for the definition of the Bo-
goliubov transformation. For our purposes the necessary
condition is the existence of in and out single-particle
asymptotic states defined in a gauge independent way
by constructing wave packets that carry unit charge of
a given sign in the asymptotic regions. The Bogoliubov
transformation. is the (unitary) mapping of one set into
the other.

Finally, it will have been noticed that we have used.
modes in the sense of broad wave packets, a time-honored
procedure in scattering theory. However, in the next sec-
tion, we shall be more precise and reformulate things
entirely in terms of well-localized packets.

III. WAVE PACKETS

In terms of the basis functions of Eq. (7) we make the
packet construction to describe an in-parti'cle

The wave packet is centered at x = xo and to ——kp/E
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[since rp'k"„(x,t) is a function of t+k/E, and the quadratic
potential of the Schrodinger problem is centered at t =
k/E] Without loss of generality we take a wave packet
centered at the origin, i.e. , xp = 0, kp = 0, and henceforth
we drop the indices xp, kp.

The notion of a minimal wave packet emerges from the
asymptotic behavior of the modes p&"„ast M +no where

)P
the WKB approximation prevails:

and V = ( i—~Bt + ty E)/~2 as explained in [17,11]
in physical terms. It is also this integral representation
which serves as a basic tool in revealing interesting prop-
erties of these functions. It now has the added luster
that the integral over k in Eq. (19) is Gaussian thereby
leading to a simple integral representation for Gaussian
packets which is nothing more than another Whittaker

in ikx iK(t+A /K) /2
t~ ~ tJ'zm yk e e

in e ikx iE(t+k/—E) /2 p ikx iE(t+k/E) /2
t ++oo

zm pA, o e e — e e )

(20)

where we have kept only the leading exponential behav-
ior of p and n, P are the Bogoliubov coefficients Eq. (12).
The analysis is greatly facilitated by taking f to be
Gaussian, whereupon in the asymptotic regions the
packet (always taking xo = 0 kp = 0) ls

dk
—k'/2~' '~»a(t+I /E')'/2

&at~/2 —(~+t) 2/2Z2
)

t=10a-I

5a-1

0

10a-1

I

-10a 1
T

581 0
T5a' I

x=10a

l~ l=0.05

lIIf l=o.85

l IIf l
= 0.05

lim
t—++an

—k /2cr
(

* ikx —iE(t+k/E) /2

~ ik~ iE(t+k/E)'/2)
—iRt /2 —(x—t) /2&

/3
iEt'/2 {~+t)'/2Z.'—

t=2a1—

-1a

0
l III l =0375

where

(I~' =] —+ —
I(02 E) o E)

-1-a

-1-28

l y l
= 0.025

I

81I

-a1
I

28 x=2a '

t=2a1—

xn l III l
= -t6

-1a

xnllIfl=-i
0

-a

-2a-1

X=28-28

FIG. 1. Representation by equally spaced contour lines
of the absolute value of wave packets ]Q„'"~ [Eq. (24) with
o' = cr;„]centered on the origin of space time. We have il-
lustrated ~@~"] (a) for m/a =- 1/4 as typical for m/a ( 1 and
(b) for m/a = 9 as typical for m, /a )) 1. In the latter case
the created antiparticle does not appear since its amplitude
is too small to see. (c) is a drawing of In]@„'"~for m/a = 9
which permits the display of the created antiparticle. In all
figures the length unit is the inverse acceleration a

As announced in Sec. II the wave packet g„'"in the
far past t —+ —oo carries only positive charge in a local-
ized region of space time (veriffed directly by acting on

++@'" with the charge operator i17o). In the distant future
t —+ +oo it carries positive and negative charge in dis-
tinct regions of space time with weights ]o.]

and ]P~
respectively.

The asymptotic width of the wave packets is given by
[Re(l/Z+)] ~/2. If Im(cr) g 0, then the two branches
of g„'"as t ++oo have -unequal widths. This im-
plies an asymmetric treatment of the particles and an-
tiparticles. As nothing warrants such partiality we take
Im(o) = 0. In this case the asymptotic width of the
wave packets is [Re(l/E+)] / = [Re(1/Z )]
[(E2 + o4)/E2o2]~~2 and is minimized by the choice

0 omit Em a corresponding to wave packets
of width [Re(1/Z2,.„)]~/2 = [2/E]~/2.

To illustrate these properties we have plotted in
Figs. 1(a)—1(c) and 2 the norm and the current carried by
localized wave packets. These figures are plots of an exact
solution of the wave Eq. (1) built as a Gaussian superpo-
sition of modes p&"„.We now construct this solution. To

'&P

this end we introduce an integral representation of the
Whittaker functions. It is given in terms of eigenfunc-
tions of the operator UV where U = (—~ic)t t~E)/~2—
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function. This we now display, where we work in the tem-
poral gauge and choose for simplicity units where E = l.
The integral representation of &p&" (x, t) we use is (with

p = m /2E in conventional units)

—mp, /4

pj,"z(x, t) =
i/4

e' D;p2 i/, [e
' v 2(t + k)]

t=i Oa
-1 p=+0.95

p= —0.25

p=—0,05

—mp, /4
ik~ i(k+t)'/2

(2) i/41 (1/2 —i/t )

X d
+oo

duev (1—i) (k+t) u —m /2 —i p, —1/2u
0

-1-5a—

-10a-1

I

-10a-1
I

-5a ' I

1
I

5a x=10a

p=+0, 05

p=+0.65

whereupon the Gaussian wave packet centered at tp = 0
and x0 ——0 is

FIG. 2. Representation by equally spaced contour lines of
the charge density p(t, x) carried by the wave packet drawn
in Fig. 1(a). The created antiparticle (on the left) carries
negative charge.

+oa
g„'"(x,t) = dk(27r) ' o. 'e " / p„'"„(x,t)

e
—~P /4 +~ e

—k2/rr2 +~ /' (k + t)2 u'l
+ (1 —i)(k+ t)u ——

(2) / F(1/2 —i)Lt ) v'2~tr p & 2 2 )
(i/2 iP it /2 ——(t+x) /2E z /4D ( ) (24)

where Z = (1/o —1), ( = (1 —iver )/(1+ io ), and z = —( (1 —i)(t + iver x)/(1 —io ) with IargZ
I
( vr/4 and

Iarg( I
( vr/2. We now present the demonstration of Eq. (24).

To prepare for the integral over k we first obtain a slightly more general integral representation of p&"„than Eq. (23)
by applying Cauchy's theorem to the contour (0, oo, ooe' 's", 0):

—
harp, /4

&~1(* ) =
i/4 ' D*'I"-i/2[e v2(t+"))

—mg /4
p

—ip +1/2 ikx i(k+t) /2

(2) '/4I'(1/2 —ip')
du e (1—i) (k+t) A~ —A u /2 —i p, —1/2 (25)

where IargA~ ( vr/4. A Gaussian wave packet centered on xp ——0, tp ——0 is

g„'"(x,t) =

A'u'
)(

2
duexp

~

ikx+i + (1 —i)(k+ t)%u-(. . (k+ t)'
2

—~p. /4
p

—ip +1/2
(2)"1'(1/2 —i~')

+~ —k /2' +~
x dk

v'2~o. p

—np, /4
p

—ip, +1/2 ~ it /2 —(t+~) /2Z

(2) i/4F (1/2 —ip2) Z o.

+DD
P2

i

eAu(1 i ) [t+i(t+x)—Z ] i IJ, —i/2—'2J (26)

where Z is defined previously. In order that the permu-
tation of the integrals carried out above be meaningful, A

21 2
must be taken such that Re% & 0 and Re(A i+', , ) & 0.
The integral over u in Eq. (26) is of the same form as
Eq. (25) and, therefore is a representation of a Whit-
taker function. Hy identification one obtains the second
line of Eq. (24).

We note that the asymptotic behavior discussed in
Eq. (21) and following can be recovered by using the ex-

@.(»t) = @, (—»t)
@„"'(x,t) = g„'"*(x, t), —

v/i "'(x, t) = g„'"*(—x, t). —(27)

I

act wave packets and the asymptotic expansion for Whit-
taker functions [15].

The three other interesting wave packets centered at
k = 0 and x = 0 are
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Since the Bogoliubov coeflicients Eq. (12) are indepen-
0

dent of k, the functions @'"~ l" l are related one to an-

other by the same Bogoliubov transformation. Note that
this simplification will not occur when considering wave
packets in the analogue black hole problem.

Of course the wave packets under gauge transforma-
tion simply diBer by the gauge phase e' . More inter-
esting is that for Gaussian packets the two constructions
run completely in parallel. Indeed, in the x gauge, one
obtains

+OC —cu /2'
@„""(x,t) = d(u &p'"„(x,t)

27I o'

—3vrp. /4
g1/2 —ip —'~ /2 —(g+ ) /2g

(2) i&4 Z+o
xe' ) D,„~i)2(z), (28)

where Z2+ ——(1/o + i), (+ ——(1+ io )/(1 —io. ), and
z = —(+(I+ i)(x —io t)/(1+ io. ) with IargZ+I ( ~/4
and Iarg(+

I

( vr/2. For minimal wave packets (o 2 = 1)
these two wave packets Eqs. (24) and (28) coincide up to
the gauge phase e' . Thus a minimal Gaussian packet
of k is equivalent to a minimal Gaussian packet of ~.

It is now clear that the probability to create a pair in the
mode @ is ~PI /Ial times the probability not to create
any pairs (= Inl ) in each of the other modes. (Sim-
ilarly the probability of creating n pairs in the mode i/)

is IPI"/Io. l"+ times the probability not to create any
pairs in each of the other modes. Summing over all num-
bers of pairs and over all modes one finds that the total
probability is 1 as it should be. ) The factorization of
the probabilities which we have just encountered follows
from neglecting interactions among pairs.

In order to introduce the concept of the current carried
by this particular pair Eq. (29) we consider the follow-
ing problem. Suppose that the electric field is slightly
modified E -+ E+bE(x, t) where bE(x, t) is a small and
slowly varying function thereby justifying a first-order
treatment. The probability of finding the pair described
in Eq. (29) is modified by bE. Since the coupling is
bS = f dt f dx J&bAd', the new probability is given by

= P@ 1+ dx dtbA" (x, t)

IV. THE CURRENT DUE TO A SINGLE PAIR x 2Im .„,(1„1.1J„(x,t) 10);„l. i(1„1Io);
(32)

In this section we shall consider the production of one
pair in the wave packet g introduced above. More pre-
cisely we consider the state

~1~1 ),„~= f dkf(k)az ~ f dk'f (k')bz~)t~O~, '(2g),

where we have fixed f to be f (k) = (2m) i~2o ie
as in Eq. (26). The probability to find this state starting
from 10);„is given by the overlap -i(lp1-1410)-

-i(1~1-10)'-
(33)

where we work in interaction representation. [More pre-
cisely the states 10);„andll„l) „iare given by Eqs. (9)
and (29); i.e. , they are defined by the modes in the un-
perturbed electric field E. The operator J„is J„(x,t) =
(i/2) [gV (x, t)17„$(x,t) + P(x, t)17„gt(x, t)], where P(x, t)
is given by Eq. (8) or (13), i.e. , once more in terms of the
modes in the presence of the unperturbed electric field. ]
It is thus the imaginary part of the Inatrix element

dk
I &(k) I'IP/~ I'

I

(30)

where we have used Eq. (16) and developed the exponen-
tial to first order in P/o. .

The second factor in Eq. (30) is the probability to cre-
ate no pairs in all modes including @

" [see Eq. (17)]. To
grasp the content of Eq. (30) it is useful to envisage that
the field P is quantized in terms of a complete orthogonal
set of localized wave packets labeled by i, one of which
(i = 0) is taken to be g. We then rewrite Eq. (30) so as
to isolate the contribution from the pair i = 0 which is
created &om all the other modes:

IPIPg ——
Q 0 5 1 h Qi+0

which controls the modification of the probability of find-

ing the pair (and not the mean current;„(01J„IO);„asin
the semiclassical back reaction).

This matrix element Eq. (33) will also come up when
considering the eH'ect of the current on an additional
system if one requires that the final state be Eq. (29).
It plays exactly the same role as the mean current
;„(01J~IO);„if no restriction is imposed on the final state
(as in the semiclassical treatinent [12]). This is readily
understood from the identity:

'-(oIJ Io)'- = ) -(Ol~)-i-i(~IJ 10)'-

= ) I'-( l~)-il'
I

"' " '"
I

(34)

where Im) „iconstitute a complete set of out states
one of which can be taken to be Eq. (29). Thus the
mean current is the sum of matrix elements of the form
Eq, (33) weighted by the probability of finding the fi-



BROUT, MASSAR, PARENTANI, POPESCU, AND SPINDEI.

nal state ~m)~„q. Therefore to first order the corre-
sponding weighted sum of back reactions induced by
~„&(m~J„~O);„/~„&(m~O);„is indeed given by the mean cur-
rent.

We anticipate subsequent developments and mention
that Eq. (34) can be greatly simplified for the ideal sit-
uation treated in this paper wherein interactions among
the pairs (or a pair with itself) has been neglected. Refer-
ring to Appendix B, upon difFerentiating Eq. (B18) one
finds

(OIJ„IO);„=I&l'): . V„'",&(z)~V V'.",&(z) (35)

a;„,= J„(z)D„„(z—z') J„(z'),
where D~„(z—z') is the photon propagator. Thus there

where we have used the result „q(0[J„~O);„=0 (see Ap-
pendix B). The sum on modes in Eq. (35) can also be
rewritten as a sum over a complete orthogonal set of
wave packets. Once more the sum is over the relevant
set, those which have turning points within LT. As we
shall see [cf. Eq. (41)], each term in the sum Eq. (35) is
the matrix element Eq. (33). The prefactor, [P~, is the
mean nuinber of pairs created in a given mode (indepen-
dent of the mode number). We emphasize that for our
noninteracting model Eqs. (34) and (35) say the same
thing. However most of the interesting quantum effects
present in each term on the right-hand side (RHS) of
Eq. (35) wash out in the sum. Indeed J„being Hermi-
tian, the sum of Eq. (35) is manifestly real whereas each
term on the RHS is complex. Moreover the mean cur-
rent is the sum of the currents carried by the produced
particles. It is therefore proportional to the number of
produced particles and grows linearly in time. The only
place where the detailed structure of the RHS is felt is in
edge effects where they have not had time to wash out.

A general analysis of matrix elements such as Eq. (33)
was carried out by Aharonov et al. [14] in the context
of measurement theory. For the sake of writing a self-
contained paper we give in Appendix A a brief review
of the theory of Aharonov et al. These authors showed
that matrix elements of the form Eq. (33) could be mea-
sured by certain weak measurements and in this context
are interpreted as the measured value of the current if
the final state is Eq. (29). The occurrence of the same
matrix elements in the modification of the probability
[Eq. (32)) and in measurement theory comes &om the uni-
versal character of the first-order perturbation in quan-
tum mechaiucs (Born term). Such nondiagonal matrix
elements [correctly normalized as in Eq. (33)] are called
weak values. The restriction to a particular outcome is
called postselection. We shall in the sequel conform to
this vocabulary.

However, as we have just shown, the physical signifi-
cance of these nondiagonal matrix elements goes beyond
their detectability through a measuring device external
to the system. They will indeed govern the modification
of multipair production due to current-current interac-
tions among the pairs produced. For example in lowest
order in the pair-pair interaction is

exists a matrix element „q{pair, pair'
~
II;„&

~
0);„which

contains a term proportional to

-~(p»rl J (*)IO)'-D -(z —z')-~(pair'I J-(z') IO)' (37)

- (1 1-l&'(z) &(z') IO)'-

o ~(41 IO)' .&,'"*(z)@~"*(*')

+GF(z, z'), (38)

where G~ is the familiar in-out propagator:

(014 t(z)&(z') lo)

Olo)

We pro ve Eq. (38) by availing ourselves of the identity

uP" 4""IO)-» = ., &a"'4"'IO)-~

——b(k —k')i0) „, (40)

which follows from the definition of the Bogoliubov trans-
formation Eq. (14) aI,

" = n*aP~* + Pbg and similarly
for b&" . Use of the definition of [1&1 ) „q,Eq. (29), to-
gether with (40) and P expanded in the in-basis gives the
required relation.

The first term of Eq. (38) refers to the postselected
pair with vP„'" and @'" being the associated particle and
antiparticle wave functions, respectively. The second
term is equal to the weak value of Pt(z)P(z') if the
postselected state is ~0) „q,i.e. , if no pairs are produced.

The second term is formally infinite, and therefore to

which indicates that the second pair lives in a reduced
E field owing to the counter electric Geld carried by the
former one, in the case where pair and pair' are here
taken nonoverlapping, and the second one is created in
the causal future of the first. More generally these matrix
elements enter into the perturbative S matrix at the tree
level. Thus, this is a part only of the more diKcult pro-
gram of treating the self-interaction among pairs. The
difhculty arises from the necessity of considering loops
in addition to trees. This is currently under study and
we intend to report on it in a forthcoming paper [18]. It
should be noted that the interaction written in Eq. (37)
has two physical effects: one will affect the production
acts localized within regions of O(a ) in space-time and
the other will be "Gnal state interactions" among the
pairs which have been created. It will be the job of the
S-matrix formulation to sort out these effects and to ex-
press the out states with the final state interactions in-
cluded. In the present paper we shall restrict ourselves
to a detailed analysis of the properties of the weak value
of J„without back reaction [Eq. (33)].

In preparation for the evaluation of Eq. (33) it is
fitting first to calculate matrix elements of Pt(z)P(z')
between states of interest. Matrix elements of opera-
tors constructed from bilinear forms of P such as the
current j~ or the energy momentum tensor may then
be obtained by differentiation and going to the coinci-
dence limit. In the present case me then first calculate
„&(1„1~Pt(z)P(z') ~0);„for which one finds the equality
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be handled carefully. Furthermore it is of interest in its
own right, in that is contains a physically meaningful
finite part. Therefore we have written an extensive Ap-
pendix (Appendix B) devoted to this point and in partic-
ular to how we adapt the Hadamard subtraction scheme
to our problem. We 6nd that upon renormalization the
current carried by the noise term vanishes (as it should:
if the postselected state is out vacuum, no one-mass shell
pairs are created and the current vanishes). Nevertheless
for other operators quadratic in P (the energy momen-
tum, etc.) it is nonvanishing.

We have in hand the relevant matrix element obtained
(after subtracting the noise) by operating on Eq. (38)
with B„asfollows

i~(*) =

(41)

Asymptotically j„(x)behaves as it should, classically. It
varushes in the past (since @'" and @'" being centered
on the past trajectories x = +t have no overlap for t ~
—oo). In the future it behaves as a classical pair, each
member of which carries unit charge. This is due to the
remarkable formula

lIm
t~+oo

1 gine@inc gout@out+ + youteqout (42)

obtainable &om the Bogoliubov transformation between
in and out modes Eq. (11) plus the fact that the overlap
of vP

"~ and vP
"t vanishes in the distant future.

Figures 3(a5—3(e) display the real and imaginary part
of j~(z) with the g's constructed from minimal wave
packets [Eq. (24) with o = 0;„].Unlike Figs. 1(a)—
1(c) and 2 there is now no advantage in displaying pic-
tures for m/a O(1) since the normalization factor in
Eq. (33) brings the produced current up to order of mag-
nitude unity (recall we are working with "conditional"
amplitudes). We have chosen m/a = S. The WKB ap-
proximation is then almost always valid, therefore the
tunneling interpretation de rigueur (as well as the whole
theoretical &amework). We now discuss some interesting
features of these drawings.

In Sec. III we constructed packets, say @'"(x), whose

branches are of fixed width [= (2/E)i~2] straddling the
corresponding classical trajectories. It may also be shown
that for m/a )) 1, in the tunneling region, lxl (a, the
tunneling bridge also has width O(E i~ ). This situa-
tion however changes radically when one studies products
such as g'"*(x)@'"*(x)or derivatives thereof such as in
j~(x). Here the bridge thickens in time to give a symmet-
ric space-time tunneling region of dimensions a x a
This is understood both physically and mathematically
as follows. Physically it has been explained in [10] that
one needs the space separation of a pair in a vacuum Quc-
tuation to be O(a ) in order for the negative electric
energy (= —Elb, xl) to overcome the rest mass threshold.
Alternatively the virtual particles must be accelerated
in a time interval At = O(a i) to pick up the energy

necessary to overcome the threshold. Mathematically,
the problem may be posed in either of the gauges dis-
cussed in this paper. In space gauge, tunneling is in the
region between turning points (]A+i = 2/a) whereas in
time gauge backscattering occurs during a time interval
lAtl = O(a ). We also may point out that when WKB
approximation applies to the tunneling region, there is
a Euclidean classical path x + (Imt) = a which is
used to get the tunneling action. Since this is the result
of a steepest descent calculation wherein a contour has
been distorted so as to give imaginary values of t, it is
not unexpected that as a function of x and Ret, the rele-
vant production region is spread throughout the circle of
radius a

It should be noted that the description of production in
terms of minimal packets is a very precise representation
of the physics in localized terms. This is because these
minimal packets serve as a starting point for the rigorous
construction of complete orthogonal basis functions for
the quantization of the field P(2:) [1S]. More precisely, by
complete set we mean the set necessary and suKcient to
describe the modes which lead to pair production in the
space-time region 'R, for which E is nonvanishing: —

2 &
x & + 2, 0 & t & T. As discussed in Sec. II, these are the
modes that scatter off potentials whose centers lie within
this region. Their number is ELT/2m. Since the minimal
wave packet has width E /' about the classical orbit in
space-time, we see that if the packets are separated one
from the other by O(E ~2), the number of them that can
be fitted into R is O(ELT). Thus with some tinkering
on their size and shape they will constitute a complete
set, in the above sense, and orthogonal because they are
nonoverlapping.

One then comes upon the physical picture of produc-
tion of quanta of minimal size O(E ~ ) where the pro-
duction zone is within a space-time cell of size O(a x
a i). For m/a )) 1, one may think of production as a
set of shots emerging from cells. The number of packets
which contribute to a given cell is [(a i xa i)/E] = m/a.
We have displayed in Figs. 3(a)—3(e) the production of a
single pair of these quanta.

Another noteworthy feature is the existence of oscilla-
tions in time that occur within the "circle" of production,
i.e., bounded by radius a wherein the particles are still
virtual. In Sec. I it was stated that we were getting "in-
side the golden rule, " and indeed this is what we are now
seeing inside the circle of production. To put these os-
cillations into evidence in this region it is most simple to
examine the modes in temporal gauge [Eq. (23)]. The
function D;~~ iy2[e

' ~2(t + k)] is the solution of

[8, + (Et+ k) + m ]D,„2,)2[e
' v2(t+ k)] = 0,

(43)

whereupon it is seen that for small t (ltl (( m/E = a )
the modes oscillate with &equency uzi, = v k2 + m2. For
t & a i, one sees &om Eq. (43) that the &equency
of oscillation is still bounded by O(m). These oscilla-
tions of the modes are reBected in the oscillation of j„
formed from wave packets. For x = 0 the frequency is
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FIG. 3. Plots of the charge and current
due to a pair created in a minimal wave
packet for m/a = 9: (a) is Re[p(t, x)]; (b) is
Im[p(t, x)]; (c) is Re[j(t, x)]; (d) is Im[j(t, x)].
These four plots do not describe the true
amplitude of the oscillations. Rather, black
and white simply designate the signals while

gray shows the transition between them.
The gray background means zero. (e) is
a "three-dimensional" version of (a) which
gives an idea of the amplitude of the charge
oscillations. Note the nonlinearity of the ver-
tical scale. As mentioned in the text the vari-
ation of the amplitude as a function of 2: and
t is very large. It is seen upon inspection of
(a)—(d) that the region of production is con-
6ned to the expected circular cell of radius

O(a ). Outside this region Re[j„(t,x)] is
due to particles moving in classical orbits and
Im[j„(t,x)] 0. Within the tunneling region
Im[j„(t,x)] is of the same order of magnitude
as Re[jg(tp x)] and both oscillate.
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FIG. 4. The real part of the charge density p(t, z) due to
a created pair in a Gaussian wave packet with m/a = 9,
o' = ~2o;„is plotted using the same conventions as in Fig. 3.
Compared to it the amplitude and frequency of the oscilla-
tions have decreased.

FIG. 5. A picture of the real part of the electric field ob-
tained by integrating Gauss's law V' E = p when the charge
density is that of the pair drawn in Fig. 3(a). The electric
6eld oscillates in the region where the pair is created whereas
for late times when the particles are on mass shell the back
reaction electric 6eld becomes constant between the particles.

then rn/(7rv I + o'4) obtainable from Eq. (24). In Fig. 4
we have plotted Re[p] for cr = v 2 whereupon one sees
the corresponding decrease in the &equency. The pic-
ture emerges, then, that near the origin the modes are
those of &ee particles, plane wave of momentum k. The
pair creation begins as a vacuum fluctuation of &ee par-
ticles which subsequently upon separation is converted
into a real pair. The oscillations are thus the manifes-
tation of the "time-energy" uncertainty relation {in the
sense of Fourier transform) during the phenomenon of
creation. They disappear upon completion of the cre-
ation act. It is remarkable that the quantum number k
gradually changes its signi6cance &om a momentum to
the time which dates the origin of the creation of the
given pair.

We call attention to the asymmetry in space and time
even though the production region is symmetric. The un-
certainty principle implies oscillations in time and not in
space, in preparation for particles which propagate casu-
ally along the forward light cone. We also mention that
the amplitude of these oscillations varies in space-time,
approximately according to the law exp[E(a t2 —x2)]. —
This extreme sensitivity to the wave packet construction
will probably be washed out in most physical applica-
tions. For instance in Eq. (32) if hE is a constant inde-
pendent of z, t the result (P@+s@—P@)/P~ 8rbE/a
is obtained directly from Eq. (30) and is not exponen-
tially large. Another case where this occurs is in the
mean Eq. (35): J~ being Hermitian, the sum in Eq. (35)
is manifestly real and the imaginary piece arising in the
production region of each pair cancels out in the sum.
Moreover the piece of Eq. (35) which grows linearly in
time is due to the asymptotic current arising &om each
pair, obtained from Eq. (42). So only at the edges of the
interval 0 & t & T and of the box 0 & x & L does the
detailed structure of the RHS of Eq. (35) manifest itself.

In this paper we have given a description of the source

which is responsible for the back reaction at the tree level
upon postselecting a particular outcome. It oscillates,
it is complex, and outside the production region one' s
classical expectations are satisfied. In Fig. 5 we have
integrated Gauss's law V'. E = Rep to get the weak value
of the electric field (now treated as an operator) due to
the postselected pair.

Inspired by the present work, we have carried out in
[20,21] an analysis of the individual emission events which
give rise to Hawking radiation. The result is given in
terms of nondiagonal matrix elements of T„.In re-
sponse to these complex energy-momentum tensors the
back reaction to Hawking radiation will display very spe-
cific quantum effects encoded in the wave function of the
metric. What the incidence of this will be on the unitary
issue remains to be seen.

APPENDIX A: POSTSELECTION AND W'EAK
MEASUREMENT

For the sake of writing a self contained paper we
give a brief review of the postselection weak measure-
ment formalism of Aharonov et al. (This formalism has
been slightly generalized in [21] to include incomplete
postselections —a necessary development in the black
hole case owing to the inaccessibility of the region beyond
the horizon —and a more quantum mechanical treatment
of postselection. ) In quantum mechanics one usually
starts with an ensemble of identically prepared systems,
subjects them to different experiments, and analyzes the
probability distribution of the results. In such a situa-
tion one deals with a "preselected" ensemble: the prepa-
ration of the ensemble took place before the experiments
to which it was subjected. A "pre- and postselected"
ensemble involves a supplementary step, a Anal measure-
ment. According to the result of this Gnal measurement
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II;„,= b(t —t, )Ap,

where A is a variable of the system and p is the canonical
momentum of the test particle, conjugate to a position
variable q. The above interaction Hamiltonian is the one
used by von Neumann to model the standard measure-
ment of A. Indeed, during the interaction the effect of
Ho, the proper Hamiltonian of the system can be ne-
glected and thc time cvolutlon ls

U(tp + e, tp —e)' —iH; t (t) dt
—imp

the original ensemble is split into subensembles; each of
these subensembles is called a pre- and postselected en-
semble. In each of these subensembles the distribution
of the results of the intermediate measurements is difer-
ent from that in the original, preselected only, ensemble,
and depends on both the pre- and postselections. As
shown in [14J the analysis of these distributions reveals
both surprising physical eÃects and interesting features
of quantum mechanics.

The most surprising CKects occur when, between the
pre- and postselections, the system interacts only weakly
with test particles. Consider the following scenario in
which a variable A is "weakly" measured. A system pre-
pared at time ti in the state i/i) evolves according to
a Hamiltonian Ho until a time to when it interacts with
a test particle (which can be viewed as the pointer of a
measuring device). The interaction Hamiltonian is

in a superposition of eigenstates of A, say P, c;lA = a, ),
the system will get correlated with the pointer

v(t, +., t, —.) ) c, lA = a') Iq = o)

= ) c, lA = a, )lq = a, ). (A4)

When "reading" the pointer we obtain diAercnt values
q = a, with probability lc;l, as prescribed by the postu-
lates of quantum mechanics.

Suppose, however, as opposed to von Neumann, that
the initial position of the pointer is not accurately
defined; say it is represented by a broad Gaussian
exp( —q /A ). As a result the measurement is imprecise
(even if one reads very precisely the 6nal position of the
pointer, one still does not know how much the pointer
moved, as one does not know its initial position exactly).
On the other hand the system. is only slightly disturbed
by the measurement. Indeed, the effective magnitude of
the interaction depends on the values of p in Eq. (A2),
which in this case are essentially bounded by 1/4, sup-
posed to be small. Alternatively H;„tmay be multiplied
by a small coupling constant. After this "weak measure-
ment" the system evolves again according to Ho until a
Final time t2 when a final measurement takes place and
the system is found to be in a state i/2). What is the
final state of the measuring device corresponding to this
sequence of events? Putting all this together we get

If the state of the system at to —e is an eigenstate of
A, say lA = a), and the iiiitial position of the pointer
precisely defined, say in the state lq = 0), the effect of
the interaction would be

U(to+ e t. —e) IA = a) lq = o) = IA = a) lq = a) (»)
that is, the pointer is moved &om q = 0 to q = a, showing
the value of A. Furthermore, if at to —e the system is

efl„=(y, lV(t„t.+.)e-*"~v(t.—., t, )lq, )e-"~ ',

(A5)

where 4g„is the final state of the pointer, and we have
supposed for simplicity that the mass of the pointer is
so large that its evolution under its own unperturbed
Hamiltonian is negligible. Since 4 is large we can use a
first-order approximation to obtain

C'fl —(q2 l
U(t2, tp + e) (1 —iAp) U(to —e, t] ) l q] ) e

= (~2lv(t2, to + e) U(to —e, ti) i/i) (1 —iA p) e ' ~~,

(@2lv(tg, tp + e)AU(to —e, ti) l@i)
(g.lv(t. , to+ e) U(to —e ti) lgi)

The important part here is that one has added an in-
crement to the detector wave function that owing to the
complexity of A, leads to unexpected phase-dependent
CKects. One may see this in a picturesque way by reex-
ponentiation to obtain

= (@2lv(t2, tp + e)U(to —e, ti) l@i)e
—(g —A ) /A
—(~—a.ex } (A8

-~(@2IA(to) l&i)'-A tp
out 2 1 in

(A9)

where A (tp) is the Heisenberg operator A evaluated at
time tp and where i/i);„and l@2) „trepresent incoming
and outgoing states, respectively.

bringing into view the real and imaginary parts of A
Therefore the test particle, which weakly interacted with
the pre- and postselected systems, behaves as if the vari-
able A of the system has the complex value A . The
real paI't of A causes a shift ln the posltloI1 of thc test
particle while the imaginary part of A produces a shift
ln its momentuIIl.

The above discussion was done in Schrodinger repre-
sentation. In Heisenberg representation A becomes
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APPENDIX B: HADAMARD'S SUBTRACTION (B4)

In order to compute Gnite quantities quadratic in the
field it is necessary to regularize the matrix elements of
Pt(xp)P(xp). The regularization scheme we adopt is to
subtract the Hadamard function; i.e. , we subtract the
solution of the Geld equations that most resembles the
Minkowskian propagator in the neighborhood of a point
xp [22,23]. The subtraction is universal insofar as it is
independent of the matrix element to be calculated (it
is constructed using only the Geld and its derivatives at
xp). To express this universality of the subtraction we
introduce the following expression for the renormalized
product of two Geld operators:

where H„2(z) (with p2 = m/2a) is a solution of

( d' d z
+ —+ —+ 2p'

~

»»„.(z) = O,
i dz' dz 16 )

and, therefore, of the form

(I . , ZX~
+6M —+ ip, l, i

(B5)

(B6)

where GH(x, xp) is the Hadamard function, and it is un-
derstood that the limit x —+ xo is to be taken at the end
of any computation. I is the identity matrix in Hilbert
space so that the Hadamard function cancels in the dif-
ference of matrix elements discussed in Sec. IV.

Upon renormalizing according to Eq. (Bl) the matrix
elements appearing in Sec. IV always contain a Gnite term
plus a noise term equal to G~(x, xp) —G~(x, xp) (where
G~ is the in-out propagator). In Sec. IV the finite term
was discussed at length. In this appendix we consider
the noise term. To this end we Grst obtain closed forms
for GH and G.

To construct the Hadamard function it is of conceptual
interest to carry through the calculation for a general
space-time varying electromagnetic Geld I'„.The in-
formed reader will then recognize the more familiar anal-
ogous construction used in the presence of gravity. One
first chooses a gauge such that the wave equation coin-
cides at xo with the free Geld equation, i.e. , by taking
A~ (xp ) = 0 and 8&A~ (x) = 0; in addition one requires
that the derivatives of A~ at xo depend only on E~ and
its derivatives at xp (this choice of gauge Poincare s

gauge —is the analogue of the Riemann normal coordi-
nates in curved space-time). Explicitly this is obtained
by taking

t(x- —x, )» „(x~+t(x~—x~))dt. (B2)

(For a constant electric field this gauge is Ap = Ex/2, —
A = Et/2. ) The Hadamard function is then fixed by
requiring that its short distance behavior in this gauge
be that of a free Geld

v'mzW
GH (x, xp) = ln

&~p 2m ( 2

where A = (t —tp) 2 —(x —xp)2.
The Hadamard function can be expressed for Gnite A

a = — I" —+i@
2'7r ( 2 )

i
b = —1np ———@ —+ i@2

2~ 2 (2 )
(B7)

A closed form for the in out propagator can be
obtained from its representation as an integral over
Schwinger fifth time derived in Refs. [16,9,10]. The equiv-
alence of this representation with the sum over modes
given at the end of this appendix has been proven in [24].
Using formula [lIV.8] of Ref. [25] it is straightforward to
verify that, in the gauge Eq. (B2),

(B8)

tA'e are now in a position to discuss the physical content
of the noise term. The charge and current carried by
this term are zero as is seen by acting on G~(x, xp)—
G~(x, xp) with the differential operator i(17„,—17* ).
For short distances we have, in Poincare's gauge,

G~(x, xp) —GIr = 'bexp[ —iE(xt —x—ptp)/2]
A —+0 (1,1 .Ex

x 1+ —+i@ i +O(A )
I 2 2

(Blo)

As the charge and the current are obtained &om the ac-
tion of a Grst-order differential operator, only the Grst
phase factor of this expression will contribute in the co-
incidence limit and we obtain

where U and M are conHuent hypergeometric functions
(Kummers' functions). In order to satisfy condition
Eq. (B3) the constants a and 6 have to be equal to
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Pin, out = lim i[(Bq, —iExp/2) —(Bq —iEx/2)]exp[ —iE(xt —xptp)/2]
(t,x)m(to io)

=0,
)in, out lim i[(B, + iEtp/2) —(B —iEt/2)]exp[ —iE(xt —xptp)/2]

(t,x)m(to, xo)

= 0. (811)

These results can also be obtained by calculating the current carried by the in-out propagator when it is expressed as
a sum over modes whereupon it is seen to vanish identically. As this confirms that the noise term in Eq. (38) vanishes
when considering the charge we now give this alternative proof.

The vanishing of the charge is most conveniently exhibited by working in temporal gauge wherein it occurs mode
by mode. Explicitly using the first equality of Eq. (B18) one obtains

++ ++
&',o &(k) = 'pp, r (* t)('+p)V'I, i (x t) + &,k(x t)('+p) &,k(x t)

++ ++= e*"*y*( t —k)—(iB,)e *"*y*(t+A:) + e '"*y*(—t —k)(—iB,)e*" y*(t+ k)
=0) (B12)

where in passing from the first to the second line we have
expressed all the inodes in terms of y(t+ k) as in Eqs. (7)
and (10). To exhibit the vanishing of j it is convenient
to pass to the spatial gauge whereupon j vanishes mode
by mode for the particles and antiparticles separately,

dE Inl.„,&olo)

O'A„
dx dt "2Im

OE
-.(oIJ.lo)'-

out(olo)ln

= e' 'y* (x —(u) (iB )e * 'y* (x —~)

=0,

d

dE »(1+ IPI')

(1+ lel ) E
~ (1+ IBI

since the second line is the Wronskian of two identical
functions and thus is zero.

Another interesting property of the noise term to cal-
culate is the expectation value of Pt (xp) P(xp) [i.e. , the co-
incidence point of G~(x, xp) —GH (x, xp)] since the imag-
inary part of G~(xp, xp) is related to the rate I of pair
creation per unit time and unit length by

dm (Gp (x, x)) (B14)

(where LT is the space-time dimension of the region
wherein E g 0). It is therefore a natural propriety of
the formalism (easily verified &om the explicit expression
for G~) that in the coincidence limit the imaginary part
of Gy (xp, xp) is unchanged by the renormalization. The
real part of G~(xp xp) —G~(xp xp) is related in a similar
manner to the renormalized energy of the vacuum.

We have just shown in Eq. (Bll) that the current den-
sity „q(olJ„lo);„vanisheswithin the box LT, wherein E
is constant. Nevertheless there exist residual edge effects
which can be seen by direct difFerentiation of the in-out
matrix element of e' where S is the action. For exam-
ple the Schwinger formula, Eq. (17), gives the imaginary
part of this quantity. Indeed difFerentiation of this latter
with respect to E gives

(B15)

I'TL = Im d x) d~' I&l', ~;",~(x)&,'",i(x) .

(B16)

This last equality is obtained by first expressing G~ as

- (ol&'( )&(*')lo)*--.(oIo)'-
p +out+&nt pout in* I out 0 k @I 0 in-.(oIo)'-

(B17)

This looks like a volume term, but it is due to the ac-
cumulation of surface effects related to the behavior of
modes (or packets) near the surface. (We note that the
same type of accumulation of surface effects occurs within
the radiation emitted by an accelerated box (Unruh ef-
fect), see [21].) For example in the gauge Ap —— Ex, —
there is a contribution from Jp(x) equal to Jp(x)x. At
the edge x = L, this contributes a term proportional toI for all t hence a term proportional to LT in the above.

It is instructive to rewrite Eq. (B14) as a sum over the
members of a complete set of modes.
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expressing aI,
" in terms of a&" and 6&"t yields

G~(x *') = ):—~:",~(x)~'.",k(x')

(Ol@'(x)y(x') IO)

2
+OO

I'TL =Im d x dm
2

(BI9)

+ ).—
V „'",k(x) V '.",~(*')

k

(BIS)

where;„(0[pt(x)P(x')[0);„=g& y'"&(x)p' &(x') is the
propagator in in vacuum. In the coincidence point as
limit the propagator is real and does not contribute to
Eq. (B16). One may then rewrite Eq. (B16)as a sum over
a complete orthogonal set of localized wave packets [g
and @„,labeled by i—see the discussion after Eq. (30)]

The probability of not creating pairs is expressed as
the sum over all possible pairs of the imaginary part ofjdm PtP if that pair was created [i.e. , the same term as
Eq. (41) times the mean number of pairs (= [P[ )]. Since
for a fixed pair the imaginary part of @,'"*g,'"„*is localized
within the corresponding cell, the volume dependence is
as a sum over all cells times the probability that a pair
be created in that cell, thereby giving a local meaning to
the Schwinger formula.
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