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Hilbert space representation of the ~initial length uncertainty relation
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The existence of a minimal observable length has long been suggested in quantum gravity as mell
as in string theory. In this context a generalized uncertainty relation has been derived which quantum
theoretically describes the minimal length as a minimal uncertainty in position measurements. Here
we study in full detail the quantum-mechanical structure vrhich underlies this uncertainty relation.

PACS number(s): 03.65.Bz

I. INTRODU CTION

One of the major problems in quantuxn gravity is that
the introduction of gravity into quantum field theories
appears to spoil their renormalizability. On the other
hand it has long been suggested that gravity itself should
lead to an effective cuto8' in the ultraviolet, i.e., to a min-
imal observable length. The argument is based on the ex-
pectation that the high energies used in trying to resolve
small distances will eventually significantly disturb the
spacetime structure by their gravitational e8'ects. While
conventional spacetime locality seems to be probed down
to scales of about 1 TeV [1] it is quite clear that this
type of eKect ought to occur at least at energy scales as
large as the Planck scale. If indeed gravity induces a
lower bound to the possible resolution of distances, grav-
ity could in fact be expected to regularize quantum Geld
theories rather than rendering them nonrenormalizable.
It is a natural, though nontrivial, assumption that a min-
imal length should quantum theoretically be described as
a nonzero minimal uncertainty Lxo in position measure-
ments. String-theoretic arguments also lead to a minimal
length e8'ectively of the form of a minimal position un-
certainty. See, e.g. , [2—7] and for a recent survey [8].

The purpose of this paper is to develop a general-
ized quantum theoretical framework which implements
the appearance of a nonzero minimal uncertainty in po-
sitions. We will here confine ourselves to exploring the
implications of such a minimal uncertainty in the context
of nonrelativistic quantum mechanics. A further paper
extending the framework to Geld theory is in preparation.

Our analysis is motivated by the results of [9—12] where
the more general case, which includes nonzero minimal
uncertainties in momenta as well as position, was con-
sidered. This general case is far more dificult to handle,
since (as we will explain) neither a pnsitinn nor a mo-
mentum space representation is viable. Instead one has
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to resort to a generalized Bargmann-Fock space represen-
tation. The construction of generalized Bargmann-Fock
Hilbert spaces was realized by making use of algebraic
techniques developed in the Geld of quantum groups;
for a comparison see, e.g. , [13—17]. However, using the
discrete Bargmann-Fock basis, actual calculations typi-
cally involve Gnite difference equations and inGnite sums
rather than differential equations and integrals. For these
technical reasons it has so far only in examples been pos-
sible to prove, e.g. , that ultraviolet divergences may be
regulated using this approach. In the present paper we
consider only the case of minimal uncertainty in position,
taking the minimal uncertainty in momentum to vanish.
This case is of interest because there still exists a contin-
uous momentum space representation. Hence it allows us
to explore the physical implications of a minimal length
in a manner that is technically much easier to handle
than the general case.

In one dimension the simplest generalized uncertainty
relation which implies the appearance of a nonzero min-
imal uncertainty Axo in position has the form

AxAp ) —[1+P(Ap)'+ y),2

where P and p are positive and independent of Ax and
Ap (but may in general depend on the expectation values
of x and p). The curve of minimal uncertainty is illus-
trated in Fig. 1. While in ordinary quantum mechanics
Lx can be made arbitrarily small by letting Ap grow
correspondingly, this is nn lnnger the case if (1) holds. If
for decreasing Ax, Ap increases, the new term P(&p)
on the right-hand side (RHS) of (1) will eventually grow
faster than the left-hand side (I.HS). Hence Ax can no
longer be made arbitrarily small.

This type of generalized uncertainty relation has ap-
peared in the context of quantum gravity and string the-
ory (see, e.g. , [7 ) and independently from formal consid-
erations in Ref. 11]. It allows one to express the (nontriv-
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A. Representation theoretic consequences
of the uncertainty relations

I

hxo

allowed region

In ordinary quantum mechanics x: and p could, e.g. ,
be represented as multiplication or differentiation oper-
ators acting on square integrable position or momentum
space wave functions g(x):= (xl@) or g(p):= (pl@),
where the Ix) and lp) are position and momentum "eigen-
states. " Strictly speaking the Ix) and lp) are not phys-
ical states since they are not normalizable and thus not
in the Hilbert space. However, the operators w and p
are essentially self-adjoint and the "eigenstates" can be
approximated to arbitrary precision by sequences lg ) of
physical states of increasing localization in position or
momentum space:

FIG. 1. Modi6ed uncertainty relation, implying a "minimal
length" Axo ) 0. or

lim Axle )
——0

lim Lp~g )
——0.

ial) idea that a minimal length should quantum theoret-
ically be described as a minimal uncertainty in position
measurements.

More generally, the relation

AxAp & —[1+n(Ax)'+ P(Ap)'+ q]2
(2)

leads to a nonzero minimal uncertainty in both position
Lxo and momentum Lpo for o. ) 0.

Now in general it is known that for any pair of observ-
ables A, B which are represented as symmetric operators
on a domain of A and B the uncertainty relation

Dacha & —I([A, B])
I

will hold. In particular, we see that commutation rela-
tions of the form

[x, p] = ih(1+ nx + Pp ) (4)

underly the uncertainty relation (2) with p = n(x) +
P(p)'.

III. HILBERT SPACE REPRESENTATION

We will now construct a Hilbert space representation
of such a commutation relation. Let us clarify that we
generally require physical states not only to be normal-
izable, but to also have well-defined expectation values
of position and momentum and also well-defined uncer-
tainties in these quantities. It is important to note that
this implies that physical states always lie in the com-
mon domain D 2 g ~2 where the operators x:, p, w, p
are symmetric. On D „2 P z2 the uncertainty relation
holds &om which we can already conclude that physical
states are constrained to the "allowed" region of Fig. jI..
Actually we can further derive &om the uncertainty rela-
tion a severe contraint on the possible Ansatze for Hilbert
space representations.

As has been pointed out in [11,12] this situation changes
drastically with the introduction of minimal uncertaili-
ties Axo ) 0 and/or App ) 0. For example a nonzero
minimal uncertainty in position,

(&x)~y& = (@l(x —8 lxl&))'I&) ~ »o & I&) (5)

implies that there cannot be any physical state which is
a position eigenstate since an eigenstate would of course
have zero uncertainty in position.

Of course this does not exclude the existence of un-
physical, "formal position eigenvectors" which lie in the
domain of w alone but not in D~ ~2 p P2 As we will see,
such formal x eigenvectors do exist and are of infinite
energy. Most importantly, however, unlike in ordinary
quantum mechanics, it is no longer possible to approxi-
mate formal eigenvectors through a sequence of physical
states of uncertainty in positions decreasing to zero. This
is because now all physical states have at least a finite
minimal uncertainty in position.

Technically, as we will see, a minimal uncertainty in
position will mean that the position operator is no longer
essentially self-adjoint but only symmetric. While the
preservation of the symmetry ensures that all expectation
values are real, giving up self-adjointness opens the way
for the introduction of minimal uncertainties.

However, since there are then no more position eigen-
states Ix) in the representation of the Heisenberg algebra,
the Heisenberg algebra will no longer find a Hilbert space
representation on position wave functions (xlvP). Simi-
larly a minimal uncertainty in momentum also abandons
momentum space wave functions. In this general case we
therefore resorted to a generalized Bargmann-Fock rep-
resentation [11,12].

Here we will restrict ourselves to the case o. = 0 where
there is no minimal uncertainty in momentum. This al-
lows us to work with the convenient representation of the
commutation relations on momentum space wave func-
tions.

As we will. see, the states of maximal localization will
be proper physical states. We can use them to define a
"quasiposition" representation. This representation has
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a direct interpretation in terms of position measurements,
although it does not of course diagonalize x.

imp

,4*(p) h(1+ Pp')~ &(p)

B. Representation on momentum space

We consider the associative Heisenberg algebra gen-
erated by x and p obeying the commutation relation

[x, p] = ih(1 + Pp ) .

The corresponding uncertainty relation is

&*»& —,[1+p(»)'+ p(p)'],

with the curve on the boundary of the allowed region
being (see Fig. 1)

(a&~»= hp+ 1 hp
I -p-(P)

One reads oE the minimal position uncertainty

, 'h(1+Pp')~, M(p)I 0(p) (»)~

~

1 + p2

Thereby the (1 + Pp ) factor of the measure on mo-
mentum space is needed to cancel a corresponding factor
of the operator representation of x.

The identity operator can thus be expanded as

lip

and the scalar product of momentum eigenstates is there-
fore

(pip') = (1+pp')~(p p')-
While the momentum operator still is essentially self-
adjoint, the functional analysis of the position operator,
as expected &om the appearance of the minimal uncer-
tainty in positions, changes.

»--((p)) = hv Pv'1+ P(p)'

so that the absolutely smallest uncertainty in positions
has the value

C. Functional analysis of the position operator

The eigenvalue problem for the position operator takes,
on momentum space, the form of the differential equation

ax, = h~p. (10)
ih(l + Pp')O„vP), (p) = A@g(p).

There is no nonvanishing minimal uncertainty in momen-
tum. In fact the Heisenberg algebra can be represented
on momentum space wave functions tP(p):= (plvjj).

We let p and w act as operators,

p.@(p) = p4'(p),

«.@(p) = ih(l + pp')ot„g(p),

on the dense domain S of functions decaying faster
than any power. This representation is easily seen to re-
spect the commutation relation (6). Note that, although
the generalization for commutation relations af the type
[«, p) = ihf(p) seems obvious, such generalizations are
representation-theoretically nontrivial, in particular if f
is not strictly positive. This will be studied elsewhere.

Further, w and p are symmetric on the domain S

(Hlp) I&) = (41(p14)) and ((@I«)14) = (@I («I&))

(i3)

but now with respect to the scalar product:

,0*(p)4(p).

It can be solved to obtain formal position eigenvectors:

A
Q~(p) = c exp

1

i arctan(~P—p) 1.
rh P

They are normalizable:

+OO

1 = cc" = cc*vr/~P.
1 +Pp2 (20)

Thus

A(p) = ~p exp
~

i aretaa(~—Pp)) .
vr i h P

L+; .. ' ——ker(«* ~ i) D -.

We know, however, &om the uncertainty relation that
these formal eigenvectors are not physical states. I et us
first proceed with a formal analysis.

We note that there is exactly one eigenvector to each
of the eigenvalues +i and that they are normalizable.
Technically this means the fallowing: The operator x.**

which is the bi-adjoint of the densely defined symmetric
operator x: is symmetric and closed and has nonempty
deficiency subspaces [11]:

The symmetry of p is obvious. The symmetry of x: can
be seen by performing a partial integration:

Here we used that x.*** = x' which holds since x* is
closed and defined on a dense domain. Prom the dimen-
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sionalities of these subspaces, i.e., since the deficiency in-
dices are (1,1), one concludes that the position operator is
no longer essentially self-adjoint but has a one-parameter
family of self-adjoint extensions instead.

This functional analytic structure had already been
found and studied in detail in [11]where the more general
case including also a minimal uncertainty in momentum
has been covered.

It is, however, one of the advantages of our special-
ization to the case without a minimal uncertainty in mo-
menta that we can now construct the one-parameter fam-
ily of diagonalizations of x: explicitly. To this end we
calculate the scalar product of the formal position eigen-
states ~g~) (see Fig. 2):

(0 I@ ) = f
x exp

~

i — arctan(~pp)
~

l( . (A —A')

2n~P
sin 7l

~(A —A') ( 2h~P
(23)

Note that this curve is the special case Dpo ——0 of the
general curve given as Fig. 2 in [11]. Here, however, we
were also able to calculate its analytic form.

The formal position eigenstates are generally no longer
orthogonal. From (23) we can now, however, directly
read off the one-parameter family of diagonalizations of
x. The sets of eigenvectors parametrized by A 6 [

—1, 1[,

(@g~p /2m~@p) = divergent. (26)

This is in fact also the case for the position eigenvec-
tors of ordinary quantum mechanics. However, since the
uncertainty relation holds on every domain of symmetric
operators x., w, p, p, we can in our generalized quantum
mechanics conclude a much stronger statement: Vectors
~Q) that have a well-defined uncertainty in position Ax~~)
which is inside the "forbidden gap"

0(ax~~) (ax,
cannot have finite energy.

Thus, unlike in ordinary quantum mechanics the for-
mal x. eigenvectors with their vanishing x uncertainty can
now no longer be approximated by a series of physical
states of finite energy where the uncertainty in positions
would decrease to zero. Instead there is now a finite limit
to the localizability.

IV. RECOVER.INC INFO%NATION
GN POSITION

this result such that we are now describing physics on
lattices in position space; for example, compare with the
approach in Refs. [14,15]. This is, however, not the case
since the formal position eigenvectors ~gg) are not phys-
ical states. This is because they are not in the domain
of p, which physically means that they have an infinite
uncertainty in momentum and in particular also infinite
energy:

(l@(2 +i)s~)l n & &)

consist of mutually orthogonal eigenvectors, since

(@(2.+i)s~ I &(2. +i)s~) —~-,

(24)

It is not difficult to see that each set is also complete.
Each of these lattices of formal x eigenvectors has lattice
spacing 2h~P, which is also 2Axp.

Thus in fact there are diagonalizations of the position
operator. One might therefore be tempted to interpret

Generally in quantum mechanics all information on po-
sition is encoded in the matrix elements of the position
operator. Matrix elements can of course be calculated in
any basis, e.g. , also in the momentum eigenbasis. We now
no longer have any position eigenbasis of physical states
~z) whose matrix elements (z~vP) would have the usual
direct physical interpretation about positions. Neverthe-
less, all information on position is of course still accessi-
ble. To this end let us study the states which realize the
maximally allowed localization.

. 6

0 4 FIG. 2. Plotting (gq~(Qadi) over A —A' in
units of h~P = Ax().

0.2

-0.2
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A. Maximal localization states

(qML
I

IqML) (27)

Let us explicitly calculate the states I@&M ) of maximal
localization around a position (, i.e., states which have
the properties

I

x- (x)+ ', (p- (p)) I I&)
([x p])
2(»)' )

that (note that ([x,p]) is imaginary)

(29)

(yl(x —(x))' —
I

— '
I (p —(p))'I@) & o, (3o)

& l([x p]) I&

~ 2(»)' )
which immediately implies

(Ax) ~@M~) ——Exp. ~ ») l([x p])l (31)

We know that Exp is (p) dependent. Recall that the
absolutely smallest uncertainty can only be reached for

(p) = o.
Let us reconsider the (standard) derivation of the un-

certainty relation. For each state in the representation of
the Heisenberg algebra (actually we only need Ig) to be
in a domain where x, x, p, and p are symmetric) we
deduce Rom the positivity of the norm

It is therefore clear that a state Ig) will obey A2:» =
l([x, p])l/2; i.e. , it is on the boundary of the physically
allowed region only if it obeys

I

x —(x) + ~, (p —(p)) I I&) = o.([x p])
)

ln momentum space this takes the form of a difFerential
equation

I
'~(1+ pp')~, —( )+'~ ~, (p-(p)) I 4(p) = o. 1+P(»)'+ P(p)'

2»2
which can be solved to obtain

(33)

0(p) = ~(1+Pp')
+P(v& f x)4~(~»' exp

q ihip
[1+P(»)'+ P(p)'1(p) &

2(»)'WP

The states of absolutely maximal localization can only
be obtained for (p) = 0; see Eq. (9). We then choose the
critical momentum uncertainty» = 1/~P to get those
states which are at that point on the curve of the uncer-
tainty relation where the minimal position uncertainty is
reached. These states are

@Mi( ) ~(, p,), ,„(,. (") """(v&u)
~

(35)

2~/ 2 ~
r' .( arctan(QPp) )1+ p 2 exp

These states generalize the plane waves in momentum
space or Dirac b "functions" in position space which
would describe maximal localization in ordinary quan-
tum mechanics. Unlike the latter, the new maximal lo-
calization states are now proper physical states of finite
energy:

dp 2 7l

(1+Pp')' qML P yML
+OO

p
(1+Pp2)2 2m

yields their normalization factor ¹

Thus the momentum space wave functions g& (p)
of the states which are maximally localized [i.e. ,

(Ax) ~yML): Exp] around a position ( (i.e. ,

(yMLlxl@ML)

(38)

Because of the "fuzziness" of space, the maximal localiza-
tion states are in general no longer mutually orthogonal:

ML ML dp f (( —(') arctan(~pp) l
(1+PS')' & &V P

+m/2 g- 1 ( ( e
V@1 cos~ (p)

(39)

(40)

1 (
vr 2h~P

(g —(' . (( —('
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FIG. 3. Plotting &'g i "'iJ'~ ) «ver ( —(' in

units of hv(3 —-- A-o.

The poles of the erst factor are canceled by zeros of the
sine function. For the width of the main peak note that
this curve yields the overlap of two maximal localizatjon
states, each having a standard deviation Ax« (see Fig. 3).

The quaslposltlon wave function of a momentum elgen-
state Pp(p) =- b'(p —p), of energy E =- f)'/2m-, is still
a plane wave. Howcvcl ) foI' its wavclcngth we obtain a

diIII dd' p
' l. ti n

B. Transformation to quasipesitiun vrave functions

While in ordinary quantum mechanics it is often use-
ful to expaiid the states ~@) in the position "eigenbasis"

(~x)) as (x~g), there are now no physical states which
would. form a position eigenbasis. Although there is a
one parameter family of x. eigenbases, as a result of the
minimal uncertainty gap, neither of these bases consists
of physical states; furthermore, they could not even be
approximated. by physical states of increasing localiza-
tion.

However, we can still project arbitrary states ~P) on
maximally localized states ~g& ") to obtain the probabil-
ity amplitud. e for the particle being maximally localized
around the position (.

l,et us call the collection of these projections (g& "~P)
the state's "quasiposition wave function" P(():

The existence of a limit to the precision to which po-
sitions ran be resolved manifests itself in the fact that,
since the arctan is bounded, there is a nonzero minimal
wavelength. The Fourler dccomposltlon of the quaslpo-
sltloIl wave fuIlctloIl of physical states docs Ilot coIltalIl
wavelength components smaller than

Note that, in contrast with Ordinary quantum Inechanics,
SlIlCC

(
2+Ii) 1

In the limit P -+ 0 the ordinary position wave function
Pg') = ((~P) is recovered.

The transformation of a state's wave function in the
momentum representation into its quasiposition wave
function is of course

dp

(1 + Pp2) 3/2

i( arctan(~Pp)x exp
hvP

p .

quaslposltlon wave fUIlctlQIls caIl no longeI' have arbitrar-
ily Gne "ripples, " since the ellergy of the short-wavelength
Inodes diverges as the wavelength approaches the IIinite

value Ao.
The transforination (43) that maps momentum space

wave functions into quasiposition space wave functions
is the generalization of the Fourier transforrrlation and
is still invertible. Explicitly, the transformation of a
quasiposition wave functioIl into a mQInentum space wave
function is easily checked to be

+ac

&(p) =-
Qs~~pn

Compare also with the generalized Fourier transformation of the discretized quantum mechanics in I15,16L.
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C. Quasiposition representation

The Heisenberg algebra has a representation on the space of quasiposition wave functions which we now describe.
Using Eqs. (14) and (43) the scalar product of states in terms of the quasiposition wave functions can be written as

(410) =J, —,0'(u)0(u)

dp d( d(' exp i(( —(') -
~

v)*(()P((').

We see from (47) that the momentum operator is repre-
sented as

(49)

on the quasiposition wave functions. Prom the action of
x on momentum space wave functions and Eq. (47) we
derive its action on the quasiposition wave functions:

(50)

We pause to comment on some important features of
the quasiposition representation. We found that the po-
sition and momentum operators w, p can be expressed
in terms of the multiplication and differentiation oper-
ators (, —ih(9t which obey the commutation relations of
ordinary quantum mechanics. However, this does not
mean that we are still dealing with the same space of
physical states with the same properties as in ordinary
quantuin mechanics. The scalar product (49) of quasi-
position wave functions reduces to the ordinary scalar
product on position space only for P ~ 0. Recall also
that the quasiposition wave functions of physical states
Fourier decompose into wavelengths strictly larger than
a Gnite minimal wavelength. It is only on such physical
wave functions that the momentum operator is defined.
On general functions of ( the power series in the —ih(9t.

which forms the tangent would not be convergent. In ad-
dition the position operator is not diagonalizable in any
domain of the symmetric operators x. and p; in particu-
lar the quasiposition representation does not diagonalize
it. The main advantage of the quasiposition representa-
tion is that it has a direct physical interpretation. Recall
that @(()is the probability amplitude for finding the par-
ticle maximally localized around the position (, i.e. , with
standard deviation A+0.

I et us close with some general remarks on the existence
of transforrnations to ordinary quantum mechanics and
on the significance of the fact that those transformations
are noncanonical.

There are (in n & 1 dimensions) algebra homomor-
phisms from generalized Heisenberg algebras W gener-
ated by operators x, and p to the ordinary Heisenberg
algebra 'Ro generated by operators wo and po. In one
dimension w e have, e.g. , the algebra homomorphism
h: A M Rp which acts on the generators as 6:p M po,h: x ~ xo + Ppox()po. Such mappings 6 are of rep-

resentation theoretic interest since they induce to any
representation p of Ao a representation ph .——p & h of the
new Heisenberg algebra 'R.

Crucially however, all 6 are noncanonical. In fact,
since unitary transformations generally preserve the com-
mutation relations, no representation of W is unitarily
equivalent to any representation of 'R(). Therefore the
set of predictions, such as expectation values or transi-
tion amplitudes, of a system based on the new position
and momentum operators cannot be matched by the set
of predictions of any system that is based on position and
momentum operators obeying the ordinary commutation
relations.

V. RELEVANT EXAMPLE:
THE HARMONIC OSCILLATOR

We would like now to apply the formalism developed
thus far to the interesting case of a linear harmonic os-
cillator, deducing both the energy spectrum and the ex-
pression of the corresponding eigenfunctions. The com-
parison with the limiting case P = 0 will be particularly
interesting.

Prom the expression for the Hamiltonian

p 2 2~'
H = +me)

2m 2

and the representation for w and p in the p space reported
in Sec. III 8 we get the following form for the stationary
state Schrodinger equation:

= 0, (52)

where we have de6ned

2E
mA (mku) 2 '

and E is the energy.
The usual Schrodinger equation (P = 0) for the linear

harmonic oscillator only has one singularity at inanity,
which is not, however, of the Fuchsian kind [18]. In that
case the well-known procedure is to write the solution
as the product of a decreasing Gaussian factor and of a
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new function satisfying an equation, leading to Hermite
polynomials, where the quadratic term g2p is canceled in
the difFerential equation if the Gaussian factor is properly
chosen. From Eq. (52) we see that the introduction of
a finite value for P completely changes the singularity
structure in the complex plane. Three singular points are
now present: the usual point at infinity as well as p =
+i/~P T.hese are all regular since the coefficient of the
first derivative term only behaves as a simple pole in the
neighborhood of each singularity; the one in front of the
function itself contains only double poles. i Qualitatively
the presence of a minimal length softens the behavior of
the wave equation at very large momenta, transforming
the point at infinity into a Fuchsian singularity.

Equation (52) is a Riemann equation whose solution
is given in terms of hypergeometric functions, which can
always be expressed in terms of the Gauss hypergeomet-
ric series, up to some simple factors. In order to find the
explicit solution it is useful to introduce, as usual, a new
variable ( in terms of which the poles are shifted to the
reference values 0, 1, and oo:

d2@(() 2( —1 d@((') q+ r(1 —2g)2

dg2 ((( —1) dg (2 (g —1)2

with

(55)

q = e/4P, r = rl'/4P', (56)

whose solution is represented by the Riemann symbol

/' 0 1 oo
oi Pi Yl

ai ———gq+ ,ro2 ——gq+ r, (58)
Pi = —v'v+ r, P2 = v'q+ r

1 1
pi = —(1 —Ql + 16r), p2

———(1 + Ql + 16r).
2 2

From a straightforward computation one gets, for the
roots n;, P;, and p; [18]:

2+' 2"
Equation (52) then reads

(54)
The solution (57) is simply related to the solution of the
hypergeometric Gauss equation I' (a, b; c; z), for which
one of the roots for both the singularities at finite dis-
tance is zero:

(
P ~. ;0 = (-'(1 —C)' &

) (1—c c —a —b b )
= ( '(1 —()~'E(a, b;c;(), (59)

~here

1
a = pi —o.'i —Pi ———(1 —v 1+ 16r) —2/q+ r,

2
1

b = p2 —ni —P, = —(1+pl+ 16r) —2/q+ r,
2

c = 1 —2/q+r (60)

We therefore finally get, in terms of the real momentum
variable p, the general form for the solution of Eq. (52):

a= —n
1(«gq+r= —

~

n+ —
~2( 2)

1/«gq+r= —
~

n+ —
~2)

——Ql + 16r, (62)
4

1+ —gl + 16r. (63)

In both cases I" (u, b; c; z) becomes a polynomial of degree
n. However, if we choose a = —n, the wave function
would not have the correct behavior at infinity and, in
particular, will not belong to the domain of p . Prom
Eq. (62) one has in fact, for large p,

(1+Pp')&+" i ' ' '2 2 r
(61) . ~P )

vP(p) oc I'
~

n, b;c; —+ i p—~

Since we know that for P = 0 the eigenfunctions are
simply the product of a Gaussian factor with Hermite
polynomials, we uow look for the solutions for P g 0 in
the cases where the hypergeometric series F(a, b; c, z) re-
duces to a polynomial. This is known to occur whenever
a or 6 is a negative integer:

(+1+16@—1)/2

which diverges. Hence the condition 6 = —n yields the
energy spectrum and the corresponding proper eigen-
functions. In this case gq + r ) 0 for any n and for
large p the wave function behaves as

We recall that in order to study the singular point at infinity
one should rewrite the equation in terxns of the new variable
p' = ] /p, shifting the singularity to the origin.

(1+Pp')&+"

—(+1+16~+1)/2p )
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and so is normalizable with respect to the measure
dp/(1 + pp2). It also belongs to the domain of p2, as
it is immediately checked. Note that, for any fixed n,
the larger the value of r (i.e. , the smaller the value of P),
the more rapid the decay to zero of the wave function
at infinity. In particular in the limit P M 0, using (63),
we recover the usual Gaussian behavior of the harmonic
oscillator wave functions:

VI. GENERALIZATION TO n DIMENSIONS

We now turn to extending the formalism developed in
the previous sections to n spatial dimensions. Our aim
is to study an n-dimensional generalization of the &ame-
work which still allows the use of our powerful momentum
space representation.

g2p2 )
lim = exp ~—~- (1+Pp')&+" (66) A. Generalized Heisenberg algebra for n dimensions

Hence to each quantum number n there corresponds the
eigenfunction

A natural generalization of (6) which preserves the ro-
tational symmetry is

4.(p) ~ F
~
a„,-n;c„;-+i1 & 1 .~P l

1+pp')«+ - q
' ' "'2 2

(67)
where

,/q + r„= —
~

n + —
~

+ —i/1+ 1«,2q 2) 4

a„= n —i/1+—16r, c„=1 —2i/q+ r„. (68)

For the energy spectrum we obtain, fram (63) and (56),

1) ~ 1 11 1E„=ku~ n+ —
~

+ 1+ +Re n.
2 (4 r 16r) 4

(69)

Notice that the usual spectrum is recovered in the limit
P ~ 0 (or r ~ oo); for finite-P, the energy levels also
depend on the square of the quantum number n, and
asymptotically, for large n, they grow as n . In Fig. 4
we illustrate far comparison the values af the ratio E /Ru
for the usual harmonic oscillator and for r = 100.

We do here not prove the completeness of the set of
eigenfunctions (@ (p) ), which is quite obvious since the

(p) adiabatically reduce, in the limit P = 0, to the
ordinary harmonic oscillator eigenfunctions whose com-
pleteness is known.

[x;,p~ ] = i M;~ (1 + Pp ) . (70)

[p* p'l =0
which allows us to straightforwardly generalize the mo-
mentum space representation of the previous sections to
n dimensions:

p' 4(p) = p'4'(p),
. ~(p) ='I(1+Pp')~, , 4(p)

(72)

(»)
This fixes the commutation relations among the position
operators. Explicitly we have

[x,, x, ] = 2ihP(p;x, —p,.x;), (74)

leading naturally to a "noncommutative geometric" gen-

It implies nonzero minimal uncertainties in each position
coordinate.

A more general situation including nonzero minimal
uncertainties in momenta has been studied in [11]. For
the construction of Hilbert space representations for this
general case one cannot work on position space and one
has to resort, e.g. , to a generalized Bargmann-Fock rep-
resentation. Here we will specialize to the situation with
nonzero minimal uncertainties in positions only.

We require
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eralization of position space. Compare also with the ap-
proach given in [19].

Note that the generalization to the case

[x;,pj] = ihh, j(1+f(p ))

where

[p* Ljk] = ih(~*kpj —~' pk)

is straightforward, yielding
[x;,L,k] = ih(b;kxj —b;jxk), (85)

and

x' 0(I) = ih(1+f(p'))& 0(p)

[x, , xj] = —2ihf'(p )(x,pj —x.,p;).

(76)

(77)

[L;, , Lki] = ih(8;kLji —b;iLjk + h, iL;k —hjkL, i), (86)

equivalent to ordinary quantum mechanics. However, we
also have

Here we restrict ourselves to the case f (p 2) = Pp 2.
The operators x; and p~ are symmetric on the domain

S with respect to the scalar product:

[x,, x,.] = —2ihP(l+ Pp )L...

showing that we have a noncommutative geometry. We
therefore have the uncertainty relations

The identity operator can be expanded as

+~ dn+
(79)

yielding the minimal uncertainties Axo ——h~P for each
coordinate, and

and the scalar product of momentum eigenstates is,
therefore,

(so)

While the momentum operators are still essentially self-
adjoint, the position operators are merely symmetric and
do not have physical eigenstates. Maximal localization
states can again be used to define quasiposition wave
functions. We shall omit a detailed discussion of the func-
tional analysis which is completely analogous to the one-
dimensional situation. The quasiposition analysis will,
however, be somewhat more involved. We now focus on
the action of the rotation group.

Ax;b, xj )Ph((1+ Pp )L,j).

[p', Lj] = ih~*jkpk,

[xz, Lj] = zhe~jkxk,

[L;,Lj] =ihe;~kLk, (92)

It is straightforward to check that the algebra generated
by (84)—(87) respects the Jacobi identities.

For example, in three dimensions one easily verifies
that we now have the commutation relations

B. Representation of the rotation group
where

[x.;,x, ] = —2ihp(l + pp')e, ,kLk,

The commutation relations (70), (71), (74) do not
break the rotational symmetry. In fact, the generators
of rotations can still be expressed in terms of the posi-
tion and momentum operators as

Lk Q(p) = i';, kp; B„g(p—). . (94)

is the action of the angular momentum operator on wave
functions.

1
L,j:= (x;p, —x,p;),1

(s1)
VII. OUTLOOK

which in three dimensions can be written as

1Lk:=
2 &ijkxipj~1+ p

(s2)

generalizing the usual definition of orbital angular mo-
mentum. Note that 1/(1 + Pp ) is an unproblematic
bounded operator acting on the momentum space wave
functions as multiplication by 1j(1+Pp ). The represen-
tation of the generators of rotations on momentum wave
functions is

The implications of the introduction of a nonzero min-
imal length in quantum mechanics are quite profound.
We have shown in the simplest nontrivial case that it is
no longer possible to spatially localize a wave function to
arbitrary precision. The best one can do is consider the
set of maximally localized states as discussed in Sec. IV.
These states have a modified de Broglie relation (44), and
cannot contain wavelength components smaller than the
minimal value Ao given by (45). The harmonic oscillator
example in Sec. V shows that the energy levels of a given



ACHIM KEMPF, GIANPIERO MANGANO, AND ROBERT B.MANN 52

system can deviate significantly &om the usual quantum-
mechanical case once energy scales become comparable
to the scale ~P. Although the onset of this scale is an
empirical question, it is presumably set by quantum grav-
itational effects.

We have three possible fields of application in mind
to extend our work further. First of all, and most fas-
cinatingly, a minimal length of the form of a minimal
position uncertainty may indeed describe a genuine fea-
ture of spacetime, arising directly &om gravity. The new
kind of short-distance regularization therefore has to be
implemented into quantum field theory. One possibil-
ity is to take the general approach [12] of employing the
path integral framework, in which the action functional
S[P] can generally be expressed in terms of the scalar
product sp(, ) and pointwise multiplication v of fields,
where x& and p are formal operators that act on the
6elds. Given a Lagrangian the strategy is to stick to the
basis-invariant form of its action functional, while gener-
alizing the commutation relations of the x„and p". The
modified representation theory then fixes the action of
the operators, the form of the scalar product, and also
largely (though not completely) determines the general-
ization of the pointwise multiplication of fields, i.e. , the
generalization of local interactions. This then leads to
generalized Feynman rules. The general studies in [12]
have been carried out in a generalized Bargmann-Fock
representation, which is somewhat dificult to handle.
The techniques that we have obtained here, in partic-
ular the quasiposition representation, should now allow
a Inuch more detailed examination of the phenomenon of
a mininial position uncertainty in quantum Beld theory
than has been possible so far. For example, interaction
terms, which would be slightly nonlocal on conventional
spacetime, may now be strictly local in the sense that (to

the extent that short distances can be resolved) no nonlo-
cality could be observed because of the intrinsic minimal
position uncertainties. A forthcoming paper on this is in
progress.

Related to these studies is of course a second possible
field of application, namely, the development of a new
regularization method which does not change the space-
time dimension.

Finally, a quantum theory with minimal uncertainties
might be useful as an effective theory of nonpointlike par-
ticles. These could, for example, be strings since our
formalism includes the uncertainty relation obtained in
string theory; see, e.g. , [7]. In addition, this suggests in-
vestigating whether our formalism may also be used to
e8'ectively describe compound particles such as mesons in
situations where their nonzero size matters but where de-
tails of their internal structure does not contribute. The
parameter P would then of course not be at the Planck
scale but at a scale that would relate the "extension" of
the particle to the minimal uncertainty. Furthermore,
since quasiparticles and collective excitations cannot be
localized to arbitrary precision, there might be a possi-
bility of including some of the first-order dynamical be-
havior of such systems in the kinematical eKects of gen-
eralized uncertainty relations, thereby improving (or at
least simplifying) the efFective description.
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