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We examine two methods for incorporating complex first-class constraints into the BRST for-
malism when the complex conjugates of the constraints are linearly dependent upon the constraints,
as is the case for general relativity in the Ashtekar variables.
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I. INTR.ODU CTION

The gravitational force, the first fundamental force to
be understood classically, has yet to be reconciled with
quantum mechanics. Attempts at constructing a quan-
tum theory have ranged from Dirac's work on the canon-
ical quantization of general relativity, through perturba-
tive quantum field theory to supersymmetric string the-
ory. The perturbative approach failed because general
relativity, long known to be nonrenormalizable, is not fi-
nite at two loops [1]. The canonical approach pioneered
by Dirac did not fail as much as it simply came to an im-
passe because of the computational complexity of quan-
tum constraints. Supersymmetric string theory remains
an exciting and viable candidate, but it too has become
a very involved edifice.

In 1986 there was surprising progress in the canonical
approach to quantum gravity when Ashtekar published a
canonical transformation of Einstein gravity to a new set
of variables in which the quantum constraints are poly-
nomial [2]. In the original work of Dirac, the constraints
are not polynomial in the basic variables and, when quan-
tized, become quite complicated, possibly pseudodiÃer-
ential, operators. In the new variables, the quantum
constraints are second-order functional differential oper-
ators. We believe it is important to pursue this very
conservative approach to quantum gravity before aban-
doning altogether the methods of quantum field theory
for the very radical superstring theory.

The constraints of general relativity simplify enough
in the new variables that there are now solutions
known to the full set of constraints [3]. Still miss-
ing &om the quantization program are an inner prod-
uct on the space of physical states and a full set
of solutions to the constraints. Between the time
that Dirac developed his methods for quantizing con-
strained theories and the time that the new variables
were found, a very powerful method for quantizing con-
strained. theories was developed by Fradkin's Russian
school [4]: the BRST-BFV (Becchi-Rouet-Stora- Tyutin—

'Present Address: Dept. of Physics, U. Toronto, 60 St.
George St., Toronto, Ontario, Canada M5S 1A7.

Batalin-Pradkin-Vilkovisky) method or BRST method
for short. Certain di%culties of Dirac's methods, such as
operator ordering, are less severe in the BRST method.
The BRST method also yields a natural measure for the
inner product on the physical subspace and allows more
freedom in the choice of physical states.

The application of the BRST formalism to the prob-
lems of finding physical states and an inner product on
them is far &om straightforward because the new vari-
ables are complex valued and the quantum constraints
are thus non-Hermitian. The standard BRST formal-
ism assumes that the constraints are real valued in or-
der that the quantum BRST charge, the central object
of the formalism, be Hermitian. Straightforwardly ap-
plying the standard prescription, we find that the non-
Hermiticity of the constraints forces the BRST charge to
be non-Hermitian, which prevents the decoupling of un-
physical states &om the spectrum and destroys unitarity.
Although there is probably deep significance to the fact
that the new variables are self-dual and therefore that
they and the constraints are necessarily complex valued,
the non-Hermiticity of the constraints presents us with
challenging technical diKculties. In this paper we ex-
amine the options for incorporating non-Hermitian con-
straints into the BRST formalism. We assume that the
complex conjugates of the constraints together with the
constraints themselves are together first class. We have
previously found a method for using complex constraints
in the case that the complex conjugates of the constraints
together with the constraints themselves are second class

II. HEKMITICITY OF 0 IN BAST
QUANTIZATION

The BRST quantization of a Hamiltonian dynamical
system with gauge symmetries provides a useful system
for finding physical quantum states and removing un-
physical states, those having zero or negative norm, from
the spectrum. The central object of this quantization
is the BRST charge A. The quantum BRST charge is
constructed &om the constraints and auxiliary variables,
called ghosts, to be nilpotent, 0 = 0. Physical states
are defined to be those states annihilated by the BRST
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charge, A~/) = 0. Because of the nilpotency of 0, phys-
ical states are only defined up to the addition of BRST
exact states, ~P):—~P)+O~y). This ambiguity is removed
by de6ning an equivalence class of states. In order to de-
fine these equivalence classes, it is necessary that two
states which difFer by a BRST exact state have the same
inner products with all other physical states. We must
require

((&I+ (~l~')(I@) + ~l~)) = (41@)

for all states ~w) and ~y). In addition to being nilpotent,
0 = 0, and annihilating physical states, O~@) = 0, the
BRST charge must have a Hermitian conjugate that sat-
isfies AtO = 0 and Ot~g) = 0. This is accomplished if
the BRST charge is Hermitian, Ot = O. In the rest of
this paper, we deal with the slightly simpler problem of
finding a real classicat BRST charge. This problem is
simpler because we need not consider the extra difhcul-
ties that operator ordering introduces once real classical
quantities are transcribed into operators. These are dif-
hculties which one must face in any case, whether the
constraints are real or complex.

the linear combination of constraints

G, =G'„

G =G +iAG,
(3.6)

where Gz and G2 are real constraint functions. Com-
plex conjugation of these constraints leads to the reality
conditions

G~ =Gi,

G2 = G2 —2xAGg.

(3.7)

In some cases, it is possible that the reality conditions
on the constraints can be used to construct a real BRST
charge by imposing corresponding reality conditions on
the ghosts and their conjugate momenta. We consider
separately the case of the coefBcients B being constant
on the phase space and the case of the coeKcients being
phase space functions.

A rank-zero theory has no nonzero structure functions.
This is the Abelian case

III. COMPLEX EXTENSIONS OF REAL
RANK-ZERO AND -ONE THEORIES

(G, Gg) = 0,

and the BRST charge is given simply by

(3.8)

A. Constructing real BRST charges
a~

~Abelian —g Ga. (3.9)

~bGO (3.1)

We demonstrate the construction of real BRST charges
for rank-zero and rank-one theories. In these cases, a real
BRST charge can be constructed by letting the ghosts be
complex and imposing reality conditions upon them. In
order to have a simple system to analyze before going to
the general case, we 6rst consider a system of real con-
straints G that are linearly recombined into an equiva-
lent set of constraints:

We impose the condition that the BRST charge be real,
0' = 0, and use the reality conditions (3.3) on the con-
straints to derive reality conditions on the ghosts:

g G = (q G )"

= gb*ab G.. (3.10)

The last step is a relabeling of the dummy indices. Be-
cause the constraints G are linearly independent, the
ghosts satisfy reality conditions

with coeKcients t that are, in general, complex quan-
tities. Complex conjugation of Eq. (3.1),

g
* = gba, '. (3.11)

eb* Goa a b& (3 2)

The complex. conjugate of a constraint is some linear
combination of the original constraints themselves. Since
complex conjugation is an involution (G** = G), it fol-
lows &om

G** = (BG)* = B*BG:—G

that the coefficients B have the property

As a simple example of reality conditions, we consider

leads to reality conditions on the constraints:

G* = C'*(C-')"C.G' = C'*(C-')'G = B'G (3 3)

Complex conjugation of the fundamental ghost Poisson
brackets, with the rule (A, B)* = (B*,A*), yield—s re-
ality conditions on the ghost momenta:

@by) (3.12)

OI, ; ——g G —2gqCb'P. (3.13)

Exactly as in the Abelian (rank-zero) case, we assume the
same reality conditions (3.1) on the constraints. The re-
quirement that the antighost number-zero part of (3.13)
be real leads to the same reality conditions on the ghosts

It is easy to check that the BRST charge 0 and the Pois-
son brackets ('P, g ) are both preserved under complex
conjugation by recalling Eq. (3.5).

A rank-one theory has Brst-order structure constants.
In this case the constraints form a Lie algebra. The
BRST charge for a rank-one theory is given by
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and their momenta as in the Abelian case. The new el-
ement is the erst-order structure functions C &. Reality
conditions on the erst-order structure functions follow
from complex conjugation of the Poisson brackets be-
tween the constraints. The resulting reality conditions

when the ghosts are complex. We emphasize that g* and
g are not both dynamical variables. There is only one,
complex, dynamical variable g and its conjugate momen-
tum. The generalization to several ghosts and to mixed
fermionic and bosonic ghosts is immediate.

C.b " = B."BbCd.~(B '-)» (3.14) IV. H.EALITY CONDITIONS ViTITH
NONCONSTANT COEFFICIENTS

Using the rule for complex conjugating fermionic vari-
ables, (AB)* = B*A*,we find it straightforward to check
that the rank-one term is also real,

(q q C'b'P. )* = q q C'b P„' (3»)

B. Chost reality conditions

In the case that the constraints form a true I ie alge-
bra, either Abelian or non-Abelian, we find that we can
force the BRST charge to be real by imposing reality
conditions upon the ghosts.

Changing notation a bit, we suppose that the bosonic
complex constraints G = 0 satisfy

and therefore that the BRST charge (3.13) is real. In
both the rank-zero case and the rank-one case, it has
been essential that the B have zero Poisson brackets
with each other (as is the case for constant B ), in order
to satisfy the requirement that the ghost Poisson brackets
obey (q *, 'Pb) = —('Pb, q ).

We now consider constraints with reality conditions,
(3.16), whose coeKcients Z are general phase space func-
tions. Under these conditions, it is in general impossi-
ble to preserve the Poisson brackets relation (g *,Pb ) =

(P—b, g')* for the ghosts under the assumptions of
Eq. (3.17). Because we cannot preserve the Poisson
brackets relation, it is impossible to use the previous
method to construct a real BRST charge.

We erst demonstrate that the standard BRST treat-
ment of a complexified theory in general yields a corn-
plex BRST charge and is therefore unacceptable. We
then give an alternative BRST method by which a real
BRST charge can be constructed. This is accomplished
by extending the ghost phase space and including the
complex conjugate constraints in addition to the original
constraints. This expanded system of constraints is in-
herently reducible and is dealt with using the reducible
BRST method for BRST quantization of systems with re-
ducible constraints that is so well explained by Henneaux
and Teitelboim [6].

ZI G—.+ ZI G. = 0, (3.16) A. Standard BRST treatment
where G- = G* and ZI and ZI are invertible square
matrices. The ghosts must satisfy reality conditions For our starting point, we consider a simple example

of two Abelian constraints Gz and G»
77 Z~ + 7/ Z —0) ZI pf + ZI p (3.17) (G'„G',) = o, (4.1)

The matrices Z and Z- are the inverses to ZI and ZI,
respectively. The coeFicients B are related to the ZI as
follows: G~ = G* = B Gg ———Z-ZIGg. We use g' as
another name for g'* and 7k for —P& so that the Poisson
brackets relation ('P;, g') = ('P,*,g'*j = (P;, g'—)* =
—b, This will be an important notational advantage
later.

Although diII'erent &om the standard real ghosts, com-
plex ghosts do not present much of an obstacle to quan-
tization. The standard inner product for the ghosts is
given by the integral over Fermi variables, in analogy
with commuting variables For bosonic functions f(q) =
fo+ fig and g(g) = go+ ging, the standard inner product
with a real ghost,

which are assumed to be real and bosonic. The BRST
charge for this example is given by

no = ~,'G', + ~,'G,o (4.2)

and is manifestly real if the ghosts go and go are taken
to be real, which we are free to do.

What we want to consider is the complex extension of
this real theory. By this we mean the analytic continua-
tion of the set of real functions on phase space to the set
of complex functions on phase space, with a transforma-
tion that takes real constraints into complex constraints.
As a concrete example, consider replacing the real con-
straints Gi and G2 by

(f Ig) = d~ f*(n)g(n) = fi go —fo gi,

is replaced by

(3.18)
G', ~ G, = G'„

G2m G2 ——G2+iA(q, p)G„
(4.3)

(fig) = d~dn'~(&n*+ &n)f'(n*)g(g)

= &fi go + &fo gi (3.19)

where we have added a linear multiple of the first con-
straint to the second. (If we had added a completely
arbitrary imaginary term, we would have introduced a
third constraint, since both the real and imaginary parts
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(Gi, Gi} = (G2, G2} = 0,

(4.4)

(Gi, G2} = (Gi, G2 + iAGi} = i(Gi, A}Gi.

There is only one nonzero erst-order structure function

Ci2 ——i(Gi, A}, (4.5)

arid the second-order structure functions ~ ~U g," nec-
essarily vanish because they are antisymmetric in (abc)
and we have only two indices available. The BRST charge
(4.2) is thus deformed into

0 -+ 0 = q'Gi+ g G2 —iiI i)'(Gi, A}'Pi. (4.6)

We now want to investigate the reality properties of
A. In particular, we want to see if 0 can remain real. If
we hope to accomplish this we must allow the ghosts and
ghost momenta to become complex, but there is no a pri-
orz reason why this should not be allowed. We complex
conjugate 0,

0* = Gii) *+G2i) *+i'Pi( —(A', Gi})g'*i) *, (4.7)

and use the reality condition on G2,

G2 = G2 —2iAGg, (4.8)

derived from the definition (4.3) and the reality of Gi,
G2, and A, to rearrange (4.7) into

0* = (i)
* —2iAg *)Gi + i) 'G2 —ii) *i) *(Gi,A}'P,*.

(4 9)

Requiring 0' = 0, we find the reality properties of the
ghosts g and g from the erst two terms:

g
* —2iAg * = g or g

* = g + 2iAg .
(4.io)

A straightforward calculation yields the transformation
of the original ghosts which is consistent with these real-
ity properties;

1 1 1 ~ 2@OS g —gO
—

ZAMBO)

2 2= 20~ g QO)

(4.SS)

must separately vanish, and we would have a diferent
theory. ) The coefFicient A = A(q, p) is an arbitrary real
bosonic function of the phase space variables. We may
think of the transformation as a "deformation" of the
real constraints into complex constraints.

The Poisson brackets structure of the constraints be-
comes

Pl~ Pi = P],

P2O~ y ' = y 2O + iaaf,O.

(4.S2)

B. Inclusien af cuznple~ canjugate censtxaints

To eliminate the imaginary piece of the BRST charge,
we can conteInplate two approaches. The erst is to trans-
form the complex constraints into purely real constraints.
This, however, simply returns us to the initial constraints
G& and G2. In self-dual gravity, the real constraints are
not polynomial in the phase space variables causing the
BRST charge to be nonpolynomial as well. The whole
reason for using the complex constraints is that they are
polynomial in either the self-dual or anti-self-dual vari-
ables. This first approach is not useful for gravity in the
self-dual Ashtekar variables.

The second approach to making the BRST charge real
is to use the complex conjugates of the constraints along
with the original set of constraints in the hope that the
imaginary terms added to the BRST charge will then
appear in complex conjugate pairs, making the BRST
charge manifestly real. This procedure, however, intro-
duces an additional complication. The complex conju-
gate constraints that we add are not independent of the
original constraints and we therefore end up with a re-
ducible set of constraints.

Before, when we had complex ghosts, we regarded the
complex conjugates of the ghosts and their momenta not
to be dynamical variables in their own right, but sim-
ply some linear recombinations of the original complex.
ghost and ghost momentum variables. Here, however,
we are faced with introducing not only complex ghosts
and ghost momenta, but also their complex conjugates
as independent dynamical variables. First we give a siIn-
ple example of the kind of construction needed for a real
BRST charge, deferring the general case to the next sec-
tion.

To see how this approach works, we continue with the
example of the previous section and acid the constraint
G2, complex conjugate of G2, to the constraints Gi and
G2.

In particular, we observe that /q remains unchanged in
the deformed theory and is therefore pure imaginary. The
consequence of this is that the last term in Eq. (4.6)
is purely imaginary because g g is the same as gogo,
which, being the product of two real Grassmann num-
bers, is imaginary. The last term is thus the product of
three imaginary quantities. We find then that perforIn-
ing a complex deformation of set of real constraints intro-
duces an imaginary piece to the BRST charge. Therefore,
the standard BRST treatment of a complexified theory
will not work in quantum theory and another approach
is required.

and requiring that the fundamental Poisson brackets be-
tvreen the ghosts be preserved (('P, i)s} = —8 ) gives the
corresponding transformation of the ghost momenta:

Go

G = G + iA(q, p)G,
G; = G', —'A(&, &)Go, .

(4.&a)



THEODORE J. ALLEN AND DENNIS B. CROSSLEY 52

(Gi, A j:=I'i ——const, (G2, A):= I'2 ——const. (4.14)

The Poisson brackets of A with the modified. constraints
are then

(Gi, A) = I'i,
(G2, A) = r2+ iAI'i,

(G2, A) = I'2 —iAI'i,
(4.15)

and the nonconstant Poisson brackets among the con-
straints are

(Gi, G2) = iI'iGi,
(Gi, G2) = —iI'iGi,
(G2, G2) = —2iI'2Gi.

(4.i6)

The nonzero first-order structure functions

Cg2 ——iI'g,
c„-'= —ir'~,
C„-'= —2ir,

(4.17)

follow directly from Eq. (4.16) above. Since the first-
order structure functions are all constant, the second-
order structure functions can be taken to vanish.

In addition to the constraint algebra, we also have the
constraint reducibility condition

A = A(q, p) is again assumed to be a real function on the
phase space. However, to avoid the necessary complica-
tion of second-order structure functions, we assume that
the Poisson brackets of A with the original constraints
are constant and generically nonzero:

('P;, g') = (g', 'P, ) = —8,',

(~, p) = —(p, ~) = -1,
(4.2i)

with all other brackets among the ghosts vanishing. In
addition, we assume the brackets of the original phase
space variables are unchanged and that the brackets be-
tween the ghosts and the original phase space variables
vanish.

We now have all of the building blocks for the BRST
charge, which we construct according to the rules for re-
ducible gauge theories:

0 = g Gi + g G2+ g G2 —iI'gg g Ti + iI'gq g 'pg

+2xr2q g 'Pi + p( —2xA'Pi + 'P2 —P2)'. (4.22)

There could, in principle, be additional terms to the
BRST charge arising &om the nonconstant reducibility
coefficient Zi, but a straightforward (though somewhat
tedious) calculation shows that the BRST charge (4.22)
is nilpotent, (0,0) = 0 and that it is therefore the com-
plete BRST charge.

We now consider the reality of the BRST charge (4.22).
For the sum of the zero-order terms g'G; to be real, it is
su%cient that the ghost g be taken to be real and that
the ghosts q and g be complex conjugates:

(4.23)

Complex conjugation of the fundamental Poisson brack-
ets between 7 i and g and between 'P2 and g then re-
quires that 'Pi be pure imaginary (as in the standard
BRST treatment) and that i P2 and i'P2 be complex con-
jugates, since

Z:=Z G. = —2iAG, +G, —G;=0, (4.iS) —1= (P2 &')* = —(&" P2) = —(P2 ~') (4.24)

with reducibility coeKcients implies

(P2)* = —'P2. (4.25)

Z = —2iA, Z = 1, Z = —l. (4.19)

The last step before constructing the BRST charge 0
is to extend the phase space with a ghost and its canon-
ically conjugate momentum for each constraint and for
the reducibility condition

Pi (assoc'iated with Gi),
'g ) P2 (associated with G2),

g, 'P2 (associated with G2),
$, 7r (associated with Z).

(4.20)

The ghosts g' and their momenta 'P; are anticommuting
(fermionic) variables as befare. The ghost of ghost P and
its conjugate momentum vr have statistics opposite those
of the ghosts and are therefare commuting (bosonic) vari-
ables. The Poisson bracket structure among the ghosts
can be taken to be canonical:

Finally, we 6nd that with the choice of reducibility coef-
ficients (4.19), the ghost-of-ghost P must be taken to be
real. With these complex conjugation rules for the ghosts
and their momenta, we can rewrite the BRST charge
(4.22) in the form

n = (-,'~'G, + ~'G, —ir, &'~'P, + ir, ~'~'V,
i AQ'Pi + Q'P2) + c.c., — (4.26)

where c.c. stands for the complex conjugate of every-
thing inside the parentheses. Thus the BRST charge
(4.22) contains terms which are either real or occur as
sums of complex conjugate pairs and we have explicitly
demonstrated that the BRST charge (4.22) is real.

It is clear that this procedure generalizes to an arbi-
trary complexification of a set of real constraints into a
set of complex constraints of the form

(4.27)

A real BRST charge for a system with an arbitrary set of
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complex erst-class constraints which are also Grst class
with their complex conjugates can be constructed by
adding to the complex constraints their complex conju-
gates and treating the extended system of constraints as
a standard reducible set of constraints.

V. GENERAL CASE

In general, if an irreducible set of complex constraints
G; have complex conjugates G-; which are linearly depen-
dent upon them,

ZI .——ZIGk+ ZIG~:—0, (5.1)

then we follow a procedure very similar to that for re-
ducible constraints. There is some room for rede6nition
of the coefficients ZI and ZI. We remove some of this
inde6niteness by requiring that they satisfy

where the terms denoted by the ellipses are chosen such
that the charge is nilpotent and real. That terms can
be chosen such that 0 is nilpotent has been shown by
Henneaux and Teitelboim [6]. The proof does not depend
upon the reality properties of the dynamical variables.
To show that the succeeding terms can all be chosen real
requires us to look at the nilpotency condition itself.

We assume that the BRST charge can be expanded
in a series indexed by the total antighost number, 0
=~ ~Q+~ ~O+~ ~O +. . . The ghost momenta P, and
P; carry antighost number 1 and the ghost momentum
Pyl, conjugate to (b, carries antighost number 2. The
condition for nilpotency of 0 becomes the set of condi-
tions

2(("+ )n ( )n) + 2(("+ )n ( )n}

) ('" "'n'"'n) —) ('" "'n '"+'n)
ZI ZI' (5.2)

We introduce ghosts g', g' and their canonical conju-
gates P, , P; along with a constraint upon the ghost mo-
menta:

Zl"p„-+Zrp, = 0 (5.3)

n = ~"~.+ "~k+ ~'(Zlk7 k+-
—,'g& g'c,",pI,

—,'g&g'C", ,p„-

2g g'C,—p~

—2g g'|,".-pI,

—-'g&g'C" p;
+ ~ ~ ~

ZP, ) —', g'g'Ck V k-
1 g 2~k p

—
2 g~g'C-,"-pk

(5.4)

We can think of this constraint as only half of the reality
conditions on the ghosts (3.17). If we reinterpret the
reality conditions in Eq. (3.17) as constraints upon an
enlarged ghost phase space (rI', rI', 7 s, 7 s), we find that
they are second-class constraints. What we are doing is
analogous to replacing second-class constraints by half
their number of first-class constraints.

In addition, we introduce a ghost-for-ghost Pl for the
reality condition (5.3) in order to eliminate the extra
degrees of &eedom we added when we introduced both
ghosts g', rP The ghos. t-for-ghost (bl has statistics op-
posite those of the ghosts g', g' and can be chosen real
when the reducibility coefficients ZI, Zlr satisfy (5.2).

Following the standard BRST procedure, we then in-
troduce the new constraint (5.3) inultiplied by its ghost
$1 into the general BRST charge.

The BRST charge begins with the terms

) ((p—k) n (k+2) n)
L=O

(5 5)

for all p. The diBerent subscripted brackets refer to the
Poisson brackets with respect; to the subscripted vari-
ables only. The subscript "orig" refers to the original,
nonghost, variables. If we assume that all the terms ~"~O

can be chosen to be real for all 0 & A: & p, then we see
from Eq. (5.5) that ("+ )n can be chosen to be real as
well.

VI. CONCLUSION

Motivated by the problem of performing a BRST quan-
tization of general relativity in Ashtekar s new variables,
we have demonstrated the construction of a real BRST
charge using both the constraints and their complex con-
jugates. While it is necessary to use both the constraints
and their complex conjugates and thus construct a charge
that would not be strictly polynominal in either self-dual
or anti-self-dual variables, such a BRST charge could
still be quite useful for quantization. We would hope
that each term would be polynomial in either self-dual
or anti-self-dual variables multiplied by ghost variables.
We defer discussion in detail of the application of this
construction to gravity in Ashtekar variables to a forth-
coming paper.
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