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Superconducting demain walls from a supersymmetric action
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A model constructed from chiral super6elds is considered, and a simple, but exact, domain
wall solution is found which interpolates between supersymmetric vacuum states. The domain wall

supports fermionic zero modes, for which approximate analytic solutions are found. It is also found
that bosonic bound states localized within or near the core of the wall can exist. The fermionic
superconducting domain wall can therefore be endowed with both fermionic and bosonic charges
and currents.

PACS number(s): 11.27.+d, 12.60.3v

I. INTKOI3U CTI(3N

A domain wall [1,2] can arise from a situation wherein
a discrete symmetry is spontaneously broken. The dis-
connected vacuum manifold then contains distinct vac-
uum states, and the Beld associated with the broken dis-
crete symmetry can settle into different energy minimiz-
ing vacuum states in different spatial domains, with the
formation of a domain wall between these regions. The
Beld giving rise to the domain wall thus interpolates be-
tween the distinct vacuum states. It is also known that
domain-wall solutions can exist in supersymmetric theo-
ries [3] with interesting gravitational properties [4,5] that
differ from those of domain walls occurring in nonsuper-
symmetric theories [1,2,6,7]. A domain wall may also be
superconducting [8,9] in that it may support a complex
scalar field condensate which forms by the Mitten mecha-
nism [10] or fermionic zero modes which propagate along
the wall. If these fields are associated with a U(1) gauge
group, then the wall can acquire an "electromagnetic"
charge and current, giving rise to long-range gauge Beld
interactions.

Here, attention is focused upon the field-theoretic as-
pects of a domain wall which arises from a supersym-
metric action. In particular, an N = 1 supersymmetric
action constructed from two chiral superBelds is consid-
ered. A superpotential is chosen which reHects a discrete
Z2 symmetry of one of the superfields. The scalar po-
tential of the model also contains this Z2 symmetry, and
the vacuum manifold contains two discrete, but degener-
ate, vacuum states which allow a spontaneous breaking
of this Z2 symmetry, along with the formation of a do-
main wall. However, the vacuum states have vanishing
energy, so that supersymmetry remains unbroken in the
vacuum. Because of the nontrivial interactions between
the component fields of the theory, it is found that the
domain wall supports fermionic zero Inodes which prop-
agate at the speed of light. The domain wall is there-
fore superconducting and can carry fermionic charge and

current. It is also found that, instead of a bosonic con-
densate, domain-wall-bosonic particle bound states can
exist, with the bosonic Beld being concentrated within
or near the core of the wall, contributing to a bosonic
charge and current. The domain wall therefore displays
a fermionic superconductivity and can be endowed with
both fermionic and bosonic charges and currents. The
interactions of the wall with fermionic and bosonic Belds
can allow transitions to occur among the domain-wall-
boson particle states.

In Sec. II, the supersymmetric model is presented and
the vacuum states are found. The bosonic and fermionic
mass matrices are calculated, and the positive mass
spinor eigenstates are identiBed. The Beld equations for
the boson and fermion Belds are derived, and a simple,
but exact, solution of the Beld equations describing a
topologically stable domain wall is given in Sec. III, where
it is seen that the Majorana and Dirac positive mass
spinor eigenstates in two different domains are related
by a relative factor of ps. It can also be noted that the
effective fermion masses decrease near the domain wall,
implying an attraction of fermions toward the wall. An-
alytic solutions are found for the fermionic zero modes in
Sec. IV, and the existence of domain-wall-boson particle
bound states is examined in Sec. V. A brief summary of
the results forms Sec. VI.

II. THK MADEL

A. Action and Lagrangian

Consider a supersymmetric model constructed from
two chiral superfields 4', , i = 1, 2, with component fields

(P, , @,, P, ), with the I"; representing the auxiliary boson
fields. The boson fields P, and P, are complex scalar
fields and each of the fermion fields g, is a Weyl two-
spinor. The superBelds have a superspace representa-
tion [11] given by

@'( ) =e"( 0) =&*(y)+v204'(y)+0'+*( ) (1)
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A metric g„with signature (+, —,—,—) is used. (See
the Appendix for a brief description of the conventions
and p matrices. ) The supersymmetry transformations
are given by

~W*-(x) = —~2[(-+'(x) + &(~"&)-~~&'(x)] (3)

6I;(x) = i,~28~$; (x)o."(,
where ( is a constant Weyl spinor.

The supeIsymmetric actloIl ls

d xd Od OC,'C,.

d x d OW(4) + d x d OW*(4*),

where a suinmation over the index i is implied, and W(4)
is the superpotential. The superpotential is chosen to be

W = 2A@2(4, —v )

The scalar potential V, obtained from the superpotential
TV, is

2

= &'(-,'(4i —v')(&i —v') +- 1&i&21')
Z

41A2 21 421 —B12 —v2

+4A (AiBi + AiA2+ AiB2 + A2Bi + B,B2) .
(13)

By (9)—(].1) the terms IKF and Li, in terms of the Ma-
jorana spinors 4'1 and 42, become

a

LKE = I.p«+ —(4,p"B„C,+ 4,p"0„@,),2

+i(Ai +»Bi)~2 + 2 ~i(A2+»B. )+i
2

iA-
—, 24i(~iP~+2) + 24*,(~iP~~.)

iA-
+—, 42(+iP~~i) + 42(+iP~+i)

with A and v being positive real-valued constants.
The auxiliary fields can be eliminated so that the I a-

grangian can be written as [11,12]

I = IKE+ L~ —V,

where IKE contains the kinetic terms, I~ contains the
Yukawa interactions, and V is the scalar potential. The
complex scalar Beld P;(x) can be displayed in terms of
real scalar fields A, (x) and B,(x) as

(s)

and Majorana four-spinors 4i(x) and 4'2(x) are defined
by

LKE = 0 QiB~Qi + 8 $28p$2
= —,

' [(~~Ai)' + (~~Bi)' -+ (@A2)' + (~~B2) ']
(16)

and II, ~ are the chiral projectors defined by

PI, = -'(1 —its) =
~

t'1 0&
(0 0)'

Pa = —,(1+~Ws) =
l 0 1
(0 0

with the properties (Pl, ~) =—Pl, ~ and PI, + P~ = l.

H. Vacuum. states

The kinetic term is

EKE = 0"Q,*B„Q;+ —[(B„g;)a"g;—g;o "B„g;], (10)

The vacuum states of the theory, obtained from the
scalar potential V, satisfy the conditions

POV

with a sum over i. The Yukawa part takes the form

02W i(OW~Y':
g gy gy

Pi Pj 2 ~ gy gy Pi

= —-', (&,0,4, + &",0'0, )

,'&(424'iA + 20i@—i—42+ 42K@i + 24'i0iA)
(11)

with a sum over i and j, and

02V
&0,

&~&*,~&, )'
~

(
B~~V

)

From (13) and (18), the vacuum states are therefore given
by

02@'

BP;0, or, equivalently,

Pi„——+v, p2„——0,
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Ai„——+~2v, Bi„——A2 ——R2„——0 . (2o) 1. The vacuum state viith Pi„——+v

The discrete Z2 re8ection symmetry (associated with the
field Pi) of the scalar potential V is therefore sponta-
neously broken by the vacuum. Spatial regions that are
separated by more than a coherence length ( (my, )
can accommodate difFerent vacuum configurations of the
field Pi, so that Pi can settle into a Pi ——+v configura-
tion in some domains and into a Pi ———v configuration
in other domains, with some region between difFerent do-
mains where Pi ——0, which will locate a domain wall.
However, from (13) and (19) it is seen that in the vac-
uum states V = 0, indicating that the vacuum states
respect supersymmetry, so that the supersymmetry of
the theory is unbroken in the vacuum region outside of a
domain wall.

., = —m(@i42+ 4'iA),

and we are therefore led to define a mass eigenstate Dirac
spinor

(25)

so that (24) becomes

1.~ ., = imC@, (26)

For Pi„——+v, P2 ——0, Ly gives rise to the fermion
mass term

C. Mass xnatrices

In terms of the complex scalar fields, the boson mass
matrix can be written in the form

which describes a Dirac fermion of mass m.
We can also define the Weyl spinors o. and P by

(4i+ 42), p = (0i —A)
2 2

(27)

M =i
i

M.
( M22i M22

where

and Majorana spinors Mq and M2 by

(2S)

so that (24) can also be written as

with (), indicating evaluation in vacuum. From (13)
and (19) it is found that M& is diagonal with M,
m b;~, where m = Av is the mass of each boson field.
The mass for each of the real scalar fields A, and B; is
m.

The fermion mass matrix which is associated with the
spinors g; is M~,z

——(Y;z.)„„which gives, by (ll) and
(»)

M~=/ o xy, f o +m
(A 0 (+ 0

for Pi„——+v .

(23)

From (23) we have (M&),.1 = m h;.~ and the supertrace
relation is satisfied, with Tr(M&) = 2Tr(M&) = 4m
We can notice that the spinors @i,Q2 (or 4'i, 4'2) are not
the mass eigenstates since they do not diagonalize M~.
Also, we will see that the positive mass Weyl spinor states
in two difFerent domains are related by a phase rotation.

L „=—-'m[(nn + nn) + (PP + PP)]
= 2im(MiMi g M2M2), (29)

1 1
M, = (@,+ ili, ), M, = p&(@2 —@i),

2 2

(30)
1 1

(Mi + psM2), @g —— (Mi —psM2) .
2 2

The Majorana spinors Mi 2 are related to the Dirac
splnor

((@, )

and its conjugate

(@' l(
E& )

which describes two Majorana fermions, each of mass m.
The Majorana spinors Mi 2 are related to the Majo-

rana spinors 4i 2 by

D. Spinor xnass eigenstates

Prom the Yukawa part of the Lagrangian Ly given
by (ll), along with the expression for the fermion mass
matrix in (23), it can be seen that diferent spinor states
are required in difFerent Pi„domains to yield positive
fermion masses.

M, = (4 + 4.), M2 —— (4 —4.),

1 ~ 1
(M, + iM, ), @.= (M, —iM, ).

2 2
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2. The vacuum state with Pi„———v Ai+ 4A Ai(A, —2v ) = 0. (41)

For the vacuum state labeled by Pi„———v, P2„——0,
L~ gives rise to the fermion mass term

L ...=+I(%42+ Oi@2)
—= —~(&i@2+&i@') . (32)

e =»e, e. =»e., M, , =»M„, (34)

with 4i 2
——»4q 2.

In each vacuum sector there is a Dirac particle of mass
m, although the associated Weyl spinors differ by a con-
stant phase and the four-spinors differ by a factor of ».
(The kinetic term LKE is invariant under the rescaling
M1,2 ~ 75M1,2.)

We can therefore identify

(33)

Then the positive mass four-spinor eigenstates in this
vacuum sector are

The static solution is just the P kink solution

x 2 2
A (x) = ~2vtanh —,iv = —= —,

u)
'

Ae m ' (42)

which describes a domain wall of thickness iv = 2/m
located at x = 0, interpolating between the supersym-
metric vacuum states with Pi„= +v at x = +oo and

—vat x = —00.
Upon passing through the domain wall &om a posi-

tion (x, y, z) to a position (—x, y, z) we have P (x)
(—x) = —P (x), where P (x) = (1/~2)A (x), and

for the physical spinor states

e(x) -+ e(—x) = e'(x) = p5e(x), M;(x) M /5M;(x) .

Also, from (15) and (25) we notice that the Dirac fermion
mass vanishes in the core of the domain wall at x
0, from which we can infer that upon collision with the
domain wall, fermions will be attracted inward toward
the core.

III. THE DOMAIN WALL

A. Field equations

The field equations for the complex scalar fields P, and
the Majorana spinors 4, , obtained &om the Lagrangian
given by (13)—(16), are given by

4i+ ~'[24*,(4', —")+ ~42~ 4i] - i~+iPR+2 = 0,
(35)

IV. FERMIONIC ZERO MODES

The fermion 6elds become effectively massless in the
core of the domain wall, allowing fermionic zero modes
to form. Consider the fermion fields in the domain-wall
background with P2 ——0 and Pi ——P (x). Prom the
fermionic field equations given by (37) and (38) we obtain

P"B„C,= —2AQ C„P"0„@2= —2AP @, .

iA—
&42+ & 1&iI 42 ——@iPR@1

2

P"&„@i+A[2(Q,PI, + P*,PR) 42
+($2PI. + P;PR) 41,] = 0,

P"O„C 2 + 2A(gi PL, + Pi PR) 4'i ——0 .

(36)

(37)

ct, @', = —2AQ q'OO2, B,eo = —2py„&'y', . (44)

A solution is obtained for 4z ——pi@oi (and therefore @o =
p 4z) so that (44) becomes

Let us first look for static solutions @; = 4'; (x). Multi-
plying (43) by p [with (x,x,x, xs) = (t, x, y, z)] yields

where
&i@,' = —2AQ 4', . (45)

B. Domain-wall solution

An exact solution of the Geld equations which describes
a domain wall can be obtained by setting P2 ——0, and
@i ——4'2 ——0. By (35) the equations of motion for the
real scalar fields Ai and Bi are

The solutions are

= 7 cosh

4', (x) = ~ exp[ —2A P (x')dx']
0

cosh

+:(*)=~'+:( )

(46)

2

OA, + —Ai —(A, —B,) —v +B, =0,

2

UBi+ Bi A ——(A ——B )+v =0.

Upon setting Bi —0, (39) collapses to

(39)

(40)

where 7 is an arbitrary constant Majorana spinor. These
solutions decrease exponentially away &om the core of
the wall and therefore describe fermion fields concen-
trated within the wall. As x ~ 0, then p~B&4; —+ 0,
so that the fermions are effectively massless in the core.

Traveling wave solutions can be constructed by using
with 4', (x, z, t) = n(z, t)4; (x), &om which

we obtain, by using (43) and (44),
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(Be —p'p'Os)cxr = 0 . (47)

Defining the spinor eigenvectors of p p by p p 7~
+a~, (47) reduces to

(Bo ~ Bs)n7-~ = 0, (48)

which is solved by

z, t n+(z+t) for r = r+,
cx (z —t) forr=~ (49)

Then (47) and (48) are solved by choosing either 7 = r+
or w = w . The traveling wave solutions are then

densate to form, at least at the level of approximation
being used, since &om (51) the only constant value of
P2 in the core of the mall is given by P2 = 0, so that
there is no nonvanishing value of P2 which minimizes the
scalar potential in the absence of fermion fields or Px ex-
citations. ] The spectrum described by {p) also includes
scattering states, and we expect, in general, transitions
between states to be possible due to interactions of the
P2 field with the @x or Px fields.

Prom the current density j~ = i($20„gq —$28„$z) me

find ji = 0, jo = 2wp2(x), and js = 2k@2(x), yield-
ing a surface charge density xt = j j dx and a linear

current density i = I j dx, with the charge and cur-
rent associated with the normalizable bound states being
electively confined to the core of the domain wall.

These solutions describe efFectively massless fermions
trapped within the core of the domain wall, traveling
in either the +z direction or in the —z direction. 'Ihe
domain wall is therefore superconducting in that it sup-
ports nondissipative fermionic currents which are associ-
ated with the spinor traveling waves.

From the fermion current densities J,. = @,p"4',;
n (z, t)4, ( )xp" Ixi(x) (mithi = 1, 2), we find J2 = —.Ji
and J&' ——Jz', so that for the total fermion current0,3 0,3

J&' = J,"+ J," weland J' = 0 J03 = 2J' The
associated charge per unit area of the domain wall is

Q, = J J, dx J &2 J, dx and the linear current den-

sity (amount of current per unit width of domain mall)

is I; = f J,'dx = f"~],J,-'dx.

At the same level of approximation, let us examine
the P2 field in the doxnain-wall background by setting

(x) and 4; = 0; i.e. , as a first approximation we
examine the Acids i', and P2 in the absence of one an-
other in the domain-wall background. Then (36) reduces
to

P, + A'P„'(x)P, = 0 .

Writing P, (x, z, t) = p(x) exp[i(kz —xone)] then leads to

—~xV +&'4'(x)V = V'~ (52)

which is a time-independent Schrodinger equation for a
particle of one-half unit of cimass» and &(energy» p in
the presence of a potential well U(x) = m tanh" (xjib).
This attractive potential can accommodate one or more
normalizable bound states, depending upon the values of
the parameters, mith 0 & p & m. Since the 6eld P2 can
be associated with normalizable stationary bound states,
we infer that P2 particles can be localized within or near
the core of the domain wall in the form of domain-wall,
P2 particle bound states, rather than in the form of a
boson condensate. [Note that we do not expect a con

VI. SUMMABY

The 6eld-theoretic structures of topological and non-
topological defects, along with possible interactions and
physical consequences involving such entities, have been
studied in a variety of settings [2]. Here, attention has
been focused upon some of the Beld-theoretic aspects of
a simple topological defect, a domain wall, that arises
from a supersymmetric action. The supersymmetric ac-
tion dictates the forms of the interactions between the
component boson and fermion fields of the theory, and
such a theory can possess an interesting nonperturbative
sector. The Lagrangian for the model presented here has
been constructed from chiral superfields, and a superpo-
tential has been selected that allows the scalar potential
to exhibit a spontaneous breaking of a discrete Z2 reAec-
tion symmetry, without a spontaneous breaking of su-
persymmetry in the vacuum sectors. The spontaneously
broken Zq symmetry allows the existence of a domain-
wall solution which smoothly interpolates between the
distinct supersymmetric vacuum states of the theory. A
simple, but exact, solution describing the domain wall
has been found, boson and fermion mass matrices have
been calculated, and positive mass Dirac and Majorana
spinor eigenstates have been found for each spatial do-
mMn.

In the domain-wall background, approximate analytic
solutions have been found that describe the fermionic
zero modes entrapped by the domain wall. Since these
zero modes have nondissipative currents, the domain
wall has a ferlnionic superconductivity, and can support
fermionic charge and. current. The P2 boson field can
interact with the domain wall, not by forming a con-
densate within it, but rather by the formation of one or
more sets of domain mall, P2 particle bound states de-
scribing a boson concentration within or near the core
of the wall. Scattering states describing wall, P2 interac-
tions also exist. The bound states contribute a bosonic
charge and current to the domain wa, ll, and transitions
between states can occur due to P2 interactions with
the @x and Px excitations. The domain mall therefore
has a fermionic superconductivity, and can carry both
fermionic and bosonic charges and currerits.
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APPENDIX: CONVENTIONS

. (o
(Al)

Some of the notation and conventions are briefly listed
here. A metric g„„ is used with signature (+, —,—,—).
Aside from the metric, the notation, conventions, and p
matrices used conform to those of [ll]. The p matrices
can be written in the form

o y 2 s . ( 1 0

go —1)
The p matrices have the properties

(A5)

A Majorana four-spinor @ is expressed in terms of the
Weyl two-spinors g and g by

with

cr" = (1,o), a" = (1, cr)—,

where 0 represents the Pauli matrices. Then

(A2)
and we use the summation conventions for Weyl spinors
[with v/r = (g )*]

n=1, 2, n=1, 2, (A6)

o . (011 „./ 0 ok)
1 0)' 4

—og 0)'
(A3)

with e metric tensors (for raising and lowering Weyl
spinor indices)

and p5 is given by
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