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A model constructed from chiral superfields is considered, and a simple, but exact, domain
wall solution is found which interpolates between supersymmetric vacuum states. The domain wall
supports fermionic zero modes, for which approximate analytic solutions are found. It is also found
that bosonic bound states localized within or near the core of the wall can exist. The fermionic
superconducting domain wall can therefore be endowed with both fermionic and bosonic charges

and currents.

PACS number(s): 11.27.4d, 12.60.Jv

I. INTRODUCTION

A domain wall [1,2] can arise from a situation wherein
a discrete symmetry is spontaneously broken. The dis-
connected vacuum manifold then contains distinct vac-
uum states, and the field associated with the broken dis-
crete symmetry can settle into different energy minimiz-
ing vacuum states in different spatial domains, with the
formation of a domain wall between these regions. The
field giving rise to the domain wall thus interpolates be-
tween the distinct vacuum states. It is also known that
domain-wall solutions can exist in supersymmetric theo-
ries [3] with interesting gravitational properties [4,5] that
differ from those of domain walls occurring in nonsuper-
symmetric theories [1,2,6,7]. A domain wall may also be
superconducting [8,9] in that it may support a complex
scalar field condensate which forms by the Witten mecha-
nism [10] or fermionic zero modes which propagate along
the wall. If these fields are associated with a U(1) gauge
group, then the wall can acquire an “electromagnetic”
charge and current, giving rise to long-range gauge field
interactions.

Here, attention is focused upon the field-theoretic as-
pects of a domain wall which arises from a supersym-
metric action. In particular, an N = 1 supersymmetric
action constructed from two chiral superfields is consid-
ered. A superpotential is chosen which reflects a discrete
Zy symmetry of one of the superfields. The scalar po-
tential of the model also contains this Z» symmetry, and
the vacuum manifold contains two discrete, but degener-
ate, vacuum states which allow a spontaneous breaking
of this Z, symmetry, along with the formation of a do-
main wall. However, the vacuum states have vanishing
energy, so that supersymmetry remains unbroken in the
vacuum. Because of the nontrivial interactions between
the component fields of the theory, it is found that the
domain wall supports fermionic zero modes which prop-
agate at the speed of light. The domain wall is there-
fore superconducting and can carry fermionic charge and
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current. It is also found that, instead of a bosonic con-
densate, domain-wall-bosonic particle bound states can
exist, with the bosonic field being concentrated within
or near the core of the wall, contributing to a bosonic
charge and current. The domain wall therefore displays
a fermionic superconductivity and can be endowed with
both fermionic and bosonic charges and currents. The
interactions of the wall with fermionic and bosonic fields
can allow transitions to occur among the domain-wall-
boson particle states.

In Sec. II, the supersymmetric model is presented and
the vacuum states are found. The bosonic and fermionic
mass matrices are calculated, and the positive mass
spinor eigenstates are identified. The field equations for
the boson and fermion fields are derived, and a simple,
but exact, solution of the field equations describing a
topologically stable domain wall is given in Sec. ITI, where
it is seen that the Majorana and Dirac positive mass
spinor eigenstates in two different domains are related
by a relative factor of 5. It can also be noted that the
effective fermion masses decrease near the domain wall,
implying an attraction of fermions toward the wall. An-
alytic solutions are found for the fermionic zero modes in
Sec. IV, and the existence of domain-wall-boson particle
bound states is examined in Sec. V. A brief summary of
the results forms Sec. VI.

II. THE MODEL
A. Action and Lagrangian

Consider a supersymmetric model constructed from
two chiral superfields ®;, ¢ = 1,2, with component fields
(¢is s, F3), with the F; representing the auxiliary boson
fields. The boson fields ¢; and F; are complex scalar
fields and each of the fermion fields 7); is a Weyl two-
spinor. The superfields have a superspace representa-
tion [11] given by

®i(2) = ®i(y,0) = bi(v) + V200 (v) + 0°Fi(y) , (1)
where y* = z* + ifo#0 and 6% = 00 = 0%0,, o = 1,2.
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A metric g,, with signature (+,—,—,—) is used. (See
the Appendix for a brief description of the conventions
and v matrices.) The supersymmetry transformations
are given by

§¢i(z) = —V2Ei(e) (2)

Sia(2) = —V2[aFi(2) +i(0"€)abudi(z)] ,  (3)

6F;(z) = V28,1 (x)o"E | (4)

where £ is a constant Weyl spinor.
The supersymmetric action is

I= / d*zL = / d*z d*0d%00;®;

+ / dz d20W (B) + / &z 2OW*(3Y),  (5)
where a summation over the index 7 is implied, and W (®)
is the superpotential. The superpotential is chosen to be

W = I2@, (97 — v?) (6)

with A and v being positive real-valued constants.
The auxiliary fields can be eliminated so that the La-
grangian can be written as [11,12]

L=Lgkg+ Ly -V, (7)

where Lkg contains the kinetic terms, Ly contains the
Yukawa interactions, and V is the scalar potential. The
complex scalar field ¢;(z) can be displayed in terms of
real scalar fields A;(z) and B;(x) as

$i(z) = [ i(2) +iBi(z)] (8)

and Majorana four-spinors ¥, (z) and W,(x) are defined
by

qlz:(%l“:)’ Zzlazﬁa:1$2’a:1’2‘ (9)

The kinetic term is

Lgg = 0"¢;0,¢: + [( B,ui) ot — Yot 8utp;] ,  (10)

with a sum over i. The Yukawa part takes the form

2 2 *
Ly = =4 (0 ) ¥ = 4 (357 ) 9

0p;0¢; 0¢:00;
= —%(Yu%% + K;'Jz";;)
A P2v191 + 2h191%2 + P3Y1th1 + 20 1)
(11)

with a sum over 7 and j, and

W
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The scalar potential V', obtained from the superpotential
W, is

(361 —v?) (81 —v?) + |d12]7}

_ax {[— (42 - BY) -]’}
+1X2{A3B? + A2A} + AIB} + A3B} + BIB}} .
(13)

By (9)-(11) the terms Lxg and Ly, in terms of the Ma-
jorana spinors ¥; and ¥,, become

Lxg = LEE + % (‘i’i’)’“aﬂ\]?l =+ ‘i’g’y”a“‘l/z) , (14)
A 15
Ly = \/— [1(A1 +75B1) P2 + W1 (As + v5B2) ¥4
= E [2¢1(¢’1PL\I’2) + 2¢; (V1 Pr¥3)]
A _ .=
+2 [92(T1PLYy) + 63(11PrT)] (15)
where
Lig = 0*¢10,¢1 + 0*$30,.62
= 3[(8,41)% + (8uB1)* + (8, A42)* + (8.B2)%] ,
(16)
and P, g are the chiral projectors defined by
. 10
Pp=1(1-iys) = (0 O)’
. 00
PRZ%(1+2’75)=<01) s (17)

with the properties (Pr g)? = Pr g and P + Pg = 1.

B. Vacuum states

The vacuum states of the theory, obtained from the
scalar potential V, satisfy the conditions

v
=0,
(5%).. -
(as9%)... >
061061 ) 4, ~

(s5595)...
863082 ) ,,, =

From (13) and (18), the vacuum states are therefore given
by

(18)

¢1v = v, ¢2’v =0 ) (19)

or, equivalently,
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Ay, =+V2v, By = Az, =By, =0. (20)

The discrete Z; reflection symmetry (associated with the
field ¢,) of the scalar potential V is therefore sponta-
neously broken by the vacuum. Spatial regions that are
separated by more than a coherence length & ~ (mg, ) ™!
can accommodate different vacuum configurations of the
field ¢1, so that ¢; can settle into a ¢; = +v configura-
tion in some domains and into a ¢; = —v configuration
in other domains, with some region between different do-
mains where ¢; = 0, which will locate a domain wall.
However, from (13) and (19) it is seen that in the vac-
uum states V' = 0, indicating that the vacuum states
respect supersymmetry, so that the supersymmetry of
the theory is unbroken in the vacuum region outside of a
domain wall.

C. Mass matrices

In terms of the complex scalar fields, the boson mass
matrix can be written in the form

2 _ [ M} ME, s _ [ Xij Zi
MB - (MZZ1 M222 ) Mij - Zgj Xij ’ (21)

where

o%v 92V
X = (W) y Zij = (W) , o (22)

with ()vac indicating evaluation in vacuum. From (13)
and (19) it is found that M3 is diagonal with M2 =
m?28;;, where m = Av is the mass of each boson field.
The mass for each of the real scalar fields A; and B; is
m.
The fermion mass matrix which is associated with the
spinors ¢; is Mp;; = (Y;j)vac, Which gives, by (11) and
(19),

o= (8,%8) 7 (& 5F) o

(23)

From (23) we have (M2);; = m?4;; and the supertrace
relation is satisfied, with Tr(M3) = 2 Tr(MZ) = 4m? .
We can notice that the spinors 11,2 (or ¥y, ¥5) are not
the mass eigenstates since they do not diagonalize Mp.
Also, we will see that the positive mass Weyl spinor states
in two different domains are related by a phase rotation.

D. Spinor mass eigenstates

From the Yukawa part of the Lagrangian Ly given
by (11), along with the expression for the fermion mass
matrix in (23), it can be seen that different spinor states
are required in different ¢;, domains to yield positive
fermion masses.

1. The vacuum state with ¢, = +Hv

For ¢y, = 4+v, ¢2 = 0, Ly gives rise to the fermion
mass term

Lﬁass = _m(d)le + "/—)1";2) ) (24)

and we are therefore led to define a mass eigenstate Dirac
spinor

w, a
U= (Dg) = (%lg ) = PpU; + Pr¥,,
¥ = i(w¥, @) , (25)
so that (24) becomes

LY =imI¥ (26)

mass

which describes a Dirac fermion of mass m.
We can also define the Weyl spinors a and 3 by

—1

a=—\j—§(wl+¢z), B= lh—va), (20

and Majorana spinors M; and M, by

we (i) e (§),

so that (24) can also be written as

LE,.. = —im[(aa + aa) + (B8 + BB)]
= Lim(My My + MaMs) (29)

which describes two Majorana fermions, each of mass m.
The Majorana spinors M; > are related to the Majo-
rana spinors ¥, 5 by

1 1
M, = — (¥, 4+ ¥,), My;=— Uy — ¥y),
1 \/i( 1 2) 2 \/575( 2 1)

(30)

1
U, = — (M1 +vsM3y), ¥y= — vsMs) .
1 \/5( 1T 2) 2 Vs 2)

1

— (M
vz
The Majorana spinors M;» are related to the Dirac
spinor

and its conjugate

by
1 —1
M, = ——=(¥+9,.), My=—(¥-—-7,),
1 2( ) 2 \/5( )
(31)

1 . 1 .
= —(M1 +2M2), ‘I’c = —2(M1 - 'LMz).

Y=1



52 SUPERCONDUCTING DOMAIN WALLS FROM A ...

2. The vacuum state with ¢;, = —v

For the vacuum state labeled by ¢1, = —v, ¢2, = 0,
Ly gives rise to the fermion mass term

LE = +m(12 + P192)
= —m(P19y + P193) - (32)
We can therefore identify

Y =iy, Ph =i, ¥y =—iy, Pp=—iPs. (33)

Then the positive mass four-spinor eigenstates in this
vacuum sector are

v = v, \I’:; =v5Y,, M{,z = '75M1,2 ) (34)

with ‘Illl’z = ’)’5‘1’1’2.

In each vacuum sector there is a Dirac particle of mass
m, although the associated Weyl spinors differ by a con-
stant phase and the four-spinors differ by a factor of ~s.
(The kinetic term Lkg is invariant under the rescaling
Mz = vsMy2.)

III. THE DOMAIN WALL
A. Field equations

The field equations for the complex scalar fields ¢; and
the Majorana spinors ¥;, obtained from the Lagrangian
given by (13)—(16), are given by

Oy + A2[285 (4] — v7) + |p2|*b1] — iAT1 Pp¥, =0,

(35)
21 |2 A
D(ZSz + A l¢1| ¢2 - E‘I’IPR‘PI =0 ) (36)
Y0, ¥ 1+A[2(¢1PL + ¢1Pr)V>
+(¢p2PL + ¢3Pr)¥1] =0, (37)
Y8, %2 + 2X(¢1PL + ¢1Pr)¥1 =0 . (38)

where 0 = 99, = 82 — V2.

B. Domain-wall solution

An exact solution of the field equations which describes
a domain wall can be obtained by setting ¢, = 0, and
¥; = ¥, = 0. By (35) the equations of motion for the
real scalar fields A; and B; are

Az 1 2 2 2 2
DAl + ?Al E(Al - Bl) — v+ Bl

Il

0, (39

A2 1
OBy + 5By [Af - 5(Ai — B?) + vz} =0. (40)

Upon setting B; = 0, (39) collapses to

1099
OA4; + 12%4;(A] - 20%) =0. (41)
The static solution is just the ¢* kink solution
T 2 2
Aw(m)—-\/ivtanh (E)’ w = o (42)
which describes a domain wall of thickness w = 2/m

located at £ = 0, interpolating between the supersym-
metric vacuum states with ¢;, = +v at * = 400 and
¢1, = —v at T = —oo0.

Upon passing through the domain wall from a posi-
tion (z,y,2) to a position (—x,y,z) we have ¢, (z) —
bw(—Z) = —¢w(z), where ¢y (z) = (1/v/2)Aw(z), and

for the physical spinor states
U(z) = ¥(—z) = ¥ (z) = v5¥ (), M;(z) = vsM;i(z) .

Also, from (15) and (25) we notice that the Dirac fermion
mass vanishes in the core of the domain wall at z =
0, from which we can infer that upon collision with the
domain wall, fermions will be attracted inward toward
the core.

IV. FERMIONIC ZERO MODES

The fermion fields become effectively massless in the
core of the domain wall, allowing fermionic zero modes
to form. Consider the fermion fields in the domain-wall
background with ¢2 = 0 and ¢1 = ¢, (z). From the
fermionic field equations given by (37) and (38) we obtain

PO,y = —22y Tz, Y0, Uy = —2X¢, Ty . (43)

Let us first look for static solutions ¥; = ¥9(z). Multi-
plying (43) by 4! [with (2°, 2!, 22, 23) = (t,z,y, 2)] yields

8109 = —22¢, 7 09, 8,TY = —2X¢, 7 WY . (44)

A solution is obtained for ¥9 = v ¥{ (and therefore ¥ =
~109) so that (44) becomes

0,99 = —2)¢,, 99 . (45)

The solutions are
T(z) = 7 exp[—2) / bu(a')dz']
0

— Jeosh (Z)] " = 7 [eosn (2)] 1, ae)

w

() =" ¥i(z) ,

where 7 is an arbitrary constant Majorana spinor. These
solutions decrease exponentially away from the core of
the wall and therefore describe fermion fields concen-
trated within the wall. As z — 0, then v#8,¥; — 0,
so that the fermions are effectively massless in the core.

Traveling wave solutions can be constructed by using
U, = 410, with U;(z,2,t) = a(z,t)¥?(z), from which
we obtain, by using (43) and (44),
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(8o — ¥°~383)ar =0 . (47)

Defining the spinor eigenvectors of 7°v® by v%y3ry =
+74, (47) reduces to

(60 F 83)(173: =0 y (48)

which is solved by

o) ={ ) M @)

Then (47) and (48) are solved by choosing either 7 = 7
or 7 = 7_. The traveling wave solutions are then

Uy (z,2,t) = a(z,t)¥(z), Ua(z,z,t) =y Ui(z,2,t) .
(50)

These solutions describe effectively massless fermions
trapped within the core of the domain wall, traveling
in either the 4z direction or in the —z direction. The
domain wall is therefore superconducting in that it sup-
ports nondissipative fermionic currents which are associ-
ated with the spinor traveling waves.

From the fermion current densities J!' = U, y*¥,; =
a?(z, ) (z)y* 2(z) (with ¢ = 1,2), we find J} = —J}
and Jg,s = Jf’s, so that for the total fermion current
Jr o= J¢ + JY we find J = 0, J%® = 2J)%. The
associated charge per unit area of the domain wall is

Q;: = ffooo Jiodw /7 f:uu/jz Jiod:c and the linear current den-

sity (amount of current per unit width of domain wall)

is I; = [%°_J3dz ~ inuu/iz Jidz.

V. ¢ PARTICLE BOUND STATES

At the same level of approximation, let us examine
the ¢, field in the domain-wall background by setting
¢1 = ¢ (x) and ¥; = 0; i.e., as a first approximation we
examine the fields ¥; and ¢, in the absence of one an-
other in the domain-wall background. Then (36) reduces
to

Ogg + A2¢2 (z)p = 0 . (51)

Writing ¢2(z, 2,t) = ¢(z) exp[i(kz — wt)] then leads to

—0ip + Nl (2)p = pie, wP=w’—k*,  (52)
which is a time-independent Schrédinger equation for a
particle of one-half unit of “mass” and “energy” u? in
the presence of a potential well U(z) = m? tanh®(z/w).
This attractive potential can accommodate one or more
normalizable bound states, depending upon the values of
the parameters, with 0 < u < m. Since the field ¢ can
be associated with normalizable stationary bound states,
we infer that ¢, particles can be localized within or near
the core of the domain wall in the form of domain-wall,
¢2 particle bound states, rather than in the form of a
boson condensate. [Note that we do not expect a con-
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densate to form, at least at the level of approximation
being used, since from (51) the only constant value of
¢2 in the core of the wall is given by ¢2 = 0, so that
there is no nonvanishing value of ¢ which minimizes the
scalar potential in the absence of fermion fields or ¢; ex-
citations.] The spectrum described by {u} also includes
scattering states, and we expect, in general, transitions
between states to be possible due to interactions of the
¢2 field with the ¥; or ¢, fields.

From the current density j, = i(¢30,¢2 — ¢20,¢3) we
find j' = 0, j° = 2wp?(z), and j* = 2ke?(z), yield-
ing a surface charge density ¢ = ffooo j%dz and a linear
current density ¢ = fix;o j3dz, with the charge and cur-
rent associated with the normalizable bound states being
effectively confined to the core of the domain wall.

VI. SUMMARY

The field-theoretic structures of topological and non-
topological defects, along with possible interactions and
physical consequences involving such entities, have been
studied in a variety of settings [2]. Here, attention has
been focused upon some of the field-theoretic aspects of
a simple topological defect, a domain wall, that arises
from a supersymmetric action. The supersymmetric ac-
tion dictates the forms of the interactions between the
component boson and fermion fields of the theory, and
such a theory can possess an interesting nonperturbative
sector. The Lagrangian for the model presented here has
been constructed from chiral superfields, and a superpo-
tential has been selected that allows the scalar potential
to exhibit a spontaneous breaking of a discrete Z; reflec-
tion symmetry, without a spontaneous breaking of su-
persymmetry in the vacuum sectors. The spontaneously
broken Z, symmetry allows the existence of a domain-
wall solution which smoothly interpolates between the
distinct supersymmetric vacuum states of the theory. A
simple, but exact, solution describing the domain wall
has been found, boson and fermion mass matrices have
been calculated, and positive mass Dirac and Majorana
spinor eigenstates have been found for each spatial do-
main.

In the domain-wall background, approximate analytic
solutions have been found that describe the fermionic
zero modes entrapped by the domain wall. Since these

zero modes have nondissipative currents, the domain

wall has a fermionic superconductivity, and can support
fermionic charge and. current. The ¢2 boson field can
interact with the domain wall, not by forming a con-
densate within it, but rather by the formation of one or
more sets of domain wall, ¢, particle bound states de-
scribing a boson concentration within or near the core
of the wall. Scattering states describing wall, ¢, interac-
tions also exist. The bound states contribute a bosonic
charge and current to the domain wall, and transitions
between states can occur due to ¢, interactions with
the ¥; and ¢; excitations. The domain wall therefore
has a fermionic superconductivity, and can carry both
fermionic and bosonic charges and currents.
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APPENDIX: CONVENTIONS

Some of the notation and conventions are briefly listed
here. A metric g,, is used with signature (+,—,—,—).
Aside from the metric, the notation, conventions, and -~y
matrices used conform to those of [11]. The v matrices
can be written in the form

0 o
“_
=i T)

ot = (1,6), o =(1,-35),

(A1)
with
(A2)
where & represents the Pauli matrices. Then
0o _ . 01 k _ 0 Of _
’Y_z<1 0)’7"‘2 —oy 0 3k_17273a
(A3)

and s is given by

.1 0
¥ = vy’ =i ( 0 1 ) (A4)
The « matrices have the properties
"7} = —2¢"", {+¥*,7s} =0,
v=— (6)?=-1. (A5)

A Majorana four-spinor ¥ is expressed in terms of the
Weyl two-spinors 1 and 3 by

_ | Ya
= | pa
and we use the summation conventions for Weyl spinors

[with 9% = (%)*]

Ep =%, EP=E&9% a=1,2, a=1,2, (A6)

with € metric tensors (for raising and lowering Weyl

spinor indices)

(Eaﬂ) = (Edg) = iUza (Eaﬁ) = (Sdf)) = —i02,

e =1=¢l%, (AT)

(1] A. Vilenkin, Phys. Rep. 121, 263 (1985).

[2] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and
other Topological Defects (Cambridge University Press,
Cambridge, England, 1994).

[3] M. Cvetic, F. Quevedo, and S-J Rey, Phys. Rev. Lett.
67, 1836 (1991).

[4] M. Cvetic and S. Griffies, Phys. Lett. B 285, 27 (1992).

[5] M. Cvetic and D. Youm, Phys. Rev. D 51, 1617 (1995).

[6] A. Vilenkin, Phys. Lett. 133B, 177 (1983).

[7] J. Ipser and P. Sikivie, Phys. Rev. D 30, 712 (1984).

[8] G. Lazarides and Q. Shafi, Phys. Lett. 159B, 261 (1985).
[9] R. MacKenzie, Nucl. Phys. B303, 149 (1988).

[10] E. Witten, Nucl. Phys. B249, 557 (1985).

[11] See, for example, P. Srivastava, Supersymmetry, Super-
fields and Supergravity: An Introduction (Hilger, London,
1986).

[12] See, for example, J. Wess and J. Bagger, Supersymmetry
and Supergravity, 2nd ed. (Princeton University Press,
Princeton, 1992).



