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Thick domain vvalls in a polynomial approximation
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Relativistic domain walls are studied in the framework of a polynomial approximation to the
field interpolating between diA'erent vacua and forming the domain wall. In this approach we can
calculate the evolution of a core and of a width of the domain wall. In the single cubic polynomial
approximation used in this paper, the core obeys the Nambu-Goto equation for a relativistic mem-
brane. The width of the domain wall obeys a nonlinear equation which is solved perturbatively.
There are two types of corrections to the constant zeroth order width: the ones oscillating in time
and the corrections directly related to curvature of the core. We find that curving a static domain
wall is associated with an increase of its width. As an example, the evolution of a toroidal domain
wall is investigated.

PACS number(s): 11.27.+d

I. INTRODU CTION

Recently one observes the rapidly growing interest
in the time evolution of topological defects in (3+1)-
dimensional space-time. This subject is important for
many branches of physics. Without attempting to
present here a complete list, let us mention vortices in
superconductors [1] and in superfiuids [2], defects in liq-
uid crystals [3], magnetic domain walls 4], cosmic strings
[5,6], and a fiux tube in @CD [7]. While the evolution of
topological defects in (1+1)-dimensional space-time has
been rather well understood, in 3+1 dimensions relatively
little is known, and the problem is actually a formidable
one.

The type of equations Rom which one attempts to cal-
culate the evolution of topological defects depends in an
essential manner on the physical context. In condensed
matter physics one uses, e.g. , diffusion-type equations
[8] or nonlinear Schrodinger-type equations [2]. For cos-
mic strings in a negligible gravitational field or for parti-
cle physics Aux tubes, one should use Poincare-invariant
wave equations.

Our paper is devoted to dynamics of domain walls gov-
erned by a Poincare-invariant wave equation. In this
case, several analytical approaches have been made (see,
e.g. , [9—12]) as well as numerical calculations (see, e.g. ,

[13,14]). They have given insight into the dynamics of
domain walls, and have revealed the richness and in-
tricacy of it. Our motivation for studying the dynam-
ics of relativistic domain walls is of rather mathematical
character —the relative simplicity of the pertinent field
equations makes them a convenient testing ground for
new methods of calculating the evolution of topologi-
cal defects. Nevertheless, direct physical applications are
also possible. Relativistic domain walls appear in a Geld-
theoretic approach to cosmology, and in particle physics
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(e.g. , the surface of a quark bag can be regarded as a do-
main wall). Moreover, the polynomial approximation we
develop in this paper can also be applied to nonrelativis-
tic domain walls observed in condensed matter physics-
no significant changes are required.

Until now, the main line of analytical approaches to the
description of the dynamics of a domain wall has been to
reduce the initial (3+1)-dimensional field-theoretical sys-
tem to an efkctive theory of a classical, relativistic mem-
brane. This approach, called the effective action method,
is very appealing conceptually, and it is correct in princi-
ple. However, because of the complexity of the pertinent
field-theoretic equations, it is rather diKcult to carry out
the necessary calculations without shortcuts, which in
turn introduce some uncertainty about the final result.
For a critical discussion of the effective action method we
refer the reader to Ref. [15]. For the most recent appli-
cation of the effective action method to domain walls, see
[16].

our opinion is that at the present stage of the subject
one should develop and refine various methods of inves-
tigations of the dynamics of domain walls. It seems that
because of the enormous complexity of the full, (3+1)-
dimensional, nonlinear Geld-theoretic dynamics involved
it will be a long time before we can analytically or nu-
merically calculate the evolution of a generic domain wall
without any difBculty.

In the present paper we generalize the method of anal-
ysis of the evolution of relativistic domain walls proposed
in [17]. The main characteristic feature of this approach
is a simple, approximate polynomial ansatz for the field
inside the domain wall, while outside of it the field has
exact vacuum values. The coeKcients of this polynomial
are calculated &om the Geld equation and from bound-
ary conditions. Actually, this approximation can be re-
garded as an application of splines [18]. In Ref. [17]
this approach has been applied only to cylindrical and
spherical domain walls. In the present paper we apply
the polynomial approximation to generic smooth domain
walls —this is presented in Sec. II. We approximate the

0556-2821/95/52(2)/1082(14)/$06. 00 Qc1995 The American Physical Society



THICK DOMAIN WALLS IN A POLYNOMIAL APPROXIMATION 1083

field inside the domain wall by a cubic polynomial in a
transverse, comoving coordinate. We obtain a Nambu-
Goto-type equation for the core of the domain wall, and
a nonlinear equation for the width of the domain wall.
Also, a perturbative scheme for solving the latter equa-
tion is presented. It is based on dividing the width into
two components: the one oscillating with characteristic
&equency given by the mass of the scalar field and the
other one directly related to curvature of the core.

In the next section we rewrite the Nambu-Goto equa-
tion and a formula for the width of the domain wall in
terms of local curvature radia and velocity perpendicular
to the core. This gives a rather nice and useful insight
into the dynamics of the domain wall. We show that a
force acting on a small piece of the core can be regarded
as being due to surface tension. We also show that curv-
ing a static domain wall is associated with an increase of
its width.

In Sec. IV we calculate the energy of the domain wall.
We find that the energy density depends on the curva-
ture of the core, and that nonuniformities of the width
increase the energy density. We also find, rather surpris-
ingly, that curving the domain wall seems to decrease its
energy. These results, as well as all others in this pa-
per, are obtained for slightly curved domain walls; our
approximations break down when the curvature radii be-
come comparable with the width of the domain wall.

Next, in Sec. V, we consider as an example the evo-
lution of a toroidal domain wall. We find two types of
evolution of this domain wall.

Section VI contains a suggestion on how to improve
our approximate ansatz for the scalar field, and also some
ending remarks.

In the Appendix we discuss the accuracy of the poly-
nomial approximation.

II. CENEB,AL FOB.MALISM FGB, THE
EVGLU TION

OF THE DOMAIN WALL
IN THE POLY'NGMIAL APPROXIMATION

time the field is equal to one of the two vacuum values
in some region of the space, and is equal to the other
vacuum value in the complementary part of the space,
except for the border layer between the two regions (the
domain wall), where the field smoothly interpolates be-
tween the vacuum values. It is clear that at each instant
of time the field 4 vanishes somewhere inside the bor-
der layer. We assume that the locus of these zeros is a
smooth surface S. We shall call it the core of the domain
wall. The well-known example of the domain wall, with
the static core given by the (x, x ) plane, is given by the
exact, static solution of Eq. (2),

(xs l
C =eo tanhi

(2~o)

where lp = M . The width of this domain wall is of the
order /p, and the energy density is exponentially localized
around the (x, z ) plane.

For a generic domain wall, space-time parametrization
of the world volume Z of the core (a three-dimensional
manifold embedded in Minkowski space-time, whose time
slices coincide with S) can be chosen as

where 7 coincides with the laboratory kame time x, and
o, 0 parametrize the core S at each instant of time.

As usual, we introduce a special coordinate system
(w, o. , o, () in a vicinity of the world volume Z, comov-
ing with the core [9]. The new coordinates (w, o, o', ()
are defined by the forrriula

x" = x "(7,o', o ) + (n" (~, o', o.2),

where x" are Cartesian laboratory-kame coordinates in
Minkowski space-time, and (n") is a normalized space-
like four-vector, orthogonal to the Z (in the covariant
sense: i.e. ,

In this section we would like to generalize the formal-
ism presented in [17],where only cylindrical and spherical
domain walls were considered, and to present the corre-
sponding, approximate solution of the Geld equation.

We will investigate domain walls in the well-known
model (see, e.g. , [6]) involving only a single, real scalar
field 4' with the Lagrangian

1 „„A( 2 M2)I = — g„B"4'0"O———
i

@
2 q 4A)

where (g~ ) = diag( —1, 1, 1, 1), and A, M are positive
constants. The corresponding field equation is

(2)

n„X" =0, (6)

where a = 0 corresponds to w, a = 1, a = 2 correspond
to o'i, o2, and A" = MC"/07', etc. The four-vectors
X,X 1,X 2 are tangent to Z. For points lying on
the core ( = 0, and the parameter w coincides with the
laboratory-frame time x . For ( g 0, w is not equal to
the laboratory-kame time x . The advantage of using
comoving coordinates is that the world volume Z is de-
scribed by the simple condition ( = 0. Notice that the
de6nition (5) implies that ( is a Lorentz scalar.

The next step is to write Eq. (2) in the new coordi-
nates. It is convenient to introduce extrinsic curvature
coefFicients K b and induced metrics g b on Z:

+Nb —A@X ~b) g b
——X"X„b,

The vacuum values of the field 4 are equal to +Cp,
where Oo = M/2~%. The domain wall arises if at a given

where a, b = 0, 1, 2. The covariant metric tensor in the
new coordinates can be readily calculated, and it can be
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written in the form

C]= 0 (8)

from formula (9) that g—G, where G = det[G p], is
given by the formula

Q—G = —(g—g)
' detM,

where o., P = 0, 1, 2, 3,
coordinate, and

o. = 3 corresponds to the ( where as usual g = det[g b]. detM can be explicitly
evaluated in terms of K g and g g..

G b ——M,g'"Mgb, M, —:g, —(K,.

Thus, Ggt. = 1, Gg = 0 [a=0,1,2, as in (6)]. It follows

detM = h(~, cr', 02, () g(~, 0', 02),

h(7., o, o. , () = 1 —(K + —( (K Kb —K Kb) —
, ( e b—,e"'~KqK, K~.

In formula (ll) we have noted that g can depend on w, cr, o . Thus,

(13)

For raising and lowering the latin indices of the extrinsic curvature coeKcients we use the induced metric tensors
g~~, g~~. The inverse metric tensor G ~ is given by

~here

Gab (M
—1)ac (M

—1)db

A simple algebraic calculation gives an explicit formula for (M i) ':

(M-')- = —' (g-[1 —(Kt+ ,'g'(KbK„" —-KbK,')]+ t, (i —gK )Kb-+ g'K„K')

(this is just the matrix inverse to [M b]; by definition it has upper indices). In general, the coordinates (r, o, cr, ()
are de6ned locally, in a vicinity of the world volume E. The allowed range of the ( coordinate can be determined
&om the condition h & O. A detailed discussion of the region of validity of the comoving coordinates has been given
in [17]. In the comoving coordinates the field equation (2) has the form

M
(17)

The basic feature of our approach is the approximate cubic polynomial ansatz for the 4 Geld inside the domain
wall. We assume that

4(r, o,o, () =
& A(+

p

for $&(p,
2B(2 + s, C(s for —(i & ( & (p,

for ( & —(i.
(18)

Here (p, (i, A, B, and C are as-yet unknown functions of
w, cr, and o. . We assume that (p, —(i lie in the allowed
range of the ( coordinate —roughly speaking this is true
when the width of the domain wall is small in comparison
with radii of curvature of the core in the local rest kame
of the considered piece of the care.

Notice that +@p are exact solutions of Eq. (2). They
are defined also outside of the region of validity of the
comoving coordinates. Therefore, formula (18) actually
defines the Geld C in the whole space-time.

The ansatz (18) implies that in fact we introduce
boundaries of the domain wall. The outer boundary X~+~

in the comoving reference kame is deGned by the formula

X(+l(v, o, cr ) = X'(w, cr, o ) +(p(r, o, o ) n(w, cr, o ),

while, for the inner one (X( l),

x( ) (~, ~', ~') =X (~, ~', ~') —(, (~, ~', ~') n(~, ~', ~').

Here n is the spatial part of the four-vector (n").
Inserting the cubic polynomial into Eq. (17) and equat-

ing to zero terms proportional to the zeroth and first
powers of ( we obtain the recurrence relations



52 THICK DOMAIN WALLS IN A POLYNOMIAL APPROXIMATION

B=AK, l'l 3 +
~

——I,'K.'K;
~

2 —-2' = o.'J (27)

C = — l'l A+ (K;K.' —2~+,')A+ K:a, (2o)

where

(3)
~ g ab

g—g Bu I Dub)
(21)

is the three-dimensional d'Alembertian on the world vol-
ume Z of the core. Of course, the cubic polynomial (18)
does not obey Eq. (17) exactly. The leftover terms in
Eq. (17) are of the order ( and higher. We assume that
these terms are not important. We will discuss the prob-
lem of accuracy of our approximation in the Appendix.

We also require that the field 4 be continuous ev-
erywhere, in particular at the boundaries, i.e. , for ( =
(p ( = —(y. Then, by a standard reasoning, we deduce
from Eq. (17) that also Bg@ is continuous at the bound-
aries. The second derivative 0&4 is not continuous at the
boundary, in general. The conditions of continuity of C

and Og@ at ( = (p and ( = —(q give

Because g as well as LDK&K are dimensionless, all co-
efficients and variables in Eq. (27) are dimensionless.

Certain solutions of Eq. (27) for A can be found in
an approximation scheme which is a generalization of a
perturbative expansion proposed in [17] in the case of
cylindrical and spherical domain walls. In that paper
one can find a detailed motivation for the subsequent
steps; in the present paper we will only briefly describe
the scheme. Our scheme probably gives only a certain
class of solutions —there might be other solutions which
cannot be obtained. in this way. Roughly speaking, the
idea is to restrict our considerations to cases such that
the dimensionless extrinsic curvature LDK&K is close to
zero, and to expand A in non-negative powers of it. In
the zeroth-order approximation Eq. (27) has the constant
solution

(2S)

(p (1

A= —,B=O, C=—3 40 340
'I 'I

Q
(23)

The condition B = 0 together with relation (19) gives
the equation of motion for the core S:

K =0. (24)

It can be shown that this equation is equivalent to the
Nambu-Goto equation

There are also other solutions in this order, e.g. , the ones
having the form of waves propagating along the core. So-
lutions of this latter type are time dependent and have a
characteristic frequency of oscillations & 1, where 1 is the
(dimensionless) mass of the A field. Notice that this mass
coincides with the mass of the 4 field in units of l0 . We
assume also that LDK K& and its derivatives are smooth
functions of &, 0,0, and are such that the derivatives
Bb(lpK Kb ) are much smaller than the function /pK Kb
itself. In this case the term lpK"Kb A present in Eq. (27)
generates a smooth, nonoscillating component N in A.
We introduce the following perturbative ansatz for A:

~'~x~ = 0 (25) A= 1+0+N, (29)

for a relativistic membrane. Thus, in the approximations
we have made, the core can be regarded as the Nambu-
Goto-type relativistic membrane.

Relations (20), (23) give also the (2+1)-dimensional,
nonlinear wave equation

where 0 denotes the oscillating component —the ampli-
tude of these oscillations is assumed to be of the order
lpK Kb . Equation (27) can be split into two equations:

~'lA+ ~~ —KbK'
~

A — A'=O
qz' (26)

i'ln =
~

1+ tp2KbK;+ 3m+ -~'
~

n+ -~n2

for A(w, o, 0 ) = &'. A is proportional to the inverse
&o

width of the domain wall (2(p) measured in the natural
length unit L0, and it can be regarded as a scalar field
defined on the core of the domain wall. Let us note here
that 2(p is the width in the comoving coordinates. Its
transformation to the laboratory kame is not trivial: It
includes Lorentz contraction and other changes. This
transformation has been discussed in detail in Ref. [17]
in the case of a cylindrical domain wall.

Equation (26) can be written in terms of dimension-
less variables: Introducing dimensionless 7—:T/Ip and
o = cr /lp, Op = 8/Ow, etc. , we have

Q2 + Q3
2 2

(3o)

N = N —L~K K~ —L~K K~N ——N

N~'~ = —L'X.'X'.
0 a 6 (32)

The term ~ ~N is by assumption regarded as small
in comparison with the zeroth-order contribution to ¹

Therefore, Eq. (31) implies the following result for the
lowest-order contribution N& ~ to ¹
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From Eq. (30) we obtain the equation for the zeroth-
order oscillating contribution 0( ) to 0:

III. DY'NAMICS OF THE CORE
IN TERMS OF LOCAL CURVATURES

(3)g(~) g(~) (33)

The detailed form of this equation depends on the met-
ric g p. Because the &equency of oscillations implied by
Eq. (33) coincides with the mass of the scalar field (mea-
sured in units of lp ), the presence of these oscillations is
quite natural. The domain wall with an oscillating width
can be regarded as a perturbation of a proper domain
wall, which by definition does not have the oscillating
component.

Equation (24), which governs the evolution of the core
of the domain wall, has a rather abstract form. In order
to bring its contents to the surface, we will write it in
appropriately chosen local coordinates w, o, o on the
world volume Z of the core S. We shall call them the
physical coordinates.

As the ~ coordinate we take the one present in for-
mula (4), without any further specification, while the co-
ordinates w, o, o are now de6ned in the vicinity of an
arbitrarily chosen point Xp(7) of the core S in a spe-
cial manner explained below. For X—:(Xi,X,Xs) in
formula (4) we write

X(7', 0, o' ) = Xp(w) + ex(7)o + e2(v)a + —ei(7) x e2(v) + + 0 (o'),
1 (0')' (~ )' (,)
2 Rx ~ B2 ~

where x denotes the vector product, and ei, e2 are unit vectors specified below. For our purposes, the terms Df ) (o.)
(third-order terxns in o', o. ) do not have to be written explicitly. It is clear that cr = 0 = rr corresponds to the

+

point Xp(w), and that the vectors X i, X 2 tangent to S at Xp(7) are equal to ex(w), e2(w), correspondingly. From
conditions (6) we obtain that, at Xp(7),

mXp
4

1 —(Xpm)' 1 —(mx, )2

where

7A—:ey X cg (36)

is the unit vector normal to S at Xp(w) and Xp = dXp/d7. The extrinsic curvature coefficients at Xp(w) are equal to

Kpp

~ ~

Xpm

1 —(mXp)2
%pi ——K,.p ——

eim,

1 —(mXp) 2

Kg2 ——0, Kgg —— (37)

as follows from the definition (7). The fact that Kx2 van-
ishes means that the tangent vectors e~, e2 have been cho-
sen in directions tangent to the circles of main curvatures
of the surface S at the point Xp(v). The parametriza-
tion (34) is the most natural local paraxnetrization of the
core &om the viewpoint of geometry of surfaces in three-
dimensional space.

As for the choice of Xp(w) at different times 7, there is
a large &eedom due to the reparametrization invariance
of Eq. (24). Ixi physical terms, this invariance means
that the core S is a "structureless" surface in the sense
that translations along S are not observable. The natu-
ral choice is that Xp(v) is a smooth function of r. Apart
from this, Xp(v) for different w's can be chosen almost

Xp(r)ex(~) = Xp(~)ez(~) = 0; (38)

i.e., the motion of the point Xp(v) is always in the di-
rection perpendicular to S. Taking (38) into account, we
can write

arbitrarily. Even the condition X2 & 1 does not have
to be imposed, because the core of the domain wall is
merely a mathematical construct; in fact there is numer-
ical evidence that in a related case of vortices the core
can move with superluxninal velocity; see, e.g. , [19]. We
will use this large freedom to choose Xp(v) for different
w in such a manner that
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Xp(7.) = v(~)m. (39)

Then, simple calculations show that Eq. (24) reduces to
the relation

last formula, the vectors X', , I", are the vectors

tangent to S at the point X(7,(r, a ), calculated from
the rest-frame counterpart of formula (34): i.e. ,

2

v(~) +
1 —v'(~) Ri(~) R, (7)

' (40)
(42)

Thus, locally, the acceleration v of the piece of the core
is determined by the main radii of curvature, up to the
Lorentz factor.

In the particular cases of a sphere (Ri ——R2 = R, v =
R) an—d of a cylinder (Ri ——oo, R2 ——R, v = R), t—he

usual spherical or cylindrical coordinates, respectively,
have the properties required by formula (34) and condi-
tions (38), and (40) coincides with equations considered
in [17]. In a more general case, the explicit construction
of the special coordinates ((r, (r ), such that formula (34)
and condition (38) hold, might be difficult. Nevertheless,
formula (40) is very helpful in a qualitative analysis of
motion of the core.

If we drop the gauge condition (38) while still keeping
(34), then instead of formula (40) we obtain

v —(mei) (Xpei) —(me2) (Xpe2)

= [1 —(Xp) + (X()e2) ]

+[1—(Xp) + (Xpei) ] (41)

Notice that e,' ' = e;, the vectors tangent to dS at
Xp(w), do not change under a boost in the perpendicular
direction given by m. The same is true for the parameters
o, o . The next step is to calculate the integral

dE
a(vs)

which gives the total force acting on dS. In the limit dS
shrinking to the point Xp(w), the result for the integral
1s

f„„=~(,+, /
/dS(m,

where ~dS~ denotes the area of dS. (In fact, it is the
dominating contribution only; we have neglected terms
which vanish faster than ~dS~. ) In order to find the cor-
responding force in the laboratory &arne, we apply the
boost with velocity v = ~dXp/dt~ in the direction m:

f...= (&I —v )-'~'f...„i.e. ,

fib=(d/dS/ (,+, /

m.

dI' = (u Ã((r', 0 ) x dl,

~rest
N(o', o ) —=

~Xrest

& ~rest
~2

x X'

is a unit vector perpendicular to the core at dl. In the

where v = Xom is the perpendicular component of the

velocity Xo.
Formula (40) can be reinterpreted in terms of a surface

tension. To show this we pass to the rest &arne of a small
piece dS of the core. [Observe that formula (40) contains
the laboratory-frame quantities: the time x = v, the

transverse velocity v:—Xpm, and the radii Ri, R2.]
The core element dS is parametrized by the parameters
Oi, (r2 introduced by formula (34): Oi = 0 = 02 corre-

sponds to the "center" Xp(w) of the element dS of the
core. The radii Bq, B2 are now the rest-&arne curvature
radii, denoted by Bz ', B2 ' . For simplicity, we restrict
our considerations to the case when the piece dS of the
core neither rotates nor is deformed at the chosen instant
of time. Then e"q ——e2 ——0 and m = 0. Let us assume
that on a piece dl of the boundary (9(dS) of dS acts a
force dI" of the magnitude w dl (dl = ~dl[), tangent to
the core and perpendicular to dl, directed to the outside
of dS. Here u is a constant. It is easy to see that

The laboratory-&arne curvature radii are related to the
rest-&arne ones by the formula

Brest
'C

1 —v
i=1 2

ds
ds2 1 —v2 (Ri R2)

(43)

where 8 denotes the proper time. We have assumed that
the rest-&arne "mass" of the piece of the core comes en-
tirely from the surface tension and is equal to ~~dS~.
Equation (43) reduces to relation (40): One should relate
the s variable to the laboratory time w (ds = Ql —v2dr),
to substitute dXp/ds = v m/gl —v2, and to use the as-

sumption m = 0. If the piece dS rotates or is subjected to
a deformation, the above-presented reasoning should. be
generalized by introducing an appropriate stress tensor
for the core. We will not dwell on this.

At the end of the previous section we obtained the

Notice that B; are bigger than B;-"—this is d.ue to the
fact that in the laboratory &arne the surface S is flattened.
in the direction of motion by Lorentz contraction. An-
other way to obtain this transformation law is to use the
formulas (37) and the fact that Kii, K22 at 0 = (r = 0
are invariant under Lorentz boosts in the m direction.
The relativistic Newton equation of motion in the labo-
ratory frame has the form
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first correction to the inverse dimensionless width of the
domain wall in the comoving kame. In the absence of the
oscillatory component it is equal to %~i~ given by formula
(32). The quantity KPK present in that formula can
easily be calculated in the physical coordinates (o i, o2)
defined by formula (34). We do not assume here the
gauge (38). We obtain the following result: At the point
Xo(~),

1

B2
=0)

fII

mi 1+ fI2» m2 ——0, vq ———
/2

v2 ——0.gl+ f"
(50)

fll fl
(1+f I2)3/2' V = (49

where

= 1+ lo KPK,
2lp

(44)
It follows from formula (45) that in this case N~ l = 0.
Thus, in leading order the presence of the plane wave
traveling along the domain wall does not inHuence the
width of the domain wall.

(1.. I(~2 + ~2 + ~ ~ )I IV. ENERGY' OP THE DOMAIN WALL

2 f. v, )/mi+
/

+/m2+

(45)

Here we have introduced a short notation for components
of the velocity and of the vector m:

4
+

v' =Xpe;, m, =me; = —me, i = 1, 2; v =Xpm.

(46)

l
='+":' ~ +~ +ax ' (47)

When the conditions (38) are satisfied, in formula (45)
one should put v, = 0.

I et us present some implications of the formula (45).
First, if each piece of the core is at rest at a certain
instant of time, then (at this moment) v; = 0 = m;, and
therefore formulas (44), (45) give

The total energy and energy density are very impor-
tant physical characteristics of a solution of field equa-
tions, and therefore we would like to calculate them for
our domain wall solutions. The form of the expression for
the total energy depends on whether one integrates over
the hypersurface of constant w or over the hypersurface
of constant laboratory time x . The construction of the
conserved energy momentum in the former case has been
presented in Sec. V of Ref. [17]. In the present paper we
consider the standard energy, i.e. , the one obtained by
integration over the hyperplane of constant x .

Because the total energy of the field is constant during
the motion of the domain wall, we can calculate it at an
arbitrarily chosen laboratory-kame time x . Of course,
in order to really have the energy constant in time one
should use the exact solution of the field equation (2). It
will not come out exactly constant if we calculate it for
an approximate, time-dependent solution, in particular
for the one given by formulas (18).

The energy-momentum tensor in our model has the
components

lX(*',*2,~) = x'
f(limni + l x

(48)

Thus, bending the domain wall is associated with making
it thicker (if we do not excite the oscillatory component).

If a piece of the core has a nonzero velocity at certain
instant of time, then the terms in the square brackets
present on the right-haiid side (RHS) of formula (45) may
compensate the eKect of nonzero curvature because of the
minus sign. To check this possibility, we have considered
the following class of exact solutions of Eq. (24):

T" = 0"4B"4 + g" L, (51)

with I given by formula (1). The laboratory-fraine en-
ergy E is given by the integral

d3 Tpp (52)

In this formula the field 4, which is a scalar with re-
spect to coordinate transformations, can be regarded as
a function of the (r, Ir, a, () variables. With the help of
a formula for diIII'erentiation of composite functions T
can be written in the form

where lz, l2 are constants obeying the condition lz + 12 ——

1, and f can be any smooth function. This plane-wave-
type solution gives a membrane "levitating" over the
(xi, x2) plane on the altitude x = f(limni + l2x2 —7),
with an infinite plane wave of constant shape propagat-
ing as a whole along the membrane in the direction (l i, l2)
with the velocity of light. The fact that such solutions
exist can be deduced kom a particular domain wall so-
lution found in [20]. Straightforward computations give,
for the solution (48),

T =[(M ) C' +n 4 ]

+ gg(M ') (M —
) "CI,C d, + —(O g) + V(C»),

(53)

&(@)= —(c' —@o) (54)

where a = 0, 1, 2; n is the p = 0 component of the four-
vector (n"); the potential is equal to
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h~ o' 0-'(» ()d(d id 2 (55)

The integration over the ( coordinate is effectively re-
stricted to the interval ((p, —(i), because in the vacuum
T = 0. Observe that on the hyperplane of constant x
the 7 variable in general becomes a function of (; this is
because

7 + (7P(7r, 0 ) = X = Coilst. (56)

Thus, constant x does not correspond to constant w,
except for the core where ( = 0 and x = v. This com-
plicates very much the calculation of the integral over

and the matrix [(M i) s] (the inverse of [M s]) is given
by formula (16).

Also the volume element d x is expressed by the co-
moving coordinates

( because in general we do not know the explicit form
of the w dependence for this one would have to know
explicit solutions of Eq. (24).

There is a particular case in which the calculation of
the energy is relatively simple: when each piece of the
core of the domain wall is at rest at the initial time x .
Mathematically, this means that the first derivative of X
with respect to x vanishes. Then, one can show that
nP = 0; hence, x = w for all (.

In the following part of this section we will use the
physical coordinates defined by formula (34) and the
gauge condition (38). In these coordinates do do

~dS~, the area of the infinitesimal element dS of the core.
For the core at rest e = 0 and e; = 0. This implies that

Rip ( R2)

(58)

Here we have also used the relation (40). Therefore, formulas (57), (58) are valid for the Nambu-Goto domain walls
only.

The next step is to integrate T over ( in the interval ((p, —(i). The integrand is a rational function of (. There
is no danger of a vanishing denominator, because we have assumed that the width of the domain wall (2(p) is smaller
than the curvature radia B;; otherwise, the region of validity of the comoving coordinates would be too narrow to
cover the whole width of the domain wall.

For 4 we take the approximate solution (18) with (22), (23) taken into account: For —(p ( ( ( (p,

We may write

3 (' ( 1('l
@(~,o', (7', () = -C'p

I

————,
~

.
2 q( 3('y

4',- = —
Z

I (z) @,.—= —Z, f (z)
C'p oj(p C'p c)(p

fi(z) &(@)—= —@Pf2'(z) = l; f2'(z)
p

(59)

(60)

where z = (/(p has values in the interval [1,—1], and the dimensionless functions fp(z), fi(z), fq(z) are given by the
formulas 3, 9, &

fp ————z(l —z), fi= —(1 —z), f2 ———z ~1 ——z
I

—l.
2 2

' 4 i 3 ) (61)

The energy E = J ds2: T P is given by formula

@,2

2 the cere

(1 —z —„')(1—z~) )g(, q'1 —z —„'
[1+z(~; + ~)]' E~~) 1 —

~~; E~ ')

+
( I

~ —~ z I I

& —' z I fi(~) + , A (~) l
1 ( (pl ( (p ) 2~p z (p

2l() ( Ri) ( R2] p 0

1 —z~ g, —fp'(z)

where, by assumption, (,/R, (( 1. Let us recall that this
formula is valid for domain walls with the core at instant
rest and obeying the Nambu-Goto equation (24). Up to
this point we have not used the approximate solutions

for the half-width (p following &om the ansatz (29).
I et us point out two particular consequences of formula

(62). First, we see that all nonuniformities of the width
of the domain wall increase the energy density because
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nonvanishing derivatives D(0/Oo always give a positive
contribution to the integrand. Also the w dependence of
(o increases the energy.

Second, there is a curvature-dependent energy associ-
ated with the width of the domain wall which is present
even in the case of constant width. It is given by the
second term on the RHS of formula (62) (the one with
fi, f2).

For the solution (59) the dependence on z is explicit,
and it is not difBcult to perform the integration over
z. Because the resulting formula is lengthy we will not

I

present it here in the general case. Let us calculate
the energy in the particular case, when the oscillatory
component is absent, the half-width (0 is constant, and
each piece of the core is at instant rest. Then, (0 is
related to the curvatures by formulas (44), (45), with
v = v; = m; = 0. Because the core is at instant rest, the
curvature radii have vanishing derivatives with respect to
7 and therefore 8(o/& = 0. Formula (44) for (0/2lo is
approximate, and so we shall calculate E with the same
accuracy, i.e., to second order in lo/R, . We obtain the
result

0

2~o

1 t' 1 1
~dS~ —(c, + c ) —l (c —c2)

~

+ +
~

+ 2lo(di + d2)
2 (R,' R,'R,Rz) 1 2

(63)

where the constants c;, d; are de6ned as

2 12
c, —= dz f, (z) = —,c2 = dz f2 (z) = 0.777,

—1 5 '
—1

1 12
dzz fi(z) = —, d2 = dzz f2(z) = 0.066.

—1 35' —1
(64)

The immediate consequence of formulas (63),(64) is
that domain walls with nonzero extrinsic curvature can
have smaller energy. This is because c1 —c2 has come
out positive. For instance, a straight infinite cylindrical
domain wall with core radius R (in this case 1/Ri
0, 1/R2 ——1/R) has smaller energy per unit area than
the planar domain wall (for which 1/Ri ——0, 1/R2
0). Thus, the domain wall prefers to have wrinkles. I et
us recall that this has been found with the help of the
approximate solution. It remains to be checked whether
c1 —c2 is positive for the corresponding exact solution of
Eq. (2). For this reason we do not claim that this is a
proven result —it is just an indication, to be checked in
another investigation.

Another interesting problem, namely, finding local
miiiima of the energy E, e.g. , for a fixed area ~S~ of a
compact core with a given genus, we also leave for a fu-
ture investigation.

X(~, 8, $) = ( [R(~) + r(r, 8) cos 8] cos P )
[R(r) + r(T 8) cos 8] siii f

r(T, 8) Siii 8 )
(65)

where w is the laboratory-kame time as introduced by
formula (4), P is the azimuthal angle in the (x, x ) plane,
and 0 is the angle parametrizing cross sections C of the
torus with the half-planes of constant P. C does not have
to be a circle. Because of the axial symmetry, the cross
sections C are identical for all angles P. The radius R(w)
gives the distance &om the x axis to a "central" circle
of the torus. Only if the cross sections C are circular is
there a natural choice for R(v): the distance from the x
axis to the centers of the circles C. In general, there is
a &eedom in the choice of the "central" circle; this circle
is merely a mathematical construct —the physical object
is the domain wall. The choice of R(7 ) has an inHuence
on the form of the r(w, 8) function. In the following we
choose

V. AX,IALLY SYMMETRICAL
TC)jR,OIDAL DOMAIN %PALL

R(w) = const—:Ro. (66)

In this section we shall apply the presented formalism
to a toroidal domain wall. Our motivation for doing this
is that such domain walls are next to planar, cylindrical,
or spherical ones with respect to the complexity of their
geometry, and to our best knowledge they have not been
investigated as yet. Cylindrical or spherical domain walls
have been considered in, e.g. , [21,9,13,17]. We shall con-
sider the simplest case of a toroidal domain wall, char-
acterized by axial symmetry with respect to rotations
around the x axis.

We shall parametrize the toroidal core of our domain
wall (at each instant of time) by two angles P g [0, 2m]
and 8 e [0, 27r]:

Thus, we have to calculate only one function r(w, 8). For
correctness of the parametrization (65) it is required that
p (r 8) & 0 and R, & r (7, 8) . It might happen that in
order to follow the evolution of the torus for a prolon-
gated interval of time it is necessary to introduce several
parametrization patches given by (65) with different Ro's.
This is the case when after some time the "central" cir-
cle with fixed radius Bo turns out to lie outside of the
displaced torus.

Inserting the ansatz (65) into Eq. (24) we obtain af-
ter straightforward computations the following nonlinear
equation for r(7, 8):
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r(r + r'2)r' —2~r'(i'r —r'r') + (1 —i )(r + 2r' —rr")

(1 r" 5 1

(r r2p Bo+r
Similarly, for 0 = vr we have

i' f'1 r") 1'= —
~

———.~+1 —r'2 (r r2) Bo —r

(68)

(69)

( Bo —r' sin81+(~'+r" —r'~')
~

1 —
~

=O, (67)Bo+T coso j
where r' = Br(7., 0)/0~, r' = Or(~, 8)/88.

In general, Eq. (67) is not identical with formula (40)—
they are written in different coordinates. The point
is that X, given by formula (65), when expanded in
0 —00, P —$0 in a vicinity of a point (gp Po) does not
have the form (34), and also conditions (38) are not satis-
fied. , in general. In other words, reparametrization gauge
fixing implied by the formulas (65), (66) is difFerent f'rom
the gauge fixing implied by the formula (34) and condi-
tion (38). Equation (67) can of course be transformed to
the form (40), but this transformation involves nontrivial
changes of coordinates.

For simplicity, in the following part of this section we
shall consider only tori which at a certain initial instant
~p have circular cross sections. Such tori, in addition
to the axial symmetry, have also a reQection symmetry
x M —x . We also assume that for 7 = 7 p each point
of the torus has zero velocity. This case is suKcient in
order to get a feeling about the evolution of the toroidal
domain walls.

One may ask whether the initially circular cross section
will stay circular at later times. To investigate this, we
recalculate the basic equation (24) for the ansatz (65)
without the assumption (66) that B is constant in time.
If the cross section C stays circular, there should exist
such a choice of the function R(w) that the solution r is
constant in 0. We have found that such a choice is not
possible. Therefore, the initially circular cross section
will always be deformed during evolution of the torus.

A qualitative picture of the motion governed by
Eq. (67) can be obtained by considering the motion of
the outermost and innermost circles on the core, 0 = 0
and 0 = m, respectively. Because of the symmetries of
the torus, r' = 0 for 0 = 0, m, for all times. Therefore,
for 0 = 0, Eq. (67) reduces to

choose the convention that the normal m to the torus is
directed inwards). Also X does not have tangent com-
ponents for 0 = 0, vr, and v = —r in both cases. Now it
is easy to check that Eqs. (68), (69) follow directly from
formula (40).

Equations (68), (69) imply that there are two classes of
tori, difFering by their motion. To see this, let us consider
Eqs. (68),(69) at the iiiitial time wo. Then t is a circle.
I et us denote its radius by rp. It is clear that rp = rp: 0.
Also, by assumption, r = 0 at the initial time. Therefore,
on the RHS of Eq. (68) we have the force

rp

1

Rp+ rp'

and it is negative only for ro ( Ro/2. For ro ——Ro it
vanishes, while for ro ) Ro/2 it is positive. Therefore,
in this last case the circle 0 = m will start to move away
&om the x axis. To summarize, when the initial circular
cross section C of the torus is small enough, the torus
will shrink towards a circle in the (x, x2) plane with
the center on the x axis. On the other hand, if the
initial circular cross section is sufFiciently large, we expect
that the torus will start to shrink towards the x axis.
As for the intermediate case of ro ——Ro/2, initially the
acceleration of the innermost circle "8 = vr, P variable"
vanishes. At later times, as the cross section C of the
torus shrinks, r" becomes negative (because r has now a
local maximum at 0 = m), and on the RHS of Eq. (69) the
negative term r"/r02 will appear. Therefore, we expect
that in the case of initial data such that r 0 = Ro/2, vo ——

0, the circle 0 = m will start to move away &om the
~s axis. Numerical solutions of Eq. (67) confirm this
expectations; see Figs. 1(a)—l(c).

Until now we have discussed the evolution of the core
of the toroidal domain wall. Prom formulas (44), (45) we
obtain an approximate value of the width of the toroidal
domain wall in the absence of the oscillatory component.
This is especially simple for 0 = 0, vr, because there m = 0
and vq ——v2 ——0. We hand that

which is always negative. It follows that the outermost
circle "0 = 0, P variable" will always move towards the
xs axis. As for Eq. (69), the force is equal to

1 1+
rp Rp —rp

'

One can check that Eqs. (68), (69) coincide with for-
mula (40). The main radii of curvature of the torus at
the point (0, P) are given by the formulas

=1+
2lo 1 —v2 r2 ( r ) (Bp+r)2

1

r(RO + r) (72)

I 1 r' sin0+ r cos0
Bi A@2 + p12 Bo + 'r cos 0 (7o)

rr —2r —rII I2

(r2 + rl2)3/2

Because r' = 0 for 0 = 0, m, the curvature radii are,
respectively, Ri ——+(Ro + r), B2 ——1/i —r"/r (we

where the + signs are for 0 = 0, m, correspondingly. Prom
these formulas one can see that for r/Ro small enough (a
slim ring far away &om the x axis) the outer side (8 = 0)
of the toroidal domain wall is thicker than the inner side
(8 = m). On the other hand, if r/Ro comes closer to 1 (a
fat ring close to the zs axis), then, vice versa, the inner
side is thicker than the outer one (when the oscillatory
component 0 is absent).
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As for the evolution of the symmetric toroidal domain
wall at later times, when the rest-kame curvature radii
become too small for the ansatz (18) to be a reasonable
approximation, one can make some guesses based on re-
sults of numerical computations [13]. We expect that
the slim torus will completely disperse into radiation af-
ter the first collapse to a circle in the (x, x ) plane. The
fat torus will first change its topology &om toroidal to
spherical this will happen when the innermost circle of
the torus is shrunk to the origin x = x = x = O. In
the process some energy will be lost into radiation. Next,
the domain wall will evolve as a deformed sphere. Even-
tually it will collapse to the origin, and it will disperse
into radiation. This scenario might be diferent if we pass
to another model. As pointed out in [13], sine-Gordon
domain walls can reemerge after the collapse. In this
case the domain walls can pass through each other with

only a partial loss of energy into radiation, and therefore
one can expect that the torus collapses and reemerges
several times before it follows the previous scenario in a
final collapse. It has also been noticed in Ref. [13] that
cylindrical sine-Gordon domain walls do not bounce, in
contradistinction to the spherical ones. This suggests
that whether the sine-Gordon torus bounces or disap-
pears after the first collapse might also depend on the big
radius of the torus. At the initial time it is equal to Bo,
and the curvature 1/Bi depends on it; see formula (70).
For large Ro the torus locally is like a straight cylinder,
while for small Bo the curvature is more pronounced. and
such a torus might behave more like a spherical domain
wall. Probably the only way to verify these scenarios is
to perform numerical calculations.

VI. H.EMAKKS
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FIG. 1. (a) Numerical solution of Eq. (67). The initial
data are r(0, 8) = 0.4, r'(0, 8) = 0. The contours are the
cross sections C of the torus with, e.g. , the (z, z ) plane.
They are determined by the function r(t, 8) (with 8 changing
from 0 to 2m). The cross sections are shown for the follow-
ing values of t = r/Ro. 0.00, 0.15, 0.25, 0.35, 0.45, 0.55.
The horizontal axis showers the distance from the x axis, mea-
sured in uiiits of Ro. (b) The same as in (a), but with the
initial data r(0, 8) = 0.5, r'(0, 8) = 0. The values of t are

0 15, 0.25, 0.35, 0.45, 0.55, 0.65. (c) The same as in
(a), but with the initial data r(0, 8) = 0.65, r'(0, 8) = 0. The
values of t are 0.00, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65.

(a) Calculations presented in Sec. II of this paper
show that the method proposed in [17] for cylindrical
and spherical domain walls can be applied also in the
more general case. The resulting Eq. (24) for the core of
the domain wall is equivalent to the Nambu-Goto equa-
tion (25). Our method seems to be quite universal. A
change in the basic equation (2) would result only in a
difFerent form of the recurrence relations (19),(20). For
example, if we change the quartic potential V [formula
(54)] to the sine-Gordon type, then only the numerical
coeKcients in (19),(20) are different. The polynomial ap-
proximation can also be applied to nonrelativistic domain
walls in condensed matter physics.

We have not obtained any terms with higher deriva-
tives in the equation for the core. Such terms are usually
related to so-called extrinsic curvature corrections in the
efFective action for the core [9]. Nevertheless, we would
not conclude that the pure Nambu-Goto equation for the
core is the exact, Anal answer for all domain walls with
small curvature, for two reasons. First, our solution is
an approximate one, and. a better approximation could
reveal corrections to the Nambu-Goto equation. Second,
the basic field equation (2) possesses infinitely many so-
lutions in the topological class of the single domain wall.
Our cubic polynomial ansatz probably picks only a sub-
set of these solutions. There might be other solutions
for which the core would not obey the pure Nambu-Goto
equation (25).

Actually, it is easy to point out possible ways to im-
prove our approximation and to 6nd more general domairi
wall solutions. A natural step to And a wider class of so-
lutions within the cubic polynomial approximation is to
divide the interval ((o, —(i) [see formula (18)] into two
subintervals, and to use two independent cubic polyno-
mials in each of them. Next, one should match smoothly
the two polynomials with each other and with the vac-
uum fields to obtain continuous 4 and Bg4. In order to
improve our approximation one could use polynomials of
higher order, as suggested by considerations presented in
the Appendix. Work along these lines is in progress.

(b) Formula (40) from Sec. III, giving the transverse
acceleration in terms of the local curvature radii, is very
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width of the domain wall. Our results are for the case
when the radii are much larger than the width.

Third, one could try to apply the polynomial approx-
imation to curved, nonstatic vortices in relativistic field
theories as well as in condensed matter physics. We have
seen that this approximation is capable of yielding rather
detailed information about dynamics of the width of the
domain wall. It would be very interesting to have such
information also for vortices.
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APPENDIX: THE ACCURACY
OF THE POLYNOMIAL APPB.OX.IMATION

Here we would like to comment on the accuracy of the
approximation used in this paper. It is instructive to
apply the above-presented scheme to the planar domain
wall given by the exact solution (3). Then,

K s = 0, (g s) = diag( —1, 1, 1), ( = x,
and in the absence of the oscillating component A = 1,
i.e. , (o ——2lo. Then

wall [22j. The energy of the solution 4(i) is a little bit
higher:

Ec'3 = 0.79—e', .
1 2

p'

For a comparison of energy densities, see Figs. 2(a) and
2(b).

Improving the approximation (Al) consists of includ-
ing terms of higher order in x . We know that the exact
solution is an odd function of x, and so the first term
to be included is proportional to the Mth power of x .
However, it turns out that a Mth-order polynomial in x
cannot simultaneously obey the recurrence relations ob-
tained from Eq. (2) and the continuity conditions for 4
and 8 34. The reason is that the recurrence relations
imply that the fifth power of x comes with a positive
coeKcient; then, it is easy to see that there can be a
problem with smooth matching of the polynomial with
the constant vacuum solutions.

Going to the seventh-order polynomial does yield a
solution. Denoting z = x /lo, the result we have obtained
can be written in the form

C (') = C, (O.575Oz —O.O479z'+ O.OO59z' —O.OOO4z').

4~ ~ smoothly matches the vacuum solutions for x
+2.593lp, while for the solution 4~ ~ the matching takes
place at x = +2lp. The energy per unit area for the
solution 4~ ~ is equal to

3 1 34'(*') = ~"(*') —= -~
4 lp

2

(A1)
12 (lo

E~'~ = 0.706
—, e,',2

The boundaries of this domain wall are at x = +2lp.
Comparing 4'( ) with the solution (3), we see that it is
not equal to the first two terms of the Taylor expansion
of the solution (3). Thus, we do not recover the exact
sohition (3) term by term in the Taylor expansion. On
the other hand, the approximate solution 4~ ~ has the
right global characteristics of the domain wa, ll such as
energy per unit area or the boundary conditions. The
energy per unit area in the case of solution (3) is

It is minimal in the topological class of a single domain

which is higher than Eo by only GFO. Also the energy
densities do not difFer much Rom their exact values; see
Figs. 3(a) and 3(b).

To summarize, the direct comparison presented above
in the case of the planar domain wall shows that the
polynomial approximation works rather well. Therefore,
we expect that also for slightly curved domain walls, i.e. ,
such that their rest-IIIame curvature radii are large in
comparison with their width, the cubic polynomial ap-
proximation is a reasonable one, and that in order to
improve it one could just use a higher-order polynomial.
Calculations with seventh-order polynomials do not have
to be cumbersome, because Taylor expansions and other
necessary operations can be carried out by a computer.
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