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Large deformations of relativistic membranes:
A generalization of the Raychaudhuri equations
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A coupled system of nonlinear partial differential equations is presented which describes nonper-
turbatively the evolution of deformations of a relativistic membrane of arbitrary dimension D in an
arbitrary background spacetime. These equations can be considered from a formal point of view as
higher dimensional analogues of the Raychaudhuri equations for point particles to which they are
shown to reduce when D=1. For D=l or D=2 (a string), there are no constraints on the initial
data. If D &2, however, there will be constraints with a corresponding complication of the evolution
problem. The consistent evolution of the constraints is guaranteed by an integrability condition
which is satisfied when the equations of motion are satisfied. Explicit calculations are performed for
membranes described by the Nambu action.

PACS number(s): 11.27.+d, 11.10.Kk

I. INTRODUCTION

A surprising variety of physical systems can be mod-
eled as relativistic membranes of an appropriate dimen-
sion propagating in a fixed background spacetime. The
phenomenological action describing the dynamics of the
membrane is a sum of various relevant scalars associated
with the geometry of its trajectory (world sheet). At
lowest order this action is proportional to the area of the
world sheet, the Nambu action [1]. If the approxima-
tion stops here, the classical trajectory of the membrane
is an extremal surface of the background spacetime [2].
At a higher order, one can consider rigidity corrections
quadratic in the extrinsic curvature of the world sheet
[3].

The dynamics of a Nambu membrane is reasonably
well understood. A large body of information has been
accumulated on the dynamics of geometrically symmetri-
cal extremal configurations [1]. What is less complete is
a satisfactory description of the deformations of relativis-
tic membranes. How does a variation in the symmetry of
the membrane evolve'? If the world sheet develops a sin-
gularity, such as a cusp, how will this singularity evolve.
Will it be smoothed out or will it grow?

It is clear from the outset what criteria a description
of deformations should satisfy. First, it should be covari-
ant not only with respect to world-sheet di8'eomorphisms,
but also with respect to local rotations of the normals to
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the world sheet itself when the codimension of the world
sheet is greater than one. This is crucial because once we
deviate &om a symmetrical configuration the choice of
normals will no longer be obvious. A second requirement
is that, ideally, the description should be independent
of the specific dynamics of the membrane. Apart from
obvious economical considerations, this permits one to
isolate the kinematical features of the deformation, corn-
mon to all membrane theories, from those which depend
on the dynamics. Since the dynamics under considera-
tion is an approximation in the first place, one would like
to know what features of the evolution of deformations
are inBuenced by a change in the dynamics.

Various aspects of this problem have been addressed
recently by several authors. Garriga and Vilenkin de-
scribed the evolution of small disturbances propagat-
ing on planar and spherically symmetrical Nambu mem-
branes in background Minkowski and de Sitter space-
times [4]. Following this work, Guven [5] and, almost si-
multaneously, Carter as well as Frolov and Larson [6] ap-
proached the problem of small deformations of a Nambu
membrane in a manifestly covariant way, independent of
the particular symmetry of the defect, and of the back-
ground spacetime. In [5], the role of the twist potential
in ensuring manifest covariance under normal rotations
was made explicit. The deformation is described by a
set of massive scalar fields, which satisfy a coupled sys-
tem of linear wave equations. The scalar fields are the
projection of the infinitesimal deformation in the embed-
ding function describing the world sheet onto each nor-
mal direction. The e8'ective mass matrix is the sum of a
term quadratic in the extrinsic curvature, and a matrix of
curvature projections. This framework was subsequently
generalized by the authors to permit the stability anal-
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ysis of any membrane described by a local action con-
structed from any world-sheet scalars [7]. This was done
by shifting the focus from the particular dynamics of an
extremal surface to a systematic kinematical description
of the deformation of the world-sheet intrinsic and ex-
trinsic geometries.

The progress we have described has been made entirely
in the examination of small deformations. If the mem-
brane is described by the Nambu action there is no energy
penalty prohibiting the formation of kinks or cusps —we
should therefore not be surprised to 6nd that structures
such as these form in the course of the evolution. Unfor-
tunately, the analysis of such structures lies outside the
scope of perturbation theory. A formalism permitting us
to examine large deformations is required.

From a formal point of view, the equations describing
the evolution of small deformations of the world sheet are
higher-dimensional analogues of the Jacobi equations de-
scribing the infinitesimal separation of neighboring time-
like geodesics [8]. These higher-dimensional analogues
possess, however, an interpretation without any one-
dimensional analogue in that they describe a physical
stretching of the membrane itself.

In the prototype of a geodesic curve, an alternative
nonperturbative framework for describing the focusing
of trajectories is provided by the Raychaudhuri equa-
tions [8,9]. These are a system of coupled nonlinear ordi-
nary differential equations describing the evolution along
a curve of the orthogonal deformations of its velocity vec-
tor. By examining the trace of these equations over the
normal directions, which describes the expansion in the
volume occupied by a given pencil of geodesics, it is pos-
sible to show that under very reasonable assumptions on
the material sources, spacetime will generally be geodesi-
cally incomplete. As such, the Raychaudhuri equations
constitute one of the cornerstones of the classical singu-
larity theorems in general relativity.

If the Raychaudhuri equations are any guideline, we
should shift our focus &om the deformation in the embed-
ding function describing the world sheet of the membrane
to the deformation in the tangent vectors to this surface
[10]. In this way we derive an analogous nonperturbative,
and nonlinear, coupled system of partial differential equa-
tions to describe the deformation of higher-dimensional
surfaces. Unlike the Jacobi equation, where the formal
generalization is in some sense the obvious one, the gen-
eralization of the Raychaudhuri equations is extremely
nontrivial.

The particular value of this set of equations is that
they provide us with an analytically tractable procedure
for examining various pecuharities of the dynamics of
relativistic membranes whose description is beyond the
scope of perturbation theory. Physical applications will
be considered elsewhere [11].

The content of this article is as follows. To establish
our notation, we begin in Sec. II by summarizing the
classical kinematical description of an embedded time-
like surface (world sheet) of dimension D, in a fiwed back-
ground spacetime of dimension N, in terms of its intrinsic
and extrinsic geometry. The latter is characterized com-
pletely by the extrinsic curvature and the extrinsic twist

potential. This world sheet will be generated from some
initial con6guration of the membrane appropriate to the
truncation of the action describing its dynamics.

We now want to consider the evolution of a deforma-
tion of this world sheet. We begin by providing a purely
kinematical description of the deformation of the world
sheet, a nonperturbative analogue of the analysis per-
formed in [7]. In this way we identify the structures that
characterize the deformation. When D=1, these are the
world-sheet scalars J'~ constructed by taking the projec-
tion onto the jth normal of the gradient of the tangent
vector to the curve along the ith normal. When D &1,
there will be one object of this kind for each tangent
vector to the surface, J '~ (a, 6, . . . = 0, 1, . . . , D —1).
In addition to such straightforward generalizations from
one to higher dimensions there will be a new structure
without any one-dimensional analogue, which we inter-
pret geometrically as the deformation of the world-sheet
connection preserving manifest covariance under tangent
kame rotations after deformation.

In Sec. III, a "naive" generalization of the Raychaud-
huri equations which reduces to the familiar prototype in
one dimension is provided. In Sec. IV, we point out the
inadequacies of this simpleminded generalization. If our
system of equations is to possess any predictive power, it
is important that it possess a Cauchy formulation, mod-
ulo the membrane dynamics, so that the evolution of in-
dependent initial deformations can be tracked. We en-
counter various obstacles to the implementation of such
a formulation.

First, the source for the deformation in the equation of
motion must not involve unknown elements. To obtain
a consistent system of equations, we need then to form
suitable linear combinations of the naive generalization
of the Raychaudhuri equations, such that these elements
are eliminated &om the source. One set of linear combi-
nations is an antisymmetric sum with respect to world-
sheet indices. This linear combination eliminates these
unknowns no matter what the background dynamics is.
In Sec. V, we consider extremal surfaces, and for this case
the remaining linear combination is a trace.

We are still not out of the woods, however. This is be-
cause when D &2 not all of our equations are dynamical.
The nondynamical equations must be considered as con-
straints on the initial data, i.e. , the deformations on some
spacelike hypersurface of the world sheet. These data are
not freely specifiable. The existence of constraints com-
plicates the implementation of a Cauchy solution, for we
need to ensure that they be preserved by the evolution.
This could require us to impose a nontrivial integrability
condition on the solution, thereby further complicating
the solution of the Cauchy problem. We demonstrate,
however, that the integrability conditions we require are
trivially satisfied, modulo the differential Bianchi identi-
ties on the curvature associated with the twist potential
introduced in Sec. II. Once the constraints are satisfied by
the initial data, the equations of motion will ensure that
they continue to be satisfied at all subsequent times. We
point out three important dimensional exceptions: the
cases of a point particle, D=1, and of a string, D=2,
where there are no constraints on the initial data, and
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that of a hypersurface, D = N —1, where the constraint
reduces to a condition on the rotationality of the spatial
initial data.

Now that we have a consistent generalization of the
Raychaudhuri equations to higher dimensions, we focus
on the generalized expansion, given by tracing J;~ over
normal indices, i.e., J '; = 0 . The antisymmetric lin-
ear equation implies that 0 = 0 T. For extremal sur-
faces, inserting this in the traced evolution equation for
0 gives Eq. (5.15) in the text:

In order to avoid cluttering our equations, we continue
to use Latin letters for orthonormal indices.

We assume that the world sheet is timelike everywhere,
and that we can always consistently choose one timelike
tangent vector field, Eo. That the vectors {E) form a
surface is encoded in an integrability condition, the clo-
sure of their commutator algebra, [E,Eb], by Frobenius
theorem [2].

The ith unit normal to the world sheet (i, j, . . .
1, 2, . . . , N —D) is denoted with n', and is defined up
to a local O(N —D) rotation by

+gag p2 + g2 + M2 O g(n', n') = b", g(n', E ) = 0 . (2 5)

where A, Z, M are world-sheet scalars defined in the
text. This equation generalizes the familiar first-order
ordinary difkrential equation for the expansion of neigh-
boring geodesics.

In Sec. VI, we compare our results to perturbation the-
ory. For an extremal surface, the "naive" truncation con-
sisting only of the traced equations (or the appropriate
set of equations if the dynamics is not extremal) per-
mits us to recover the coupled linear scalar equations of
motion describing the evolution of an infinitesimal defor-
mation of the extremal world sheet derived in Refs. [5,7].
The antisymmetric Raychaudhuri equations play no role
in perturbation theory.

Finally, we conclude in Sec. VII, with a discussion of
our results. For simplicity, we confine our attention to
closed surfaces without physical boundaries. All consid-
erations are local.

II. MATHEMATICAL PRELIMINARIES

Da Eb Jab Ec Ka b +'c ) (2.6a)

D n' = K b'E + ~a'~n~ . (2.6b)

These kinematical expressions, which describe the extrin-
sic geometry of the world sheet, are generalizations of the
classical Gauss-Weingarten equations. The p b' are the
world-sheet Ricci rotation coeFicients

Normal vielbein indices are raised and lowered with
P~ and h';~, respectively, whereas tangential indices are
raised and lowered with q and q b, respectively.

We define the world-sheet projections of the spacetime
covariant derivatives, D = E" D„, where D„denotes
the (torsionless) covariant derivative compatible with the
spacetime metric g„. Let us consider the world-sheet
gradients of the basis vectors {E,n'). Since they are
spacetime vectors, they can always be decomposed with
respect to the orthonormal basis {E,n'} [2], as

A. Geometry of the world sheet
P b, = g(D Eb, E ) = —P,b . (2.7)

The quantity K b is the ith extrinsic curvature of the
world sheet:

We consider an oriented world sheet m of dimension
D described by the embedding K b' = g(D Eb, n'—) = Kb (2.8)

x" = X"(( ) (2.1)

(p„v, . . . = 0, 1, . . . , N —1, and a, b, . . . = 0, 1, . . . , D —1)
in a spacetime {M,g&„f of dimension N. We adopt the
signature {—,+, . . . , +) for g„„.The D vectors

e = X'"8„ (2.2)

form a basis of tangent vectors to m at each point of m.
The metric induced on the world sheet is then given by

f~b = X X bg~~ = g(8~) 8b) (2.3)

To facilitate comparison with the one-dimensional
Raychaudhuri prototype, where the single tangent vector
is the unit velocity vector along the particle world line,
it is useful, if not essential, to replace the coordinate
tangent basis {e ) by an orthonormal basis of tangent
vectors {Ef:

Its symmetry in the tangential indices is a consequence
of the integrability of the {E).

The twist potential of the world sheet is defined by

ur ":—g(D n', n') = —~ '* . (2.9)

&n Q @+1 ~n &12@&2'' &n
a a

~ ~ ~ a j (2.10)

With respect to a normal kame rotation, n' ~ 0'~n~,
transforms as a connection, u ~ Ocr 0 +

0 0 i. As discussed, e.g. , in [5], it is therefore asso-
ciated with the gauging of normal kame rotations. It
is desirable to implement normal kame covariance in a
manifest way. We therefore introduce a world-sheet co-
variant derivative, defined on 6elds transforming as ten-
sors under normal kame rotations as

g(E, Eb) = g b . (2.4)
where V' is the intrinsic world-sheet covariant derivative.

The embedding X~(() is overspecified by Eqs. (2.6).
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There are integrability conditions: the intrinsic and
extrinsic geometry must satisfy the Gauss-Codazzi,
Codazzi-Mainardi, and Ricci integrability conditions,
given, respectively, by

g(R(Eb, E )E„Ed) = 7Z b,g —K,'Kbd; + K d'Kb„,
(2.11a)

These are the analogues of the Gauss-Weingarten equa-
tions, Eqs. (2.6), along the distribution spanned by the
(n'). Note that one can obtain integrability conditions
analogous to Eqs. (2.11),but we will not need them here.

The quantity J '~, which plays a central role in the
description of the deformations of the world sheet, is de-
fined by

J '~ = g(D'E, n') . (2.i5)
g(R(Eb, E~)E,) n') = V' Kb, ' —V'bK, *, (2.11b)

We use the notation g(R(Y&, Y2)Ys, Y4)
B pp Y2 Yj Y3 Y4 B pp, is the Riemann tensor of

the spacetime covariant derivative D„, whereas 'R
b d is

the Riemann tensor of the world-sheet covariant deriva-
tive V' . 0 b is the curvature associated with the twist
potential u '~, defined by,

&&ab —V b~a —Va~b + ~aCl 22 u iI j ik

(2.12)

Since it is a curvature, it satisfies the difFerential Bianchi
identity

V'(0 bj~ ——0. (2.13)

The gauge-invariant measure of the twist is completely
determined by the extrinsic curvature, and the space-
time Riemann tensor. The twist potential can be gauged
away locally if and only if 0 b'~ ——0. Setting 0 b'~=0 in
Eq. (2.1lc), therefore, provides the necessary and suffi-
cient condition that the twist potential can be gauged
away, in terms of an equality between a projection of the
spacetime Riemann tensor, and an antisymmetric sum of
the square of the extrinsic curvature.

B. Geometry of a deformed world sheet

g(R(Eb, E )n', n~) = 0 b'~ —K,'K '~ + K,'K '~ .

(2.11c)

In general, it does not possess any symmetry under inter-
change of the normal indices i and j, refl.ecting the fact
that the (n') (unlike the (E )) do not generally form an
integrable distribution. It is the analogue of K b in the
Gauss-Weingarten equations.

The quantity S b' is defined by

S b' = g(D'E, Eb) = Sb —' . (2.i6)

bV ic a] "a = +i@a]"a Sa] bic' a2" a
bSa bi@ai" a (2.17)

where

V',.C~ = D,4~ —p;~g4 k (2.is)

is the normal covariant derivative, and

P,,b =—g(D; n, , nb) = —P;b,. (2.i9)

are the Ricci rotation coeFicients associated with the nor-
mal basis.

For an embedded curve, S b' ——0, identically. It is
the analogue of the extrinsic twist potential, w, in
Eqs. (2.6). Note that under a tangent frame orthonor-
mal rotation, E ~ 0 bE, S b' transforms as a connec-
tion, Si M OSiO +0iO . S b' is the deformation of
the worM-sheet connection associated with the gauging
of local tangent kame rotations. We can introduce an
associated covariant derivative V; in a manner directly
analogous to Eq. (2.10) by

The Gauss-Weingarten equations (2.6) describe a sin-
gle surface embedded in spacetime. Let us consider now
a one-parameter family of neighboring surfaces, z"
X"((,s). To provide a measure of the relative dis-
placement of such surfaces, we consider the gradients
of the spacetime basis (E,n') along the directions or-
thogonal to the world sheet. Let b = 0, . We de6ne
h" = (g~" —E" E" )b, and Dg = b'"D~. Now, the
two measures of the orthogonal deformation of m are
g(n, , DgE ), and g(n;, Dyne) In particular, .suppose that
b = ni. Then, with Di = n~;D~, the gradients of the
spacetime basis (E,n') along the directions orthogonal
to the world sheet, can be expressed as

III. NATURAL GENERALIZATION OF THE
RAYCHAUDHURI EQUATIONS

For a geodesic curve, the Raychaudhuri equations de-
scribe the evolution of J'~ = Jg'~, connecting neighboring
geodesics along the curve, given specified values for J'~
at some initial instant. These are ordinary difFerential
equations. Their generalization to higher-dimensional
surfaces will clearly involve partial difFerential equations.

The natural generalization of the proper time deriva-
tive along the trajectory, d, J,~, in the one-dimensional
context is given by the covariant world-sheet derivatives
V'b J .'~. Therefore, to generalize the Raychaudhuri equa-
tions, we evaluate this quantity. We find

DiE = S biE + J;~n~, (2.i4a)
V'b J '~ = —V'K b~ —Jb'I, J ~~

a kDin~ = —J;~E + p, -nA, . (2.14b) Kb,*K '~ + g(R(Eb—, n') E,n') .
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The details of the evaluation of V'b J '~ are contained in
Appendix A. We emphasize that the evaluation does not
depend on the membrane equations of motion.

When D=1, we reproduce the Raychaudhuri equations
for a curve. For then there is only one tangent vector,
the unit timelike vector Eo ——V. Now Moo' ———K' =
g(n', Dv V) In. addition, Sos' ——0 by antisymmetry, and
we can always orient the normals along the curve such
that the extrinsic twist potential vanishes, ws'~ =0 [5]. (In
[8], this is accomplished by Fermi-Walker transporting
the normals. ) With respect to proper time s along a
physical trajectory, Eq. (3.1) assumes the form

(3.2)

which agrees, before symmetrization, with Eq. (4.25) in
[8)

To establish contact with the literature on the Ray-
chaudhuri equations, we note that the analogs of the
quantities which more frequently appear in the literature
are the spacetime tensors

contend with in the source term, but also the connection
S b'.

We need therefore to find appropriate linear combi-
nations of Eq. (3.1) such that the troublesome source
term is eliminated modulo the equations of motion of
the membrane. This is unfortunate since our ideal is a
description of deformations of the world sheet which is
independent of the dynamics, in a way analogous to the
perturbative analysis of [7]. The presence of the source
term does not leave us any choice, but to exploit the
equations of motion to eliminate it. We focus on the
case of a membrane satisfying the Nambu dynamics, i.e. ,
extremal membranes. The generalization to membranes
described by more complicated dynamical rules will be
brieHy sketched in the conclusions.

V. RAVCHAUDHURI EQUATIONS FOR
EXTH.EMAL MEMBB.ANES

In this section, we consider membranes which satisfy
the Nambu dynamics. The Nambu action is proportional
to the world-sheet area

J~ =n„'n ~J,~ =H„H ~D Ep (3.3) S[A~, X" ] = 0. — (5.1)

H„—n n, —g„„E„E„
is the projection orthogonal to the world sheet.

IV. DIFFICULTIES WITH THE
C ENEKALIZATION

(3.4)

where the constant o is the membrane tension. The equa-
tions of motion are given by [2]

(5.2)

We want to eliminate the term in Eqs. (3.1) involving
normal derivatives of K s', using Eqs. (5.2). The obvi-
ous thing to do is to consider the linear combination of
Eqs. (3.1) obtained by tracing with p over world-sheet
indices,

Given some initial conditions on an initial spacelike
hypersurface, the membrane equations of motion, to-
gether with the integrability conditions, Eqs. (2.11), de-
termine uniquely the embedded world sheet described by
Eq. (2.1). This will in turn determine both the intrinsic
geometry p s, or fE ), and the extrinsic geometry, as
characterized by K b and ~

Suppose we also prescribe some initial values for J '~

on this spacelike hypersurface. It is then possible to de-
termine J '~ at subsequent times using Eq. (3.1)? Un-
fortunately, there are at least two obstructions to the
implementation of a Cauchy solution of Eq. (3.1).

The first problem is one which must be confronted even
when D=l. The term V"K b~, which is not determined
on the world sheet by the equations of motion, appears as
a source for the world-sheet derivative of J '~ in Eq. (3.1).
In the traditional one-dimensional application, this does
not present any problem because one is concerned there
only with geodesics satisfying K'=0. Therefore this term
vanishes, and along with it the dependence on the normal
IIrame Ricci rotation coeIIIicients, p;~ . If, however, the
curve satisfies some other equation of motion the source
is just as much an unknown as is J'~, and the equations
useless in practice as they stand. In general, when D & I,
we will not only have the normal gradients of K b' to

where we have used Eq. (5.2) to eliminate the source
term, which now takes the form V"K~.

When D=l, this equation reduces to the familiar Ray-
chaudhuri equations Eq. (3.2). When D ) 1, Eqs. (5.3)
assume the form of a system of coupled continuity-type
equations involving the time derivative of Jo ~ (a gradient
along the timelike tangent vector, Eo), and world-sheet
spatial gradients of the remaining J '~.

Now, to evolve initial data, we need one equation to
evolve each variable J '~. The traced equation (5.3) does
this for Jo'~. To complete the description of the evolu-
tion, we need corresponding evolution equations for the
remaining J~'~, where capital Latin letters denote world-
sheet spatia/ indices (A, B, . . . = 1, 2, . . . , D —1).

An important observation towards this goal is the
recognition that the source term in Eqs. (3.1) is sym-
metric in the world sheet indices a and b. If we now
anti-symmetrize Eq. (3.1) with respect to its world sheet
indices, we get

V' Jb'~ —V'bJ '~ = G b'~, (5.4)

O' J *'+J '„J "~ + Z'., Z '~ = g(Z(Z. , n')Z, ni),
(5.3)
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where we have defined

Gab = Ja k Jb ~ac ~b
+g (R(E,n') Eb, n~ ) —(a e+ b) . (5 5)

When D ) 2, these integrability conditions are identi-
cally satisfied. To see this, note that the left-hand side
gives

2V'[ V'bJ, ]'~ = 0[ b' J ]k~ + 0[ b~ J ]'k,
The source term has been canceled out independent of
the background dynamics. We note that when D=1,
Eqs. (5.4) are vacuous. When D = K—1, for a hypersur-
face, G b'~ and the extrinsic twist potential u '~ vanish
identically, and Eq. (5.4) reads

t9a Jb Ob Ja —0 (5 4')

with Ja = Ja . Ja is rotationless.
The right-hand side of Eq. (5.4) can be put in a

simpler form. Using the Ricci integrability conditions,
Eq. (2.1lc), the antisymrnetric sum of quadratics in the
extrinsic curvature can be identified with 0 b'~, modulo
a projection of the spacetime Riemann tensor. This gives

Gab — Ja k Jb + Jb k Ja ~ab (5.6)

where the spacetime Riemann tensor projections van-
ish because of the spacetime cyclic Bianchi identities,
&„[~p~]=0.

At this point, to facilitate our counting of the evolu-
tion equations, let us separate the timelike component of
Eq. (5.3), from the spatial components:

&oJB"—&BJo" = Goa",

+8JA +BJA —GBA (5.7b)

2V'[ VbJ ]'~ = V[ Gb ]'~ . (5.8)

When D=2, i.e., for a string, these integrability condi-
tions are vacuus, and Eqs. (5.3) and (5.4) therefore form
a consistent system of partial difFerential equations for
J

For each pair (ij), Eq. (5.7a) give the required D —1 evo-
lution equations for the JA'~. With the trace equations
(5.3), they provide the desired number of equations of
evolution.

When D ) 1, for each pair (ij), Eq. (5.7b) are
(D —1)(D —2)/2 equations, that involve only spatial
gradients, and, as such, do not evolve initial data. If
these equations are to be interpreted as constraints on
the initial data, it is essential that they be preserved
by the evolution. In the worst possible scenario, this
could require us to impose integrability conditions on the
solution, somewhat analogous to the second-class con-
straints in Dirac's classification of constrained dynamical
systems [12j, thereby further complicating the solution of
the Cauchy problem. What is remarkable is that the in-
tegrability conditions are, in fact, trivially satisfied. Let
us examine how this happens.

Formally, Eqs. (5.3) and (5.4) represent an overdeter-
mined system. Ignoring the initial value interpretation
of this system for the moment, a solution will exist if and
only if the following integrability conditions are satisfied:

and that the right-hand side gives the same:

7[a+bc] = +[aflcb] 2(+[aJb )Jc]k 2 J[b (7a Jc]k )

G [ab Jc]k J[b Gac] k

—~ [ba Jc]k J[b ~ca]k

—~[ah Jc]k + ~[ab Jc]

We have used the Bianchi differential identity Eq. (2.12)
in the first line, and in the third line a combination cubic
in Ja'~ vanishes identically.

The integrability conditions that might have ob-
structed the implementation of the Cauchy problem are
then trivial. It is therefore true that if the constraints
are satisfied on an initial spacelike hypersurface, and the
equations of evolution are satisfied, then the constraints
will continue to be satisfied at all subsequent times. In
Appendix B, we illustrate this, using a simple example
in which the intrinsic geometry of the world sheet is fIat,
and the extrinsic twist potential vanishes.

To summarize, for an extremal membrane, the gener-
alization of the Raychaudhuri equations for a curve is
given by Eqs. (5.3) and (5.4). These equations describe
the evolution of the deformation of the world sheet, J '~.

The quantity J '~ is difIicult to work with. By analogy
with continuum mechanics, we can decompose J '~ into
its symmetric and antisymmetric parts with respect to
the normal indices 0 '~ and A '~, respectively:

J '~ = 0 '~ + A '~ . (5.9)

We further decompose 0 '~ into its trace-free and trace
parts:

(5.10)

V W "+W'['W &] +Z "['Z ] —2W'['Z ']

A "0 = 0, (5.11a)
2V —D

In one dimension 0, Z'~, and A'~ describe, respectively,
the expansion, the shear, and the vorticity of a trajectory
with respect to neighboring trajectories. No such clear
interpretation appears to be available in higher dimen-
sions.

We consider now the trace, trace-free, and antisymmet-
ric parts of the Raychaudhuri equations for an extremal
membrane, Eqs. (5.3) and (5.4), in order to obtain "equa-
tions of motion for Qa y a &

and ~a ~.
From the traced Raychaudhuri equation, Eq. (5.3), one

finds
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V 8 —A'~A;-+Z'~Z; + 8 O
1

—(M )'; = 0, (5.11b)

Zaij + (AaiA, A j + ZaikZ j)str + Z ijoa
CL aA: aA; m-D 8+ 182+ Z2 A2+ Bp„VVV = 0.3 (5.i6)

which follow it have a positive sign, since the world-sheet
metric has indefinite signature.

It is useful to compare Eq. (5.11b) for 8 [and its de-
velopment through Eq. (5.14) to Eq. (5.15)] with its one-
dimensional analogue. For a geodesic curve with tangent
vector V, the Raychaudhuri equation describing the evo-
lution of the expansion 8 is given by [8]

—[(M )'j]"' = 0, (5.11c)

where the symbol (. .)'~' denotes the symmetric traceless
part of the matrix under parenthesis, and we have defined
the "effective mass" matrix

(M )" = Ks'K—~g(R(E, n')E, n~) = (M )~' .

(5.12)

This terminology is borrowed from the perturbative anal-
ysis of [5—7], where it appears as a variable mass in the
world-sheet wave equation that describes the evolution
of small perturbations.

The antisymmetric Raychaudhuri equations, Eq. (5.4),
give

2V'( As)'~ = —2A( "~'Asj~jg —2Z( "~*Zi)~ji, —0 s",
(5.13a)

T = (% —D) ln/ . (5.i7)

With this elementary change of variables, Eq. (5.15)
translates into the linear equation

This is a first-order ordinary differential equation. It can
always be converted into a second-order equation by sim-

ply redefining 0 = Y. Note, however, that the nonlinear
term in 8 in Eq. (5.16) is positive definite. In general
relativity, when the vorticity is set to zero, and the weak
energy condition holds, B„V"V"& 0, one comes to the
conclusion that 0 is negative, i.e., geodesics focus, and
diverges within a finite proper length [8]. It would be
nice to be able to apply a similar argument to Eq. (5.15),
but it is not obvious to us how to do this.

We can consider Y as a generalized relative volume ex-
pansion potential. If l represents the characteristic length
of the expansion, we can set

Al + [Z' —A' + M']I = 0 . (5.i8)

2B| Ogl
——0, (5.13b)

2V'( Zg)" = —2(A( '"AsjA, ~ + Z( '"Zsj1,~)"'

+4A(."('A,)„&) . (5.13c)

First of all, note that if we set A '~, Z '~ equal to zero ini-
tially, A '~ will continue to vanish only if the curvature
of the extrinsic twist, 0 g'~, vanishes. The generalized
shear Z '~ is picked up if the matrix (M )'~ has a non-
vanishing traceless part.

I et us now focus our attention on the equations which
describe the evolution of the generalized expansion, 0 .
Equation (5.13b) implies that

8 =t9Y, (5.14)

AT+ 8 TO T —A +Z —M =0, (5.15)N —D

where we have defined the world-sheet scalar quantities
A = A '~A;j, Z2 =— Z '~Z;j, and M = (M )', . This
equation describes the evolution of the expansion of the
world sheet. It is a quasilinear, second-order hyperbolic
partial differential equation. Note the nonlinear term
which depends quadratically in world-sheet derivatives
of Y. Neither this term nor the other world-sheet scalars

at least locally, for some potential function T. [However,
recall that Eqs. (5.4),and thus Eqs. (5.13), are vacuus for
a curve. ] Inserting this expansion in Eq. (5.lib), we find

I + i (Z —A + R„„V"V")I = 0 . (5.ig)

In general relativity, using the same argument sketched
above, one finds that l is negative, implying that l cannot
have a local minimum.

To conclude this section, we note that, for a hyper-
surface, D = N —1, there is only one normal vector so
that J,~

= J qq = 8 . The only degree of &eedom de-
scribing the deformation of the hypersurface is therefore
the breathing mode or dilation of the world sheet. The
extrinsic twist potential cu vanishes identically, by an-
tisymmetry, and the normal kame rotation coeKcients
vanish as well. Is it also possible to orient the tangent
vectors along the normal direction so that S b

——0, in a
way analogous to a curve.

Therefore, the Raychaudhuri equations for this special
case reduce to Eq. (5.14), and

LY+B YB Y —M = 0. (5.20)

This is a wave equation on the world sheet for a mas-
sive positive definite scalar field l with an efFective mass
term, y, = [Z —A + M ]/(N —D). Superficially, we
have reduced the analysis of 8 to the solution of a lin-
ear wave equation. However, we need to remember that
p involves Z'~ and A'~ explicitly, as a result, depends
implicitly also on 8~. We note that just as M does not
have a definite sign neither does p .

Note that for a geodesic curve, with 0 = 3(d/ds)(ln I),
the geodesic Raychaudhuri equation Eq. (5.16) reduces
to
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The corresponding linear equation (5.18) is genuinely lin-
ear.

equations to their perturbative limit consists simply in
the case of the relation

VI. JACOBI EQUATIONS

In this section, we show how the nonperturbative gen-
eralized Raychaudhuri equations describing arbitrary de-
formations of extremal membranes can be linearized to
reproduce the perturbative Jacobi equations describing
small deformations derived in [5—7].

We demonstrate that, for an extremal membrane, the
traced Raychaudhuri equation, Eq. (5.3), alone com-
pletely encodes perturbation theory. In fact, it is a simple
matter to obtain the Jacobi equations derived in [5,7] di-
rectly from Eq. (5.3). The antisymmetric Raychaudhuri
equations, Eqs. (5.4), turn out to have a vacuous pertur-
bative limit.

In [7], the infinitesimal deformations are described by
a multiplet of scalar fields, 4', living on the world sheet.
The perturbations are characterized by the normal pro-
jections of the infinitesimal perturbations of the world-
sbeet basis:

Let us consider now the (infinitesimal) normal linear
combination of Eq. (5.3) obtained by contracting with
the scalar fields 4z'.

[V J ~*+J 'g J "' —(M )~']4', = 0, (6 4)

V' (J ~'4~) —J "(V' 4, )

+J.'&J "*4,—(M')~*4, = 0.
Using Eq. (7.3), the second and third terms cancel, and
one recovers Eq. (5.3) of [7]:

V' V' C* —(M')', 4' = 0.

where we use the effective mass (M2)'~ defined iu
Eq. (5.12).

This expression may be rewritten as

J ' = @~g(D~E,n') .

For infinitesimal perturbations, it was found that

(6.1)

(6.2)

We show now that the antisymmetric combination
(5.4) is vacuous. To see this, note that with the use
of relation (6.3), one has

[VbJ '~ —V' Jg'~ + Js'y J "' —J *pJb"~]4; = 0 g'~4, .

(6.6)

Therefore, the reduction of the generalized Raychaudhuri However, the left-hand side of this equation gives

Vs(J "O,) —J "(VsC;) —V' (J "C;)+ J *'(VsC;) + Js'g J "'C; —J *gJs"'4, = 2V( V' j@' = Bs '*e'; = 0 s''C;,

which is identical to the right hand side of Eq. (6.6).

VII. CONCLUSIONS

We have provided a nonperturbative &amework in-
volving a coupled system of nonlinear partial differential
equations to examine the evolution of deformations of rel-
ativistic membranes of an arbitrary dimension propagat-
ing in a background spacetime of arbitrary codimension.
The construction of this system of equations was mo-
tivated by the Raychaudhuri equations describing point
particles to which they reduce when a=1. Despite the
complexity of these equations, they do share many fea-
tures of the one-dimensional prototype. Clearly, however,
work remains to be done to sharpen our understanding
of this system. Work is in progress on the examination of
the dynamics of large deformations about various simple
symmetrical configurations [11,13].

To conclude, we comment brieQy on the derivation of
the appropriate generalizations of Raychaudhuri equa-
tions when the dynamics is not of the Nambu type. Re-
call that to yield a useful system of equations &om the

simple-minded generalization of the Raychaudhuri equa-
tions, Eq. (3.1), we need to eliminate the source term
V;K b~ in terms of quantities determined on the world
sheet by the equations of motion. For the case of an ex-
tremal membrane, this was achieved by forming appro-
priate linear combinations of Eq. (3.1), i.e., by consider-
ing its trace over the world-sheet indices, Eq. (5.3). We
note, however, that the other linear combinations we con-
sidered, the antisymmetric combination Eq. (5.4), are in
fact independent of the dynamics, since the source term
is eliminated. Thus we continue to use these equations.
For a nonextremal surface, therefore, we need to find the
appropriate linear combination to replace Eq. (5.3). The
generalization of the procedure we followed for extremal
membranes is to consider linear combinations of Eq. (3.1)
such that any source term which is not determined on
the world sheet is proportional to the equations of mo-
tion. If, for example, rigidity corrections are incorporated
into the action, the dynamical equations will involve two
world-sheet derivatives (V' ) of K'& (four derivatives of
the embedding functions) [14]. This will require us to
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strike Eq. (3.1) twice with V' . The source term will be
removed in favor of quantities which are determined com-
pletely on the world sheet by commuting these derivatives
through the normal gradient operating on K'b. Details
will be presented elsewhere [15].

second line of Eq. (Al):

DbD;E = D;DbE + R(Eb, n, )E
+(Dbn,"—.D;E"b) D„E

We note that

(A3)
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D;(DbE ) = D, [pb E. —Kb "nb]
= (D;pb ')E, + pb 'D;E, —(D,Kb ")nb

—Kb Dink .

APPENDIX A

In this appendix we give the details of the derivation
of the generalized Raychaudhuri equations (3.1). This
involves the evaluation of the quantity V'b J,~. We em-
phasize that we are not making any assumptions about
the equations of motion of the world sheet.

The definition of J;j in Eq. (2.13) implies

g(nj& Di(DbEa)) = '7ba Jcij ' DiKabj pikj Kab

(A4)

+b Jaij Db Jaij Pba Jcij (A5)

The first term appearing on the right-hand side (RHS) of
Eq. (A4) combines with the LHS of Eq. (Al) to provide
a world-sheet covariant derivative of J,j defined by

Db J;~ + Dbg(n~, D;E )
= g(Dbn, , D;E ) + g(n, , DbD, E ) .

Using Eqs. (2.4) and (2.11), the first term gives us

(A1)

The latter two terms add, to yield a normal covariant
derivative acting on K b~,

jk7i ~ba —Di ~ba Pi ~bak

g(Dbnj&D;E~) = g(Kb,jE'+ abjbn & S~d,,E + J~;in )
= abaci b j + ~bj Jaik (A2)

We now apply the Ricci identity to the last term on the

The term which remains to be evaluated is

g(n. , (Dbn", —D,E"b)D„E ) .

To evaluate it we insert unity to write

g(nj& (Dbn", —D;E b)D„E~) = g(nj& (Dbn» —D,E„b)(E",E" + n"bn ")D~E~)
= g(nj, (Dbn„; —D;E„b)(E"'D,E + n" DbE ))

+b Jaij +i +abj Jbi Jakj +bc +a
+g(B(Eb, n;) E,nj), (A8)

where we have exploited the definitions of V'b and V;,
Eqs. (2.9) and (2.17), respectively, to write

Summing terms, we obtain the sought for expression in
the form

APPENDIX B

In this appendix, we illustrate how the integrability
conditions Eq. (5.7) imply that the spatial constraints
(5.6b) are preserved by the evolution. We use a simpler
analogous system of equations, assuming that the world-
sheet geometry is Hat, and that the extrinsic twist poten-
tial, ur '~, vanishes. Under these assumptions, Eqs. (5.4)
simplify to

k k+b Jaij +b Jaij ~bj Jaki ~bi Jakj
8 Jb —&9bJ = G b(J, ) .

and

These equations fall into two categories. The first con-
sists of dynamical equations for the world sheet spatial
components J~.'

'I7;Tab ——V';K
b

—Kb' abaci —&a (A10) oJ~ —~Jo = &o~
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The latter is a set of constraints on these variables: only the equation

~AB = cd JB ~BJA +AB —O ~

The integrability conditions for (Bl) can be written as For now,

0+AH + AGRO BGAO —o ~ (B5)

O, G b+0 Gg +BgG, =0. ~O~AB ~A(~O~B) cd(~0 JA) '4+AB (Bfi)

These equations are vacuous if two or more of the indices
are equal. To propagate the spatial constraint, we require

the right-hand side of which is zero modulo Eqs. (B2)
and (B4). Thus CAB =0 is preserved by the evolution. .
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