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Mass spectrum of strings in anti —de Sitter spacetime
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We perform string quantization in anti —de Sitter (AdS) spacetime. The string motion is stable,
oscillatory in time with real frequencies &u = Qn2+ m2a'~H~, and the string size and energy
are bounded. The string 6uctuations around the center of mass are well behaved. We find the
mass formula which is also well behaved in all regimes. There is an infinite number of states with
arbitrarily high mass in AdS spacetime [in de Sitter (dS) spacetime there is a finite number of
states only]. The critical dimension at which the graviton appears is D = 25, as in de Sitter space.
A cosmological constant A g 0 (whatever its sign) introduces a 6ne structure effect (splitting of
levels) in the mass spectrum at all states beyond the graviton. The high mass spectrum changes
drastically with respect to 8at Minkowski spacetime. For A ( 0, we find (m ) ~A~K, independent
of o.', and the level spacing grows with the eigenvalue of the number operator N. The density of
states p(m) grows like exp[(m//~A[ ) ~

] [instead of p(m) exp(m~a') as in Minkowski space],
thus discarding the existence of a critical string temperature. For the sake of completeness, we also
study the quantum strings in the black string background, where strings behave, in many respects,
as in ordinary black hole backgrounds. The mass spectrum is equal to the mass spectrum in Hat
Minkowski space.

PACS number(s): 11.27.+d, 11.25.Mj

I. INTRODUCTION AND RESULTS

String dynamics in curved spacetime and its associ-
ated physical phenomena started to be systematically
studied in Refs. [1,2]. Since then, this subject has re-
ceived systematic and increasing attention. String prop-
agation in curved spacetime reveals new insight and new
physical phenomena with respect to string propagation
in flat spacetime (and with respect to quantum fields in
curved spacetime). The results of this program are rele-
vant bath far fundamental (quantum) strings and for cos-
mic strings, which behave essentially in a classical way.
Approximate [1—5] and exact [5—10] string methods have
been developed. Classical and quantum string dynam-
ics have been investigated in black hole backgrounds [5,
ll —14], cosmological spacetimes [15],cosmic string space-
tirnes [16], gravitational wave backgrounds [17], super-
gravity backgrounds [18] (which are necessary for non-
trivial propagation of fermionic strings), and near space-
time singularities [19]. Physical phenomena such as the
Hawking-Unruh effect in string theory [2,20], horizon
string stretching [2,20], particle transmutation [11,21],
string scattering [11,16], mass spectrum and critical di-
mension [1,11,16], string instabilities with nonoscillatory
motion in time [1,5—9,15], and multistring solutions [7—
9] have been found. The physically rich dynamics of
strings in D & 2 curved spacetimes is lost in D = 2, in
which most of the interesting stringy eKects referred to
above disappear. String propagation in the D = 2 stringy
black hole [22] reduces ta the quantization of a massless
scalar particle (the dilaton) with a new peculiar effect:
the quantum renormalization of the speed of light [23],
which appears restricted to strings in two-dimensional

curved spacetimes.
Recently [5], classical string dynamics was studied in

the 2+ 1 black hole anti —de Sitter spacetime as well as in
its dual, the black string background, within the string
perturbation series approach of de Vega and Sanchez [1].
First- and second-order string Huctuations around the
center of mass were obtained. A comparison was made
to the ordinary (D ) 4) black hole backgrounds (with
cosmological constant). The circular string motion was
exactly and completely solved (in terms of either elemen-
tary or elliptic functions) in all these backgrounds.

In the present paper we go further in the investiga-
tion of the physical properties of strings in these back-
grounds, by performing string quantization. Since the
2+1 black hole spacetime is asymptotically anti —de Sitter
(AdS) spacetime, the results of Ref. [5] can be extended
to classical strings in D-dimensional anti —de Sitter space-
time as well. For the sake of completeness, we also in-
vestigate string quantization in the black string back-
ground, for which, in many respects, strings behave as in
the ordinary black hole backgrounds. In AdS spacetime,
the string motion is oscillatory in time and is stable; all
Buctuations around the string center of mass are well be-
haved and bounded. Local gravity of AdS spacetime is al-
ways negative and string instabilities do not develop. The
string perturbation series approach, considering Huctua-
tions around the center of mass, is particularly appropri-
ate in AdS spacetime, the natural dimensionless expan-
sion parameter being A = n'/l2 ) 0, where n' is the string
tension and the "Hubble constant" H = 1/l. The nega-
tive cosmological constant of AdS spacetime is related to
the Hubble constant H by A = (D —1)(D —2—)H /2.

All the spatial (y, = 1, ..., D —1) modes in D

0556-2821/95/52(2)/1051(14)/$06. 00 52 1051 1995 The American Physical Society



A. L. LARSEN AND N. SANCHEZ

dimensional AdS spacetime oscillate with frequency u
v n2 + m2a'2H2 = i/n2 + m2n'A, which are real for all
n (m, being the string mass). In this paper, we perform
a canonical quantization procedure. From the conformal
generators I, I and the constraints I 0 ——Lo ——0, im-
posed at the quantum level, we obtain the mass formula

m n' =- (D —1) QO„(A)

+ +0 (A) Q[(n )to.~+ (n~)tn~]

J = 2 + —m'n' + G(A').
2

In Minkowski spacetime the mass and number operators
of the string are related by rn n' = —4+4¹In AdS [as
well as in de Sitter (dS)], spacetime there is no such sim-
ple relation between the mass and the number operators;
the splitting of levels increases considerably for very large
N. The Pne structure effect we find here is also present
in de Sitter space. Up to order A, the lower mass states
in dS and AdS space are the same; the diff'erences appear
to order A . The lower mass states in de Sitter spacetime
are given by Eq. (1.6) but with the As term getting an
opposite sign (—c~A ).

For the very high mass spectrum, we find more dras-
tic efFects. States with very large eigenvalue N, namely,
K )) 1/A, have masses [Eq. (3.33)]

27l + 77l, lX A

Qnz + m2a'A
(1.2) (j ~

m ci
~ j)Ags d.AK (1.8)

and we have applied symmetric ordering of the operators.
The operators o. , 6 satisfy

aIld angular momentum

[n„, (n, „)t]= [6„, (n„)t] = 1, for all n ) 0, (1.3)

and we have eliminated the zero modes. To the first term
in the mass formula (the zero point energy) we apply (-
function regularization; see Eqs. (3.14), (3.15). For A ((
t. , which is clearly satisfied in most interesting cases, we
find the lower mass states m o.'A && 1 and the quantum
mass spectrum. Physical states are characterized by the
eigenvalue of the number operator

D —1

P [( R)t R + ( -R)t B]-
and the ground state is defined by

n„ i0)=a„ i0)=0 forall n)0. (1.5)

(j ~

m, n'
~ j)~ps = a, + b, A + c,A + O(A ).

The collective index j generically labels the state
~ j) and

the coeKcients a~, b~, c~ are all well-computed numbers,
difI'erent for each state. The corrections to the mass in
Minkowski spacetime appear to order A . Therefore, the
leading Regge trajectory for the lower mass states is

We find that m o.' = 0 is an exact solution of the mass
formula in D = 25 and that there is a graviton at D = 25,
which indicates, as in de Sitter space [1], that the crit-
ical dimension of AdS space is 25 (although it should
be stressed that the question whether de Sitter space
is a salution to the full P-function equations remains
open). The ground state is a tachyon; its mass is given by
Eq. (3.18). Remarkably enough, for K ) 2 we find that
a generic feature of aH excited states beyond the gravi-
ton is the presence of a fine structure effect: Far a given
eigenvalue N & 2, the corresponding states have different
masses. For the lower mass states the expectation value
of the mass operator in the corresponding states (generi-
cally labeled

~ g)) turns out to have the form [Eq. (3.32)]

where dz are well-computed numbers diff'erent for each
state. Since A = n'/l, we see from Eq. (1.8) that the
masses of the high mass states are independent of o.'.
In Minkowski spacetime, very large N states all have
the same mass m o.' 4N, but here in AdS spacetime
the masses of the high mass states with the same eigen-
value % are diferent by factors dz. In addition, because
of fine structure efFect, states with difI'erent N can get
mixed up. For high mass states, the level spacing grottos
with N (instead of being constant as in Minkowski space-
time). As a consequence, the density of states p(m) as a
function of mass grows like exp[(m/g~ A

~

)i~2] [instead
of exp(mi/n') as in Minkowski spacetime], and indepen-
dently of o.'. The partition function for a gas of strings at
a temperature P i in AdS spacetime is well defined for
all finite temperatures P, discarding the existence of
the Hagedorn temperature and the possibility of a phase
transition (as occurs in Minkowski spacetime and in other
curved spacetimes).

In the black string background, we calculate explic-
itly the first- and second-order string Buctuations around
the center of mass. We then determine the world-sheet
energy-momentum tensor and we derive the mass for-
mula in the asymptotic region. The mass spectrum is
equal to the mass spectrum in Hat Minkowski spacetime.
Therefore, for a gas of strings at temperature P i in the
asymptotic region of the black string background, the
partition function can only be defined for P ) v al; i.e. ,
there is a Hagedorn temperature, Eqs. (4.51), (4.52).

This paper is organized as follows: In Sec. II we re-
view the classical string propagation in the 2 + 1 black
hale anti —de Sitter spacetime [5] and we generalize the
results to ordinary D-dimensional anti —de Sitter space-
time. In Sec. III we perform a canonical quantization of
strings in D-dimensional anti —de Sitter spacetime and we
analyze the string spectrum. In Sec. IV we consider clas-
sical and quantum string propagation in the black string
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background. A summary of our results and conclusions
is presented in Sec. V and in Table I.

transverse to the geodesic of the center of mass [5]. We
therefore introduce D —1 normal vectors nR,

II. CLASSICAL STRING PROPAGATION gp~ (q) Rq g„„(q)nRn, (2.7)

The classical propagation of strings in the (2 + 1)-
dimensional black hole anti —de Sitter spacetime was con-
sidered in detail in Ref. [5] using both approximative and
exact methods. In this section we give a short review of
the results of the perturbation series approach and we
give the generalization to ordinary D-dimensional anti-
de Sitter space.

The (2+1)-dimensional black hole anti —de Sitter space-
time, recently found by Banados, Teitelboim, and Zanelli
[24], is a two-parameter family (mass M and angular mo-
mentum J) of solutions to the Einstein equations with a
cosmological constant A = —1/l2:

and consider first order perturbations in the form

(2.8)

where bx are the comoving perturbations, i.e., the per-
turbations as seen by an observer traveling with the cen-
ter of mass of the string. In the case of the (2 + 1)-
dimensional black hole anti —de Sitter spacetime it has
been shown that [5]

R( ) ) [AR —'E(t1cT+ia&~T) + AR l(vxcT —@I~T)] (2 9)

where

( „~) t'
d8 M 2 dt + 2-M+ 2l2 ) ( l2 4r2)

Jdtdg—+ r dP .

dr2

(2.1) and

m2o. '2
2 + (2.10)

Ml2 t—QM212 —J2, r„s ——v Ml. (2.2)

Ordinary D-dimensional anti —de Sitter space can for-
mally be obtained by taking M = —1 and J = 0 in
the line element (2.1), and by adding D —3 extra an-
gular coordinates. In that case, of course, there are no
horizons and no static limit.

The string equations of motion and constraints, in the
conformal gauge, take the form

The solution can be obtained by a discrete identifica-
tion of points in anti —de Sitter space [25] and thus has
the local geometry of anti —de Sitter space. Globally, how-
ever, it is very di8'erent. It has two horizons r~ and a
static limit r,z defining an ergosphere:

A"=(A" )t (2.11)

Notice that in de Sitter spacetime [1] the pertur-
bations satisfy Eq. (2.9) but with frequency

gn —m n' /l2; thus, unstable modes (for ] n ](mn'/l)
appear and the perturbations blow up. On the contrary,
in the present case the first-order perturbations are com-
pletely regular and Gnite trigonometric functions oscil-
lating with real &equencies u for all n.

The second-order perturbations (&(T, o) are somewhat
more complicated since they couple to the first-order per-
turbations. The explicit expressions can be found in
Ref. [5], and so we shall not go into any detail here. From
the center-of-mass solution and the first- and second-
order perturbations we can finally calculate the world-
sheet energy-momentum tensor

x" —x""+ I'" (x~x —x'pz' ) = 0, (2.3) T~~ = g~~O~x 8~x ) (2.12)

(2.4)
where B~ =

2 (c) + 8 ), as well as the conformal genera-
tors I , L

Z (T& O') = q (T) + 'g (T& O') + ( (T& O') + ~ ~ ' (2.5)

where the overdot and prime stand for derivatives with
respect to w and o, respectively. In the string perturba-
tion series approach [1], solutions to this set of equations
are obtained by expanding around an exact solution, typ-
ically taken as the string center of mass:

) L —in(o' —v)
2'

—~n(~+~)
2~

(2.13)

where

q" + I'" (q)q~q = 0, g„„(q)q"q = —m n' . (2.6)

For the (2 + 1)-dimensional black hole anti —de Sitter
spacetime these equations can be easily separated and
integrated in terms of elementary functions [5). Concern-
ing the first-order perturbations gi'(T, o) it is convenient
to consider &om the beginning only those perturbations

2

Lo —
m ) ((u„+ n) ) A„A „——m o.',

R=1
(2.14)

2

L. =~) (~„—n)') ARA"„—
R=1

—m o.'. (2.15)

For the (2 + 1)-dimensional black hole anti —de Sitter
spacetime, Lo, Lo are given by [5]
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The classical constraints L0 ——I0 ——0 then provide a
formula for the mass:

m'n" ~m'~" = 2)
~

2n'+, )
n R=i

(2.16)

where the constants A and A are subject to the re-
striction

2

) n~„) A„A „=0. (2.17)

Notice that in our normalization, Eq. (2.9), the con-
stants A and A have the dimension of length and
that Eq. (2.17) is just the usual closed string restriction,
implying that there must be an equal amount of left and
right Inovers.

The conformal generators for n g 0 involve only the
&ee oscillators introduced in the second-order perturba-
tions [5] and therefore do not lead to any further restric-
tions on A and A „.This is in agreement with the
result found in de Sitter space [1] but is very different
from Minkowski space where there is still one unused
constraint that in principle eliminates a pair of oscilla-
tors AR and A „(cf. light-cone gauge quantization).

This concludes the discussion of the classical picture
of string propagation in the (2 + 1)-dimensional black
hole anti —de Sitter spacetime using the string perturba-
tion approach. These results can be easily generalized
to D-dimensional anti —de Sitter space. The first-order
perturbations (2.9)—(2.11) and the conformal generators
(2.14) and (2.15) are independent of the black hole massI, and so the results in D-dimensional anti —de Sitter
space are obtained by simply changing the range of the
index B from 1, 2 to 1, 2, ..., (D —1): i.e.,

III. QUANTIZATION
IN ANTI —DE SITTER, SPACE

In this section we perform the canonical quantization
of the closed bosonic string in D-dimensional anti —de Sit-
ter space using the results of Sec. II. The first-order per-
turbations (2.9) correspond to the action

D —1

O'T80 'g 6X ~ 8XR
R=1

2 n
bX bXR (3 1)

The momentum conjugate to» is

asI'~
B(8XR)

1
, (»R)... (3 2)

and then the canonical commutation relations become

[~ R, ~*'] = [Fl, Fl, ] = 0,

[rr„, »'] = -'sgs( —~'). (3.3)

The constants AR and AR introduced in Eqs. (2.9)—
(2.11), which are now considered as quantum operators,
do not represent independent left and right movers since
the &equency u is always positive. It is therefore con-
venient to make the redefinitions

D —1
m'~" =2) 2n'+ „)X„A „.

n R=1
(2.18)

so that the first-order perturbations take the form

(3.4)

t I

n
n+0

(3.5)

m2o, '21+, a =(" )', =( .)' o =( o)'
A

(3.6)

The nonvanishing commutators now take the form

R t -R -RR R t -R -R [~R (~R) t] (3.7)

and the mass formula (2.18), with symmetric order of the operators, becomes

D—1

m n' = ) 2n + ) [(a )ta + a (a )t + (a )ta + a (a„)t],
n&0 ) R=l

(3.8)

where we have eliminated the zero modes. We finally introduce the more conventionally normalized oscillators:
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aR -RI A
n„, for all n) 0.

2nO„
(3.9)

The nonvanishing commutators are then represented by

[n, (o. )t]=[n, (n )t]=1, forall n&0.

The classical constraints 10 ——Lo ——0 in the quantum theory take the form

(Lp —27m'a)
~

it/) = (Lp —27ro. 'a)
~

i//) = 0,

(3.io)

(3.11)

where a is the normal-ordering constant and the factor 2vro. is introduced for later convenience. The normal-ordering
constant is most easily obtained by symmetrization of the oscillator products as in Eq. (3.8). Using Eqs. (2.14) and
(2.15), the physical state conditions (3.11), in terms of the conventionally normalized oscillators, become

2n'+m' 'A D—1

(3.i2)

and

) ) [( R)t R (-R)t -R]
ng0 R=1

where we introduced the dimensionless positive parameter A = /i'/l2. The first term in the mass formula (3.12)
obviously needs (-function regularization. Assuming A « 1, which is clearly satisfied in most interesting cases, we
find, for the lower mass states m o.'A (& 1,

= —-'+ ( '~/)2q(3)~' —(
'

')'q(5)~'+O(( ' '~)').
i/n2 + m2~/A 6 4 4

n&0
(3.14)

For the very high mass states m2n'A )) 1 (but still assuming A « 1) we find instead

2n + m o.'A

v n2 + m2n/Aneo
(3.15)

In de Sitter space the mass formula takes the form (3.12) but with A being negative [1]. This means that there is only
a finite number of states in de Sitter space. Beyond some maximal mass m2o. 1/A, the strings become unstable
and no real solutions to the analogue of Eq. (3.12) can be found. Here in anti —de Sitter space A is positive so that
arbitrarily high mass solutions of Eq. (3.12) can be found. We therefore find infinitely many states in anti —de Sitter
space.

Let us erst consider the lower mass spectrum in a little more detail. As in Minkowski space, it is convenient to
characterize the physical states by the eigenvalue of the number operator

(3.i6)

For K = 0 we have the vacuum state
~
0) defined by

n„~0) =n„~0) =0 forall n&0.

Using Eqs. (3.12) and (3.14) we find that there is a tachyon with mass

(3.17)

(0
~

m'n'
~

0) = (D —1) ——+ ((3)A' — ((5)A'+ O(A')(D —i)', (D —i)'
6 144 864

(3.is)

At the first excited level (1V = 1) we have states of the form

(~i )'(~i)'
I o) =I fbi i) . (3.i9)

For D = 25 it yields the graviton
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Rs
I

m2o, l
I

&Rs) (3.20)

Notice that m2n = 0 is an exact solution of the mass formula in D = 25 dimensions. As in de Sitter space [1], this
indicates that the critical dimension in anti —de Sitter space is 25. It should be stressed, however, that it is not known
how to obtain de Sitter space from the P-function equations. In the further analysis we take D = 25.

At the next excited level (X = 2) we have states of the form

( ")'( ')'( )'( )'Io) =l~ '
)

(3.21)

In Minkowski spacetime the corresponding states all have m o.' = 4. In fact, the mass operator and the number
operator are related by m o, = —4+ 4N in Minkowski space. Here in anti —de Sitter space there is no such simple
relation. Using Eqs. (3.12) and (3.14) we find the following masses of the states (3.21) when D = 25:

(ni i i i I
m n'

I
ni i i i) = 4+ [16+96((3)]& —[64+ 384((5)]& + O(& )

(~", ', , I

m'~'
I

~l", ', ,) = (~", ', , I

m'~'
I

~", ', ,) = 4+ [»/2 + 96((3)]&' —[65/2+»«(5)]&'+ O(&'), (3.22)

(fir 2 I
m n

I
Oz 2) = 4+ [1+96$(3)]A —[1+384((5)]A + O(A ) .

We therefore reach the interesting conclusion that the
coupling to the gravitational background (here anti —de
Sitter spacetime) gives rise to a fine structure in the string
mass spectrum. This turns out to be a general feature at
all excited levels beyond the graviton, i.e., for N ) 1. To
zeroth order in the expansion parameter A we recover, of
course, the flat Minkowski space spectrum. The first cor-
rections appear to order A . The leading Regge trajectory
for the lower mass states therefore takes the form

This is significantly difI'erent from the lower mass rela-
tion, as compared with Eq. (3.23). Considering instead
the state (for even %)

—=
I

~2'. '. . . 2"" "") (327)

and taking again N )) A, we find
J = 2+ —m n'+ O(A ).

2
(3.23)

To second order in A the masses are the same as in de
Sitter space [1]. The difFerence in the lower mass spec-
trum between de Sitter space and anti —de Sitter space is
of order A .

For the very high mass spectrum the situation changes
drastically. Consider first excited states of the form

(3.24)

This is a state with eigenvalue N of the number operator,
and we will consider very large N, say, N )) A . Using
Eqs. (3.12) and (3.15) we find the approximate value of
the mass:

(QRgsg" R~s~
I

m2 I
I

QR&s&" R~s~) 4/+2

The Regge trajectory now takes the form

(3.26)

(3.28)

In flat Minkowski space the states Eqs. (3.24) and (3.27)
have the same mass (m n' = —4+4Ã —4N) but here in
anti —de Sitter space the masses are difI'erent by a factor
of 4. The one structure we found in the lower mass spec-
trum completely changes the very high mass spectrum.
States with the same eigenvalue of the number opera-
tor can have considerably difFerent masses. Furthermore,
states with diIII'erent eigenvalues of the number operator
can get mixed up in the mass spectrum. For very high
mass states of the form Eq. (3.24) or Eq. (3.27), the level
spacing [A(m n') as a function of %] grows proportion-
ally to ¹ This should be contrasted with the situation
in Minkowski space where the level spacing is constant.
This suggests that in anti —de Sitter space the partition
function can be defined for any temperature, as opposed
to Minkowski space where there is a critical tempera-
ture (the Hagedorn temperature) of the order (n') ~ . In
Minkowski space, for very large N, the number of states
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e~lv
dN (3.29)

where p is some number larger than ].. This holds for
anti —de Sitter space as well. In anti —de Sitter space, for
the states in the form (3.24) or (3.27), this leads to the
following density of levels as a function of mass:

P/ ~m
p(m)- mp-~ ' (3.30)

where Pi Q/ is independent of the string tension.
Therefore, for a gas of strings in anti —de Sitter space at
temperature P, the partition function behaves like

dm p(m)e

eA ~~(i—/' ~~)P/

dm
mP —1 (3.31)

d~ with eigenvalue N of the number operator is roughly
growing like [28]

IV. BLACK STB.INC BACKCB.OUND

By a duality transformation [26] the (2 + 1)-
dimensional black hole anti —de Sitter spacetime becomes
the black string of Horne and Horowitz [27]. It is there-
fore interesting to compare the string propagation in
these two spacetimes. In Sec. II we presented the main
results of. the string perturbation approach in the case of
the (2 + 1)-dimensional black hole anti —de Sitter space-
time; the details can be found in Ref. [5]. In Ref. [5]
we considered also the first-order string perturbations
in the black string background, with special interest in
the behavior near the physical singularity. In this sec-
tion we perform a more complete analysis of the string
propagation in the black string background. We consider
all possible string center-of-mass geodesics (bounded and
unbounded) and we calculate explicitly the first- and
second-order string perturbations around these solutions.
In the asymptotic region we then calculate the world-
sheet energy-momentum tensor and we derive the mass
formula of the string. To allow for comparison with the
results of Sec. I we consider the uncharged black string
with a line element [27]:

This integral is finite for any value of P; thus, we find no
Hagedorn temperature in anti —de Sitter space.

We close this section with some interesting remarks on
the string masses in the two regimes considered. For the
low mass states (m n'A « 1) our results can be written

(j I
m'(~' /)

I j)=, + —„).a~-(~'//')"4(W —1)

(3.32)

where j is a collective index labeling the state
~
j). It is

now important to notice that a~0 ——0 for all the low mass
states; i.e. , there is no "constant" term on the right-hand
side of Eq. (3.32). A nonzero a~o term would give rise to
an o.'-independent contribution to the string mass. Its
absence, on the other hand, means that the first term
on the right-hand side of Eq. (3.32) is superdoininant
(since, in all cases, a'// = A « 1) and that the string
scale is therefore set by 1/n'. For the high mass states
(m n'A )) 1) we found instead

( M/ ) /'dr'
dh + 1— +dx .

(4 1)

4r O.
'2

E —m+
l2

(4.2)

Eo.'
t =

1 —M//r ' (4.3)

where E is the integration constant. These equations can
be solved in terms of the elementary functions

In this form the spacetime is just the product of Witten's
two-dimensional black hole [22] and the real line space.
It has a horizon at r = Ml and, contrary to its dual the
(2 + 1)-dimensional black hole anti —de Sitter spacetime,
it has a strong curvature singularity at r = 0. For a
radially infalling string (x =const) the geodesic equations
(2.6), determining the string center-of-mass motion, are
integrated to

(j ~

m (n', /)
~ j) N for & )) / /n',

l2 (3.33) m2M/ . & n'gZ2 —m2
r(r) = —sinhE2 —m2 ( /

(4 4)

where the number d~ depends on the state. The masses
of the high mass states are therefore independent of o.'.
Moreover, the right-hand side of Eq. (3.33) is exactly like
a nonzero dominant a~o term in Eq. (3.32). For the high
mass states the scale is therefore set by 1// which is
equal to the absolute value of the cosmological constant
A (up to a geometrical factor). This suggests that for
A « 1, the masses of all string states can be represented
by a formula of the form (3.32). For the low mass states
a~0 ——0, while for the high mass states a~0 becomes a
large positive number.

t(r) = En'r + / arctanh

/' n', /'E2 —m2
x tanh (4 5)

Notice that these relations are well de6ned for any rela-
tion between E and m . For E —m2 ( 0, r(r) becomes a
trigonometric function describing the bounded solutions.
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n" =(o, o, i),
2E.

l2mn'(r —Ml) ' ml '

)
(4.6)

It can now be shown [5] that the first-order perturbations
(2.8) take the form

S*~(r,~) = ) C~(r).-'".
,

he'll(r iT) ) 0
(4.7)

where C and Cn are solutions of the "Schrodinger equa-
tions" in ~:

i~+ n'C~ = 0, (4.8)

For E2 = m~ we find that r(r) is simply proportional to
r (r) = M(mn'r) '/l.

Two covariantly constant normal vectors satisfying
Eqs. (2.7) are given by

where A = (A ), B = (B ) . Notice in particularII II t Il II

the behavior

A„e-'" + B„'e'" for r -+ —~ (r ~ ~),
„—'(B —A ) for r -+ 0 (r + 0).

(4.18)

, &n'gE2 —m2 )
z = —sinh T )l

Cll z()= "('). (. )

Equation (4.9) then reduces to the hypergeometric equa-
tion [29]

z(z —1) + c —(a+ b+ 1)z —ab g(z) = 0,
(z) dg(z)

dz dz

(4.15)

Asymptotically this is a plane wave while near the sin-
gularity the perturbations blow up. This in agreement
with the results obtained in Ref. [5].

For E2 g m2 we introduce a real parameter z and a
function g(z):

(4.9) with parameters

Not surprisingly the perturbations in the "transverse"
direction are the completely finite and regular trigono-
metric functions

inlG= 1+
2n'QE2 —m2

inl6=1-
2n'QE2 —m~

(4.16)

(r) —A (4.10)

where A+ = (A& )t B& —(B& )t In Ref. [5] we
considered the solution of Eq. (4.9) for r ~ 0 and we
found that the perturbations blow up. We now give the
complete solution in explicit form for all r.

For E = m, using Eq. (4.4) we Find

5
C = 2'

For
~

z ~& 1 the solution C (z) is a linear combination of
the functions

zF(a, b, c;z) and z 'I" (a —c+ l, b —c+ 1, 2 —c;z) .

CII+ ~' ——, ICII =O.(,
(4.ii)

(4.i7)

This equation is solved by

~II (r) —Alln ~ n
—.nT + BII 1+ znT

(4.i2)

In the case where E ( m [where r(r) reduces to a
trigonometric function] we find that z 6 [0, 1] and there-
fore Eq. (4.17) gives the full solution. For E ) m, on
the other hand, we have z 6 ] —oo, 0] and the solutions
(4.17) have to be matched with solutions for

~

z ~) 1
using analytical continuation [29]. This leads to the ex-

pression for C (z) when
~

z ~) 1:

gll(z) = 2-'&~'- 'All ( z) "I"(b, 1 —c—+ b, 1 —a+ b;1/z)
—inl

+2 '&~'- 'Bll (—z) P(a, 1 —c+ a, 1 —b+ a;1/z), (4.18)

where again A = (A ), B = (B ) . The constant factors in front of A and B were included to ensure the~
II II t II II ~ II II

asymptotic behavior

7 ~ QQ (r ~QQ) (4.19)
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In terms of the constants A„and B the solution for
I

z I( 1 readsII II

2nl 2 '& —
~~

I'(2 —c)l'(b —a) I'(c)I'(b —a)

r(2-.)r( -b)+ Bll i zE(abcz)3a'/@2 —m2 I'(a —c + 1)I'(1 —b)

z 'E(a —c+1,b —c+ 1, 2 —c;z)
I'(c)1 (a —b)
I'aI'c —b

(4.20)

Forr~0 (w-+0 ) wefind

ct'QE2 —m2 —inl) B„+(a'QE —m2 + inl) A lC„(~~0 )-+—
~'2 E2 —m2 +n2l2 7

(4.21)

i.e. , the perturbations blow up, in agreement with the result found in Ref. [5]. The second-order perturbations ( (7, 0')
are determined by [1,3]

.A~ ( b~ (gs) ~p e .b(A (Vp Uy,

where the source U" is bilinear in the first-order perturbations and explicitly given by

(4.22)

(4.2a)

The ( perturbations decouple and Eq. (4.22) reduces to the free wave equation. The ( perturbations are then given
explicitly by

(x ( ) ) [Ax isa(~+n) —+ Bx in(n ~)]— (4.24)

where A„= (A )t, B = (B „)t. The perturbations (' and (" are somewhat more complicated to derive. By
redefining (' and U'",

2r Ml t

(4.25)

(4.26)

we find, from Eq. (4.22),

* I+»I . I+BI ~ I

=
I U' I

i'jt ) ((nt ) fjt ) (('t ) (~t
"*r

~ *r ~ ') (4.27)

where the matrices A and 8 are given by

Ifn P) B fo PlI«)'
Mli ( Ml~
2p

t
r

MZ~' (1—
r ( t' (4.28)

—2EMQ.'i —4ME20. '2 2Mm20. '2
b= +r2(1 —Ml/r) ' lr(1 —Ml/r) lr
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The first-order r derivatives in Eq. (4.27) are eliminated by the transformation

(4.29)

i.e.)

(1 MI/ )
i (( E/m lr/2mct'r l

l r'/2 ma'r E/m

We now Fourier expand the second-order perturbations and the sources:

~( o)=).~ ()e ~ ( tr)=). ~ () (4.a1)

U*(r, o.) = ) U„*(r)e (4.a2)

and. the matrix equation (4.27) reduces to

(4.aa)

where

V = g '(n I+ 8 —A —A)g =
i () 2 2Mrn n ) (4.a4)

i.e., two decoupled inhomogeneous second-order linear difFerential equations. These equations can easily be integrated
by noticing that the corresponding homogeneous equations take exactly the same form as Eqs. (4.8) and (4.9), which
we have already solved explicitly. E and Z will then take the same form, plus extra terms involving suitable integrals
of the sources. By transforming backwards, using Eqs. (4.2S)—(4.32), we finally get the explicit expressions for ( and

which we shall, however, not write down here. It is instructive to consider the results in the asymptotic region
r —+ oo. This region can only be reached if E & m and for the following computations we therefore assume E ) m,
although the results will hold for E = m, too. Using the results of the analysis of the first-order perturbations we
find, for r —+ oo (r m —oo),

E2 m2-) (~ll in(~+cr) + grill
——in(cr —~)j + ~(1/ )m

(4.a5)

v

( )
r ) I~II in(~+cr) + ~ll ——in(a —v)) + ~(1)

ml
(4.a6)

The sources then take the asymptotic form

P U' y 2E2 (c)g~ll

&U*q I ~

~
a

2-

i+&(1/ ),c)o ) E/m )
(4.a7)

and Eqs. (4.aa) are solved by

yt ( ) ~ll —in' fyII in'- +

+ ) -(n p)XII Belle 'n + O(1/rlm3 n
p

(4.as)
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E3 ~inT
ge (~) Clle —inr + Dll einr + ) (n p)AllBll e

—2ipr

p
3 —2AT ) (n —p)A Bile P + O(1/r) . (4.3O)

The second-order perturbations become

'(~, 0) = ) l

—A
(@ -~E2 —m2-—m -ll'l, .„(, )

(e -„
m "~ ~m

(4.40)

in(r+—o) +
m ~m

e in(—~ r) — AIIBII e
—2ipr + O(1)

2E2
lm2 j p A p

p

gg II
—»(~—T)e

(4.41)

and (" are ordinary plane waves in the coordinate x defined by

R R Rz = R+q +( +—:—ln —= —ln
2 I, 2 l

(4.42)

We find

R(~ ~) ) [All e
—in(r+~) + Bile —in(~ —r)] + O(e

—2R/») (4.43)

-~E~ —m2-—m g II y g li g II
—2~(T+~)

m p p
p )

all
(@
(m

(4.44)
-~E2 —m2-

e *n(~ r—) +—
O( »t&)—

m lm2 ~
p

From the expressions of (i1, g», i1 ) and ((, (», ( ), it follows that the center-of-mass solution and the first-order
perturbations already give the complete solution in the asymptotic region. This is what it should be since the black
string background is asymptotically Hat. We therefore choose the initial conditions such that ( = (» = ( = 0; i.e.,

we take

A-L BL 0 EAII gg2 m2 CII gBII gg2 m2 Dll

Cn = »~s Qp An Ap~ D„= »~, Qp B„pBp
—

II z' ll II
-

II ~' ll II (4.45)

Let us finally consider the world-sheet energy-momentum tensor that was introduced in Eq. (2.7). Up to second order
in the expansion around the string center of mass we find

+ gpvg ~+'9 + gpv, pg 9 '9 + gp 9 ~+( + gpv~+ I ~+'9 + gpv, pg 'g

+ gpvpV 9 ( + gpvpaQ 9 '9 (4.46)

Using the expressions for the first- and second-order perturbations, Eqs. (4.35),(4.36) and Eqs. (4.40), (4.41), as well
as the conditions (4.45), it is straightforward now to calculate T++ and T in the asymptotic region (r ~ oo):

T = ——m n' — ) ) p(n —p)A„A„e '" + ),
R=J, II &ip

(4.47)
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T = ——m n' — ) ) p(n —p)B„B„„e
R=z, )I ~p

(4.48)

and we get the usual Hat spacetime constraints. The mass formula in particular takes the form

m'n" =4) n' ) X„"W"„=4) n' ) B."B"„.
R=x, jf R=z, /f

(4.49)

This is completely di6'erent &om the result obtained
for the 2 + 1 black hole anti —de Sitter spacetime [com-
pare with Eq. (2.16)j which is dual to the black string.
It should be stressed, however, that the formula (4.49)
was obtained in the asymptotic region r —+ oo of the
black string background, and therefore does not include
any contribution from the bounded solutions found when
E & m . The expression (2.16), on the other hand, is
general for the 2+ 1 black hole anti —de Sitter spacetime.

For the black string, in the asymptotic region, we
therefore obtain the density of levels

similar to the expression in Hat Minkowski space, up
to multiplication by a polynomium in m. The partition
function for a gas of strings at temperature P, in the
asymptotic region of the black string background, there-
fore goes like

which is only defined for P ) ~n', i.e. , there is a Hage-
dorn temperature

p(m) - e (4.5O)
(4.52)

TABLE I. Characteristic features of the quantum string mass spectrum in anti —de Sitter (AdS)
and de Sitter (dS) spacetimes. Notice the diR'erence in the high mass spectrum: In AdS spacetime
the masses and level density become independent of o.'. In dS spacetime there is no such high mass
spectrum at all.

Anti —de Sitter spacetime (AdS) de Sitter spacetime (dS)

Classical motion is stable and
oscillatory in time with real
frequencies tu = gn2 + ms''2H2.

Classical motion is unstable with
frequellcies cd„= gn —m o.' jI2.
Unbounded string size and energy
for large de Sitter radius, R ~ oo.

The mass formula is well de6ned
for all m. There is an infinite
number of states with arbitrary
high masses. m o.' = 0 is an exact
solution at D = 25.

Real mass solutions only for
m & I/(n'H). Finite number of
states, N „0.15/(o. 'H ).
m o, ' = 0 is an exact solution at
D= 25.

The coupling to the gravitational
background produces a Fine structure
effect at all levels in the mass
spectrum. The number of levels
considerably increases with respect
to fIat space.

Fine structure effect appears in low
mass spectrum. Is similar to AdS;
the differences appear to order
(n'H')'.

For the high mass states,
(m') fAJN, J m'/fAf.
Both are independent of n' .
The level spacing grows with N.
p(m) - Exp[m/Q) A

~

)' j, high m.
No Hagedorn temperature exists.

The similar region of high mass
states does not exist in the
de Sitter spacetime.
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In higher-dimensional (D ) 4) black hole spacetimes the
next step now would be to set up a scattering formal-
ism, where a string from an asymptotic in-state inter-
acts with the gravitational Beld of the black hole and
reappears in an asymptotic out-state [11].However, this
is not possible in the black string background. In the
uncharged black string background under consideration
here, al/ null and timelike geodesics incoming from spa-
tial infinity pass through the horizon and fall into the
physical singularity [27]. No "angular momentum, " as in
the case of scattering oK the ordinary Schwarzschild black
hole, can prevent a point particle from falling into the sin-
gularity. The string solutions considered in the present
paper are based on perturbations around the string cen-
ter of mass which follows, at least approximately, a point
particle geodesic. A string incoming from spatial infinity
therefore inevitably falls into the singularity in the black
string background.

V. CONCLUDING REMARKS

The classical string motion in anti —de Sitter spacetime
is stable in the sense that it is oscillatory in time with real
frequencies and the string size and energy are bounded.
Quantum mechanically, this is reflected in the mass op-
erator, which is well defined for any value of the wave
number n, and arbitrary high mass states (and therefore
an infinite number of states) can be constructed. This is
to be contrasted with de Sitter spacetime, where string
instabilities develop, in the sense that the string size and
energy become unbounded for large de Sitter radius. For
low mass states (the stable regime), the mass operator in
de Sitter spacetime is given by Eq. (1.1) but with

real mass solutions can be defined only for N & N
0.15/A (where N is the eigenvalue of the number opera-
tor) and therefore there exists a finite number of states
only. These features of strings in de Sitter spacetime have
been recently confirmed within a difFerent (semiclassical)
quantization approach based on exact circular string so-
lutions [30].

The presence of a cosmological constant A (positive or
negative) increases considerably the number of levels of
different eigenvalue of the mass operator (there is a split-
ting of levels) with respect to flat spacetime. That is, a
nonzero cosmological constant decreases (although does
not remove) the degeneracy of the string mass states, in-
troducing a fine structure eKect. For the low mass states
the level spacing is approximately constant (up to cor-
rections of the order A ). For the high mass states, the
changes are more drastic and they depend crucially on
the sign of A. A value A ( 0 causes the growing of the
level spacing linearly with N instead of being constant as
in Minkowski space. Consequently, the density of states
p(m) grows with the exponential of ~m (instead of m as
in Minkowski space), discarding the existence of a Hage-
dorn temperature in AdS spacetime and the possibility
of a phase transition. In addition, another important fea-
ture of the high mass string spectrum in AdS spacetime
is that it becomes independent of o.'. The string scale for
the high mass states is given by [

A ~, instead of I/n' for
the low mass states, as discussed at the end of Sec. III,
Eqs. (3.32), (3.33).

The main physical features found in this paper are
summarized in Table I.
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