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String-motivated model
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The two-dimensiona'1 model which emerges from low-energy considerations of string theory is
written down. Solutions of this classical model are noted, including some examples which have a
nontrivial tachyon field. One such example represents the classical back reaction of the tachyon
field on the black hole for a two parameter set of tachyon potentials. Assuming the classical black
hole background in the "Eddington-Finkelstein" gauge, the tachyon equation is separable and the
radial part is solved by a hypergeometric function, which is in general of complex argument. A
semiclassical prescription for including the quantum efFects of the tachyon field is described, and the
resulting equations of motion are found. Special solutions of these equations are written down.

PACS number(s): 11.25.Mj, 04.60.Kz, 04.70.—s

I. INTRODUCTION

String theory is thought to be important to the con-
struction of quantum gravity. The model that derives
&om string theory at the tree level in two dimensions

[1] will be regarded here as a fundamental 6eld the-
ory of gravity in its own right, and methods of quan-
tum field theory will be applied to it. This is in con-
trast with taking the fundamental theory to be a gen-
erally reparametrization-invariant o model on the two-
dimensional world-sheet manifold of the string and then
demanding that fields configure in such a way that is con-
sistent with conformal invariance, i.e. , so that the P func-
tions vanish. To build up this theory one would have to
expand in world-sheet perturbation theory, considering
also topologies, whereas we will work with the spacetime
manifold. With this distinction in procedures in mind,
this model will be referred to as the string-motivated
model.

In semiclassical gravity the expectation value of the
matter energy-momentum tensor is coupled to the grav-
itational field. If this coupling is to the Einstein tensor,
then the Bianchi identities and energy conservation en-
sure mathematical consistency. Physical consistency of
this procedure has been amusingly questioned in [3]. Us-

ing this quantum principle of equivalence, one has ap-
proximately included the eft'ect of the matter upon the
geometry of the spacetime. The aim is to see how a black
hole would develop when such back reaction is consid-
ered. This would naturally extend the original calcula-
tions [4] in which the geometry of the spacetime is treated
as a fixed background. This has been done with some
success both generally [5], and in the context of several

other dilaton gravity models in two dimensions [6].
We begin the second section by introducing the string-

motivated model, and note classical solutions for which
the tachyon field is set to zero. Two examples of so-
lutions which have a nontrivial tachyon Beld are then
found and written down. The Grst is Bat space, the sec-
ond represents a naked singularity. Further examples of
black holes which have undergone back reaction by the
tachyon field are given. An ansatz for these black holes is
applied, analogous to the metric outside an evaporating
star in general relativity. The general solution is found
in this form. The ansatz shows the position of the appar-
ent horizon: its relationship to the singularity and event
horizon are calculable via a certain integral.

By ignoring back reaction one can solve the Geld equa-
tion for the tachyon in the Gxed static black hole geom-
etry. This has been done, for example in [7,8], in the
Schwarzschild gauge assuming staticity. In the third sec-
tion, it is found that in the ingoing null coordinates, for
a particular tachyon potential, one obtains the same hy-
pergeometric equation for the radial part as in [8], but
there is also a u-dependent piece.

In the fourth section, the procedure for coupling the en-
ergy momentum of the tachyon Geld to the Geld equations
is described. It is noted that this gives back the Callan-
Giddings-Harvey-Strominger (CGHS) [9] equations if one
works in the double-null coordinates, and drops tachyon
terms. Thus the procedure used here is equivalent to
adding Polyakov term for the tachyon Geld to the action
itself. A set of semiclassical equations are found in the
ingoing "Eddington-Finkelstein" gauge. Unfortunately,
these equations are at least as complicated as those of
[9], where numerical methods were resorted to (see, for
example, [10,11]), though the model can be adjusted so
as to be exactly soluble [12].

*Electronic address: 3. D. Haywarddamtp. cam. ac.uk
In two dimensions, the result of applying this procedure

to the Einstein equation is either de Sitter or anti —de Sitter
space. The back reaction problem is completely soluble [2].

II. THE STR,INC MOTIVATED MODEI

The following is the action for the classical part of the
string model
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18 = — d xy' g—e ~[R+O'I7P +4A2'
—(&T)' —V(T)]

dZQ h—e ~(K —2V'„P) .1
(2 1)

h,„—2h, „g,, =0,

0,

h„, —4h„p +4hg, —4hg„—4A =0.

(3.1)

(3.2)

(3.3)

R„„+2V'„V'.P —V'„TV'„T = 0, (2.2)

The fields present are the metric g„„, the dilaton P,
and the tachyon T. There is a boundary term which
m.akes the variational problem well defined and enables
the thermodynamics of the theory to be derived. K is the
trace of the second fundamental form of the metric, and
n is the normal vector to the boundary. The equations
of motion derived from (2.1) are

Thus there is a "linear dilaton" P(r) = Ar +—Pp and a
metric given by

h(r) = 1 —ae (3 4)

where a is a constant. The curvature information is in
B = —6 „„=4aA e "".There is a curvature singularity
at r —+ —oo. It will be useful to transform solutions of
the form (2.5) to null coordinates. One transforms to
conformally Hat null coordinates via

—R+ 4(V'P)' —4V'P + V'T' + V (T) —4A' = O, (2.3)
ds = —0 (u, r)dudv = —hdu —2dudr . (3.5)

V' T —2V'PV'T —— = 0,1dV
2dT (2 4)

where A defines the mass scale here but is related to
the central charge in string theory, V(T) is the tachyon
potential.

I et us work in single null coordinates,

If 6 is a function of r only, then the solution is 0 = h. A
more general case is considered later. One then finds that
h = (1+e "~" "l) i, where the positive sign corresponds
to a ) 0. A further transform to "Kruskal" coordinates

(3.6)

ds = —h(u, r) du —2du dr, (2.5) o.V = e"", (3 7)

where 6 is a function on the spacetime to be determined.
In these coordinates, the field equations are

yields, in the case of a & 0, the familiar metric form for
the maximally extended static black hole [14],

h(h „„—2h, g„) + 2h „P„—2h „&P „
+4/, „„—2T„=0, (2.6)

dUdV
A~/ —nP—A~UV ' (3.8)

h„„—2h„g„+4/„—2T„T„=0,

2P„, —T„=0,

(2.7)

(2.8)

where np ( 0. If np = —As/M then M is the Arnowitt-
Deser-Misner (ADM) mass [9]. If a ( 0 one finds

dUdV
A~/nP —A~UV

h „—4h, g, —8$ „P„+8$ „+4hg „—4hg, „
+hT „—2T „T,„=4A —V, (2.9)

This latter solution represents a naked singularity,
whereas the former is the black hole described in the first
half of [9]. The ground state solution, which has M = 0,
is the "linear dilaton vacuum. " This corresponds to a = 0
in the ingoing coordinate solution for h.

hT„, —2T„„+h „T„—2hg, T,„+2$,„T,„
1dV

+2/ T„—— =0. (2.10)
B. TgO
Encamp/e 4

III. CLASSICAL SOLUTIONS

A first example is a Hat geometry bathed in a u-
dependent tachyon. One starts with a linear dilaton

Ar, and it is assumed th—at V (T) = aT .

A. T=G (3.1o)

These equations simplify if one looks for solutions with
a zero tachyon field. There exists a timelike Killing vector
in this case [13],and so it is no restriction to drop terms
which contain derivatives of u. One then has

6=1—V
4A~

Since h is a function of u only, this space is Hat.

(3.11)
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6 = ar" (3.12)

2. Example 2

If V = A = 0, another set of solutions is of the form

tion that the horizon motion is u dependent corresponds
to the masslessness of the tachyon field. One might try to
find solutions for which the dilaton background is linear,

Ar—, but the field equations then become

and the dilaton and tachyon are A2 2A ff 2Am T2 0
) i' (3.21)

P= —2(1 —n)lnr = 2Tyi —n. (3.i3) T„T„=0, (3.22)

The curvature is B = (n —1)r( ). In null coordinates,

f

j
dtL dv

(~ &)n/(n —i) (3.&4i

8. Example 8

In the case n = 2 there is a singularity free space of
constant curvature. For n = 0 there is Bat space and log-
arithmic P = 2T. Otherwise, there is a timelike (naked)
singularity on the line v = u, r = 0.

T —0, (3.23)

A[r ——f (u)], (3.24)

then the value of the dilaton is thus fixed on the horizon.
The field equations become

which means T = T(u). Inspection of (3.21) shows that
a = 0 so that T = 0, and no progress is made.

If, by contrast, one tries the dilaton field

In order to find solutions which represent the black
hole perturbed classically by the tachyon field, one can
assume that the metric takes the form of a black hole
with a dynamical horizon. That is, solutions are of the
form

2Af, „„—T„=0,

T„T„=0,

T„=O,

(3.25)

(3.26)

(3.27)

where

ds = —h(u, r) du —2du dr, (3.15) 8A' f,„+V(T) = 0, (3.28)

h g —e— (3.i6) 4AT„=—dV
dT (3.29)

One then solves for the function f(u) which gives the
position of the horizon rh = f (u). The implicit assump-

The motivation for this ansatz comes from four-dimensional
theory. The metric outside a radiating star is related to (3.16).
This is called the Vaidya metric, and can be written

2M( )&
d8 = — 1 du —2dudr + r dO (3.17)

The mass in the Schwarzschild metric has been upgraded from
a constant to a function of the retarded time, which is rea-
sonable if the radiation is made up of massless particles. The
metric is a solution of the Einstein equations in a source field
of pure radiation:

G„„=R„„=8~T„„=——2 dM (3.18)
P de

One might ask what is the future development of this system.
To answer this, consider Stefans' law

—aT = exp (u+ uo)
(2A )

The solution for f (u) is then

(3.30)

Equation (3.26) implies that T is a function of u only,
and given the potential V(T), one can solve for T in
(3.29). One can substitute into Eq. (3.25) and integrate
twice to obtain the function f and hence the back-reacted
metric. 3

The tachyon potential is given by V (T) = +T2 + &Ts +
~ . , where a and 6 are taken from string theory calcula-
tions, and will not be specified here.

For V(T) = 0, Eq. (3.29) implies that T is a constant,
and integrating up (3.25) shows that f (u) is then linear
which is a static solution equivalent to (3.8), the usual
static black hole.

For the quadratic V (T),

dM 4

dtL
(3.19)

dM
OC tC (3.2O)

The rate of mass decrease therefore diverges at 6nite retarded
time. This footnote will be expanded upon elsewhere.

where A is the area of the star and a is Stefans' constant.
This implies that

It should be noted that in this form, the dilaton field is
constant on the horizon. It can be shown however that the
ADM mass of the solution is related to the dilaton there. The
dilaton gives a coordinate independent measure of position,
so if it is constant on the horizon, then the horizon is not
moving. This suggests a static black hole, perturbed by the
classical tachyonic back reaction.
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&-a
Af(u) = —exp~ (u+uo)

8A (A

2aT=-
3b (

exp —(u+uo)
~

—12A

If the O(T ) term is included, one obtains

(3.31)

(3.32)

results. Unfortunately, this transformation is diKcult to
perform for the solutions (3.33) and (3.31), except for the
case a = —A . Since the form of the geometry is that of
a black hole by ansatz, and the tachyon is a scalar field
so that it will remain nontrivial in any coordinate sys-
tem: these are black hole solutions with classical tachyon
hair. The fact that the dilaton is constant at zero on the
horizon suggests that the solution is in fact static. The
tachyon field however is not constant on the horizon.

Then

IV. THE TACHYON FIELD IN FIXED
GEOMETRY

Af(u) = A ln exp —(u+ uo) —1
)

a
exp, —(u + uo)

(2A

a
exp —(u + uo) —1

2A )

(3.33)

ds = —0 (u, r)dudv = —hdu —2dudr .

The following expression for 0 then obtains

(3.34)

40 „=ahO „—Oh „. (3.35)

For solutions of the form (3.16) one finds that 0
—2A(v +u/2)

Av = 2e'~ +"~'l —Ac(u), (3.36)

where A is a constant depending on a and b.
Note that these solutions (3.30) and (3.33) solve all the

Beld equations at once.
The geometry has not been Bxed using the metric and

dilaton equations in isolation and setting T = 0, as is
done in the following section.

To see what these geometries look like globally, one can
transform to conformal null coordinates. Then the posi-
tion of the horizon and singularity are easily calculable.
One must find 0 in

V' T —2VQVT =—
2 dT

which in the coordinates (3.5) with f = 0 becomes

hT„„+2AT„——„—2T„„—2AT„= 0 .
1 dV

(4.1)

(4 2)

Let U = e""T, and look for solutions U = p(r)((u),
assuming quadratic tachyon potential with coefFicient
o, = —A2. One then. finds that the function ( = e'"~2,
where c is a constant. The equation for p(r) is

z(1 —x)p" + 1 + ——2x p —
4 p = 0 .

2A )
(4.3)

This is a hypergeometric equation. The solutions are

c
p = AF —;—;1+—;e(2' 2' 2A' )

Now the static solution (3.8) found by setting T = 0
is fed into the dilaton and gravitational Beld equations,
and determine the tachyon equation. If one assumes that
the solution is a separable function, the radial part is
found to be a hypergeometric function in r, as was seen
in [8], which reduces to an exponential function in fiat
space, while the u-dependent piece is exponential. If the
constant of integration is taken to be imaginary, this be-
comes plane wave. One can substitute the real solution
back into the field equations, expanding around the ori-
gin in r to try to find out how the tachyon back reacts
upon the geometry perturbatively.

The tachyon equation of the string model was

where c(u) = J' due2"~e~".
Thus

(11 c+Br ~ —;—;l+ —;C —e-'~
'I 2' 2' 2A' )

(4.4)

die d'U

~-[c(u) + v]
(3.37)

dUdV

2 UA2[V + Ac(U)]
(3.38)

By rescaling V = Av, and transforming to U = —e
one obtains the form

h „„—2h, ,g,„=0, (4.5)

This gives T immediately. We now return to the grav-
itational and dilaton equations. It is expected that the
dilaton and metric to be perturbed near the origin by this
T Beld which is fed into the field equations. One finds
that the new dilaton and metric must be static. The
static field equations with V(T) = oT are

For f = 0, the static Witten black hole given in Eq.
(3.8) is recovered. If f is linear in u, this static metric still 2P „—T, =O, (4 6)
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h „„4—h, g „+4hg „—4hg „
+I T'„—4A'+ ~T' = 0, (4.7)

hT„+ h T„—2hg T„—aT = 0 . (4.8)

T is known, hence (4.6) implies P(r) and (4.7) and (4.8)
act as a check for this solution. One can calculate the
power series solution for metric and dilaton around the
origin of r. This naturally depends on the expansion
coefIicients of the hypergeometrical tachyon, and is not
very instructive.

In summary, the black hole solution has been taken as a
fixed background in which the tachyon moves. This gives
a hypergeometric function. When one iterates this solu-
tion, one can find an expansion for the perturbed dilaton
and metric near the origin. The metric and dilaton must
remain static, though in which global configuration we
do not know. The initial assumption of f(u) = 0 as a
Gxed background followed by many iterations does not
necessarily lead to the result which one would obtain if
one were to solve the equations of motion at once, and is
thus of limited value.

T„„=e ~[V„TV' T —2g„(V'T + V)] . (5.4)

Using the Geld equations, this can be written

T„=2e ~[g„„(VQ —V P —A ) + V'„V'„P] . (5.5)

The simple step that we propose in including quantum
efFects is to take the left-hand side of this equation to be
the sum of the classical and quantum stress tensors for
the tachyon. For completeness, the equations of motion
in the gauge (2.5) are

e2~T„= h P, —2(t „+2hg —2hg

+4/. P „+2A', (5.7)

e T,„= 2P,„„,
2@ (5.8)

where T„„=T„'„+(T„'„).
The classical components of T„are

e2&T„„=hh P„+h P„—h„P, —4hg„„
+2h'P „„—2h'P', + 4hg „P„+2P „„+2hA',

(5.6)

V. SEMICLASSICAL TREATMENT
OF THE STRING MOTIVATED MODEL

gcl —2/~2
pr

Tcl i —2$[hT2 + ~(T)]

(5.9)

(5.10)

g[(V'T) —(m—+ JR)T ], (5.1)

where ( is a numerical factor, which is zero for both
minimal and conformal couplings in two dimensions, but
rather,

&~ = v' —ge ' [(&T)'+&(T)l. (5.2)

The Lagrangian (5.2) for the tachyon field is clearly
conformally coupled. The factor e ~ cannot be removed
by a conformal transformation in two dimensions.

Using dimensional analysis the trace anomaly for this
form of field must be

(5 3)

where R is the Ricci scalar; n and P are constants found
in the explicit calculation through the heat equation.

By functionally difFerentiating the tachyon part of the
Lagrangian with respect to the metric one Gnds the clas-
sical stress tensor for the tachyon is

In this section the tachyon Geld is treated as a quantum
field. One simply adds to the expression for its classical
stress tensor the quantum stress tensor, which is deriv-
able in two dimensions using the trace anomaly and the
conservation equations. The additional term might be
produced by including a term in the action. This term
is nonlocal, and it need not be speciFied here. The other
Gelds are still treated classically, but one would need later
to include dilaton and graviton loops. This question was
addressed in the CGHS model by proliferating the num-
ber of scalar fields, which rendered other terms small and
the semiclassical approximation exact.

The tachyon in (2.1) is not coupled as a standard scalar
Geld, i.e. ,

T„'„' = e ~(T2 + -'h[hT„—2T,„T,„+V(T)]) . (5.11)

If one works in the ingoing null coordinate gauge, it may
be seen that it is not possible to solve for the energy-
momentum tensor components for general h [see (2.5)],
but if one tries the ansatz (3.16), the quantum piece of
the energy momentum tensor can be found. If the trace
anomaly for the tachyon Geld is o.B, then this is

(T~„) = 2A n+(,
(Tq ) 3A2 —2A(r —f) + A2 + ig(1 —2A(r —f))

(5.13)

(T„„)= —e (" )(2A f+4A -'()

+3A ne "(" ) + -'(+ t(u), (5.14)

VI. SOLUTIONS IN THE CONFORMAL GAUGE

One can work in Kruskal double null coordinates, i.e. ,
(3.5). The equations of motion are then

where ( = Be2"(2'+"), and t(u) is an arbitrary function
of u determined by the boundary conditions. Keeping
terms involving (, there will be large distance divergences
in the components, so one sets B = 0.

These terms are added to the classical stress tensor,
and substituted into field equations (5.6)—(5.8). When n
is set to zero, one recovers the classical field equations
(2.6)—(2.9). These equations are clearly quite compli-
cated, and one cannot Gnd closed form solutions. Nu-
merical solutions might be interesting, but t;his is not
pursued here.
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e ~(—4A + V) —8p „„+16$,„„—16$,„$,„—4T „T = 0, (6 1)

ne'4'[p „„—p'„—t„(u)] + 4p „P„—2P „„+T'„= 0, (6.2)

e2~( —4A + V) —4ne ~p „„+8$ „., —16/, „Q, = 0 . (6.3)

These equations reduce to the CGHS equations if one
removes tachyon terms.

Another approach is to deGne

0'„' (T) = 0„'„(T)+ 0„(T) (6.4)

where the quantity T takes into account both the quan-
tum and classical contributions to the energy-momentum
tensor of the tachyon field. It is this Geld then that
appears in the action (2.1). Taking T = 0, so that
V(T) = 0, one has the classical CGHS equations with
no matter. The solution to these is a one parameter fam-
ily of static black holes, with a vacuum state, the linear
dilaton, given by the zero mass case (3.8). But relations
(6.4) will give equations for the potential V(T) in terms
of the conformal factor and the dilaton,

e ~V(T) = ne ~p „ (6.5)

which are known, and which will determine the potential
V (T) if one states the form of T. This will then determine
the constraint functions t„and t .

T'„= ne'~[p „„—p'„—t„(u)), (6 6)

and similarly for the advanced constraint equation in v.
One can choose the tachyon 6eld to cancel out the

quantum piece after combining (6.1) and (6.3): i.e.,

TuTv = o.~ p, uv .2P (6 7)

Then if one works in the gauge p = P and chooses

V = 2op„ (6.8)

the remaining equation is just the dynamical equation of
the Russo-Susskind- Thorlacius (RST) model:

I

CGHS model but in ingoing coordinates which give the
position of the apparent horizon. It seems that one has
to resort to numerical solutions, where one could consider
tachyonic ingoing matter, for various potentials. Equilib-
rium static solutions and contact with RST black holes
are found by working in the conformal gauge and shaping
the tachyonic terms.

VII. CDNCI USI(3NS

One can try to simulate the black hole formation and
evaporation in two dimensions: the hope is that the re-
sults will have bearing upon more realistic descriptions,
as other scientiGc work in two dimensions often has.

In this paper, a model of gravity arising from string
theory is treated as a quantum field theory. First clas-
sical solutions are noted for zero and nontrivial tachyon
field configurations. Then, the equation of motion for the
tachyon in a fixed Hat space and black hole geometry is
solved, and is iterated into the dilaton and gravitational
Geld equations. Finally, the quantum stress tensor for
the tachyon GeM is found and coupled appropriately to
the classical field equations in another gauge from that
which has usually been used. The aim was to consider
an analogous coordinate system to that which highlights
most clearly the behavior of a radiating star in four di-
mensions. The solutions then immediately tell us where
the apparent horizon is. Working in this gauge was useful
in ending classical solutions and considering the behavior
of the tachyon in a Gxed geometry. However, although
this is another example of a coordinate system in which
one can calculate the quantum stress tensor components,
and thus derive semiclassical equations of motion, it does
not yield simpler equations than those found in the con-
formal gauge.

—4A e ~ —2o,e ~p „„+8p „—16p „p„=0 . (6.9)

These are the RST black holes, but generated by the
tachyon field and its potential. The relations (6.7) and
(6.8) imply the form of the tachyon potential in terms of
T.

To summarize, the equations for the string-motivated
model have been found, which correspond to those of the
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