
PHYSICAL REVIEW D VOLUME 51, NUMBER 12 15 BRUNE 1995

Gravitational Lorentz anomaly from the overlap formula in two dimensions
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In this Rapid Communication we show that the overlap formulation of chiral gauge theories correctly
reproduces the gravitational Lorentz anomaly in two dimensions. This formulation has been recently suggested
as a solution to the fermion doubling problem on the lattice. The well-known response to general coordinate
transformations of the effective action of Weyl fermions coupled to gravity in two dimensions can also be
recovered.
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The formulation of lattice chiral gauge theories has been
an outstanding problem for many years [1].In a recent paper
a new formulation of this problem has been suggested [2].
One of the necessary steps in checking the viability of this
suggestion is to show that it correctly reproduces the chiral
anomalies in the continuum limit. For the case of a U(1)
gauge theory in two dimensions this was done in [3], and its
generalization to non-Abelian chiral anomalies in four di-
mensions is contained in [4].

In this Rapid Communication we would like to use the
notation and formalism developed in [4] to examine the
anomalous coupling of Weyl fermions to a background
gravitational field in two dimensions. It will be shown that
the overlap formalism proposed in [2] correctly reproduces
the chiral anomaly in this system.

Our starting point will be the Hamiltonian of a two-
component "massive" fermion coupled to a gravitational
field e+ in 2+ 1 dimensions:

functions of a massless chiral gauge theory. It is well known
that the gravitational coupling of such fermions is anomalous
[5].Here we would like to rederive this anomaly in the local
frame rotations as

I

A
I

—+ co.
The overlap formulation of [2] defines the effective action

I [e] by

I [e]= —ln(e;+
I
e; —),

where Ie;+) and Ie; —) are the Dirac ground states of the
two Hamiltonians H(+A) and H( —A), respectively. To
study the behavior of I [e] under local frame rotations we
must test the response of the two ground states with respect
to such transformations. Acting on the Schrodinger picture
fields these transformations are realized by unitary operators
U(8):

U(8) 'P(x)U(8) =e ' 3$(x)

H = d x l/lt(x) cr3(o,e~ t7„.+ A) P(x),

where o, , a = 1,2 and o.3 are the Pauli spin matrices and

7~= ot~ —(i/2)to„—,' B~ln—e, with co being the spin con-
nection derived from the zweibein e~ and e =dete~. All
the fields in (1) depend only on the two-dimensional coordi-
nates.

The Hamiltonian (1) is invariant under general coordinate
transformations x~ +f~(x',x ) prov—ided the two-component
spinor field l/t transforms as a scalar density of weight —,'. It is
also invariant under the local O(2) frame rotations,

p( ) (i/2)6(xlos g )
It was shown in [4] that in the limit of

I

A
I

—+~ the Hamil-
tonians of the type (1) can be used to recover the Green's

Since the free Hamiltonian Ho =fd x Pt(x) o3(o„c7~.
+ A) P(x) is invariant under the constant gauge transforma-
tions it follows that

U(8) 'H(e) U(0) =H(e ),

where e denotes the rotated frame. We shall regard Ie; ~ ) as
the perturbed vacua of the Dirac ground states

I

~ ) of
Ho(~ A). For weak fields it then follows

U(g)Ie. ~)
I

ee )
~i@e(0;e)

where the angles tlat (8;e) are real. It is possible to compute
these angles by applying "time"-independent perturbation
theory. To first order in 8 this gives [4]

4 (8;e)= d x ~ t/tt(x) —o. 83( )xP( )x1 — II (V—AE )2 p+ p+

where II = 1 —
I

~ )( ~
I

and

i 1
V= d xt/t (x)tr3 tr&——QJ&+ ,

—8&h + oah~ oI& tll(x).
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Here the weak gravitational perturbations around the Oat

space are given by h~=e~ —8~ and h = 8"„h~. The actual
values of the vacuum shifts AE are irrelevant for the
present discussion. For further detail of the notation Ref. [4]
can be consulted. Since U(g) is unitary it follows that the
overlap must satisfy

which implies an anomaly if 4+ —4 40. %e compute
this difference perturbatively and show that in the limit of
IA ~~ it contains the usual Lorentz anomaly.

The first-order part of 4+ is given by

&0(+)= g d x(+
I
Pt(x) —,'o30(x) P(x) In)

n

X In)(nl= ~ X Iki k2)(ki k21
n kg, k2

and where

Ik, ,k, ) =b', (k, )d', (k, ) I+).

The operators b and d are defined by [4]

f(x)= —g [b u (k)+dt U (k)]e'
k

where A is the volume of a two-box and u 's and U 's are the
positive and the negative energy eigenvectors of
H() (k) = o.3(i o.„k„~A):

x (nIVI+)
0+ n

(2)

H() (k) u (k) = cu(k) u (k),

Hp (k) U (k) = —co(k) U (k),

where the sums are restricted to two-particle intermediate
states,

where co(k) =(k +A )
By making use of these results in (2) we obtain

p(y(1) l &(k] +k2)&

Tr[o3U(ki)o3o ]co(ki —k2)o3+(ki —k2) h(ki —k2) —2k2„h "(ki —k2))V(k2)],

where U(k)=[co(k)+o3(io. k +A)]/2co(k)=1 —V(k) and the Fourier transforms are defined in the usual way, eg. ,
h(k)= frid xe '" h(x). To obtain 4 ) we need to change the sign of A. Evaluating the Dirac traces and letting A~~ we
obtain

p(&y(i) q)(i)) r d2
=A 2

e' 'F„,(p)h, (p),

where

d'k
(P) =

(2 )2
k„k,

k+p (k —p) 0+p),(k —pl
(4)

Equation (3) should yield the gravitational Lorentz anomaly. To evaluate it we expand F,(p) in powers of 1/IAI and obtain

2 (2') (q + 1) ~ 8 A (q + 1) 8 A (q + 1)

where all the terms not indicated explicitly are given by con-
vergent integrals and vanish as IAI~~. The leading term
inside the bracket on the right-hand side makes a divergent
contribution which must be subtracted in the usual way by a
suitable counterterm. It should be noted that this contribution
is independent of p and therefore will not contribute to the
terms involving the derivatives of h„.Those of the conver-
gent integrals which contribute in the limit of A~~ produce

p( q)(i). q)(i))

88(x)

To see that this is the standard result we only need to make

use of the geometric relations co„=—
—,
' e'(e ~/e)8&e'

and B„co„—B,cu =e Q/4e to obtain R=2(8 8' „—8„8,)
X h „(x),up to the first order terms in h. Thus (7) becomes

+ .(P) 48 IAI(P~. P ~~.).

Upon substitution of this result in (3) we obtain

(6)
p((p( ) (p( ))

Be(x) IAI 9677
R.
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This agrees with the well-known result for the Lorentz
anomaly [6].

In a similar way we can study the response of the overlap
to general coordinate transformations of two-dimensional
manifold. If we denote the parameter of this transformation
by (~(x), it can be shown that

8'(4~ —4 ) A 1

/pe( ) ~A~ 48 eov(~ ~y)L ~p~vk)~v~ok(x).

It is not hard to verify that this agrees with the result of [6]
which is expressed as

where T " is defined by 8'InDetD= fd x b'g~„T~", with D
being the Weyl operator.

Further support for the overlap approach is contained in a
recent report concerning the chiral determinant on a two-
dimensional torus in the presence of nontrivial background
Polyakov loop variable [7].A lattice derivation of gravita-
tional chiral anomalies, as far as we know, does not exist in
the literature.

We are grateful to H. Neuberger for bringing Ref. [7] to
our attention.
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