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Higgs-sector solitons
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We establish the existence of static, classically stable, winding solitons in a renormalizable three-
dimensional gauge model, with a topologically trivial target space and vacuum manifold. They are prototypes
for possible analogous particlelike excitations in an extended Higgs sector of the standard electroweak theory.
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Several authors have argued in the past that a strongly
interacting Higgs sector may have solitonic excitations called
“electroweak Skyrmions” [1—8]. These are characterized by
the nontrivial winding of the Higgs orientation around the
SU(2) manifold [9], and can be thought of as the technibary-
ons of an underlying technicolor model. In the minimal elec-
troweak theory, such winding excitations are potentially un-
stable for at least three distinct reasons: they may lose their
energy by shrinking to zero size [10]; the winding can be
undone if the Higgs field passes through zero [1,8,11]; and
the evolution of the gauge fields can deform the excitation to
a winding-vacuum state plus radiation [2,3,6,11]. Shrinking
can be avoided by adding higher-derivative (Skyrme) terms
for the angular part of the Higgs doublet [9]. Stability with
respect to the other two modes of decay requires on the other
hand that

and
myp<l, )

where my and my, are the Higgs- and gauge-boson mass, and
p the soliton size. These estimates follow if one compares
the gain in gradient energy to (i) the loss in potential energy
when forcing the Higgs field in the interior of the soliton to
vanish, or (ii) the loss in weak magnetic energy when turning
on continuously gauge fields so as to reach a winding
vacuum state. They are in agreement with the more detailed
numerical analysis of Refs. [3,6,8].

The presence of nonrenormalizable terms, often attributed
to large quantum effects [1,4,5], renders of course any dis-
cussion of electroweak Skyrmions at best phenomenological.
A consistent semiclassical expansion requires a stable solu-
tion of the classical equations derived from a renormalizable
Lagrangian. One would, however, expect the scale of such a
hypothetical solution to be fixed by the electroweak mag-
netic fields, so that p~mv_V1 and condition (2) is not a priori
satisfied. This heuristic argument explains why stable solu-
tions have not been found in the minimal Weinberg-Salam
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model [6,12]. It also suggests one possible way out: if there
is more than one Higgs doublet, the relative orientation of
any two of them is gauge invariant and cannot have non-
trivial winding in a vacuum state. Thus, the last instability in
the above list would be absent. Such relative winding exci-
tations have been considered before [13,7] in the context of
hidden-gauge-boson models of nuclear and electroweak in-
teractions. Though stable solitons have not thus far been
found, a systematic numerical search is necessary in order to
settle the issue [14].

At the same time it is, we believe, important to analyze
such winding solitons in lower-dimensional models. In addi-
tion to providing a check for the above heuristic arguments
and guiding the numerical search in the electroweak theory,
these solitons also correspond to new types of string and wall
defects in four space-time dimensions. The simplest context
in which they arise is the two-dimensional (2D) Abelian-
Higgs model, where their existence and properties can be
established analytically [11]. The results confirm the above
naive discussion, but shed no light on the shrinking instabil-
ity, since the size of the soliton is fixed by an infrared cutoff
or by a mass term in the relative angular direction [11]. In
this Rapid Communication we will therefore go one dimen-
sion up, and show how the scale of winding solitons can be
stabilized by a (massive) gauge field in a renormalizable 3D
gauge model. Let us note in passing that these winding soli-
tons differ both from Q balls and from flux vortices [15]:
they are static and uncharged, and have trivial topology at
large distance.

Our starting point is the three-dimensional O(3) nonlinear
o model:

»2
S027f d’xd,n-d*n, (3)

where n is a three-component scalar field subject to the con-
straint

n-n=1. (4)

We can solve the constraint by a stereographic projection of
the three-sphere onto the complex plane:
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n1+m2=m, n3:m§. (5)

It is well known that the above model has static winding
soliton solutions [16] given by holomorphic functions }(z)
where z=x,+ix,. The solitons are classified by the number
of times two-space wraps around the target sphere:

1( 3000 — 300

N= 2] o R ©

where d here stands for §/dz. The simplest solution,

+ Wo, (7)

describes the soliton with unit topological charge and energy
E*'=47p2. Tt is characterized by six real parameters re-
flecting the invariance of the underlying equations under the
two-dimensional conformal group SL(2,C). The complex
parameters wq is in fact fixed by the choice of boundary
conditions at infinity: wy=0 if n—(0,0,1). The remaining
four collective coordinates correspond to translations, U(1)
rotations, and scale transformations of the soliton.

Let us next relax the nonlinear constraint (4) by introduc-
ing a Mexican-hat potential. By Derrick’s scaling argument
[10] winding configurations are now unstable against shrink-
ing to zero size. Since we are interested in renormalizable
models, we are not allowed to stabilize the size of the soliton
with explicit higher-derivative terms in the action [17]. We
must thus try to evade Derrick’s argument by introducing
gauge interactions. The simplest possibility is to gauge a
U(1) subgroup of the global O(3) symmetry of the model.
The corresponding gauge field can furthermore be massive
without violating renormalizability, provided it couples to a
conserved current. We are thus led to consider the action

— 1 d3
S-—K X

-2

1 i 1 1
— g (P2 =m})> = (Fny—mp)*= 270+ 5 A*A,,

with
my= \/EXU, éEe/\/Z_)\,

The above rewriting demonstrates that , ¢, and my are the
only classically relevant parameters of the model. The quar-
tic scalar coupling A on the other hand plays the role of
Planck’s constant #, and can be taken to zero independently
in order to approach a semiclassical limit. The existence of
classically stable winding solitons will not therefore be tied
to the presence of a strongly interacting scalar sector.

To look for static minima of the energy we will proceed in
two steps: we first keep the angular degree of freedom n
fixed and time independent, and minimize the energy with

and k= K/\/'ﬁ. (12)
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This model may look somewhat contrived. Indeed (i) the
scalar potential is not the most general one consistent with
the residual O(2) invariance, and (ii) the mass of the gauge
field would arise more naturally by coupling it to an extra
complex scalar. Our choice here is simply one of conve-
nience: we try to use the minimum number of fields and
coupling constants. The solitons we will describe should,
however, continue to exist in a much larger class of 3D mod-
els.

The model defined by Egs. (8) and (9) has trivial topol-
ogy, both in its target space and in its vacuum manifold. It
reduces, however, to the ungauged O(3) nonlinear o model
in the naive

A— and e,k—0 (10)

limit. Our strategy will therefore be to show that for some
range of parameters it has classically stable solitons, which
are small deformations of the configuration (7) with wy=0
and fixed size. To this end, let us decompose the scalar triplet
into a radial and an angular part: ®,=Fn,, with n a vector
of unit length which can be expressed through () as in Eq.
(5). Working in units of the gauge-boson mass, m=1, and
rescaling F—F/ \[2-): and A ,—A,/ \/EX , brings the action
to the form

1 2 1 2 .~ . 2 1 2 2
5(8MF) +5F [(d,tieA,)(ny+iny)]| +5F (9,n3)

T Tt F AR, (11)

respect to the radial and gauge fields F and A ,. Assuming
these stay close to their vacuum values one finds

F:mH 1- A 0in~z9in ’ (13)

my
Ap=0, and Ak(x)ZZém%lf d*y Gyu(x—y)J(y), (14)
where

1
JIZE("zf?l"l_"lo"lnz) (15)
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is the U(1) current of the scalars, and

> =St pip;

d? .

is the two-dimensional massive Green function. Consistency
of our approximation requires that

<1, kmyp<€1l, and emymin(p,1)<<1, (17)
mgp

with p the typical scale over which n varies. These condi-
tions ensure in particular that F—my<<my, and that
eA;n<<g;n. They give a precise meaning to the naive limit,
Eq. (10). Since p will be determined dynamically, we must a
posteriori check that these constraints can indeed be satis-
fied.

Eliminating F and A, with the help of Egs. (13) and (14)
we arrive at an energy functional that depends only on the
angular degrees of freedom. It is of the form

E=E,- &, (18)
where
2
_my ’ 1

is the energy in the nonlinear o-model limit, while

my
2N

1 1
EZ—J’ d*x(9m- 9m)%— g fcsz{f d*x(n;—1)*
H

(20)

&y [ @ [ ayr0Gute—y 1)

is a small perturbation under the above assumptions.

Let us here pause for a minute and consider a simple
calculus problem: we are asked to minimize a function of
two variables G(u,v)=Gy(u,v)— &(u,v), where G, has a
line of degenerate minima along the u axis, while ¥ is a
small perturbation. Minimizing first with respect to v yields
a line v (u) which lies a priori close to the u axis. Along this
line one finds easily

Gu,o(u))=%— %%'(Gg lerro(¥?), (1)

where the primes stand for derivatives with respect to v and
all the functions on the right-hand side are evaluated at
v =0. As shown by this formula, for the expansion in powers
of ¥ to be valid Gy must stay bounded away from zero,
meaning that the valley must not become too shallow in the
transverse direction. In this case the first term of the series
dominates, and the minima of the function G are given by
the minima of the perturbation & along the u axis.

Going back to the energy functional, Eq. (18), one notes
that the role of u is played by the zero modes of 2, which
is a local minimum of E;, while the role of v is played by
the infinite number of transverse fluctuations. Let us write
n=n°y1—(&n)%+ &n with n°- Sn=0, and consider fluctua-
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tions which can be normalized on a sphere of radius p, i.e.,
with respect to the inner product

(6n, 5n’)Ef du(x)én- én’,

d?x

1
W A T TP

(22)
In the vicinity of n the energy reads, in obvious notation,
cl cl 1 T n
E-FE=—&n%)— | du 5 én' -Eg-én

- f du& - én+0(6n3,%£6n?). (23)

The matrix of quadratic fluctuations E{ has been shown in
Ref. [18] to have a discrete spectrum: NV =j(j+1)—2,
where j=1,2, ... and «a labels some finite degeneracy. It is
furthermore straightforward to check that with the inner
product (22) the first variation of the perturbation &’ can be
normalized. The analysis of the calculus problem is under
these conditions easily extended to show that we need only
minimize the energy in the space of zero modes of the un-
perturbed soliton, since transverse fluctuations affect the
equations at higher orders.

Translation and rotation invariance ensures in fact that the
energy does not depend on the U(1) orientation and position.
For any nonzero value of k on the other hand, the energy is
infinite unless wy=0. The only relevant collective coordinate
is thus the scale, and after a straightforward calculation we
find

2mm? 1 8
_ P I S
E(p) N |1t g K mup 3mip?
372
~ ©  x°Kg(x)
—ezm%,p?‘f dx rpr | (24)
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FIG. 1. For values of the parameters a and b below the thick
line there exist classically stable solitons. Their size p is determined
in our approximation by the value labeling the corresponding tan-
gent to the thick line, as shown.
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with K, the modified Bessel function. The shape of the func-
tion E(p), up to overall multiplicative and additive factors,
depends only on the two parameters

2
d b= - . 25
an ezm;i,{ (25)

N

fi
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In the region above the thick line of Fig. 1, E grows mono-
tonically with p so that, to the extent that our approximations
are valid, we conclude that the would-be soliton is unstable
against shrinking. In the region below this thick line, on the
other hand, the function develops a local minimum at some
size p(a,b) at which the soliton is stabilized. The tangents to
the boundary of stability are lines of constant p as shown in
the figure. To complete our proof of the existence of stable
solitons, we must still make sure that conditions (17) can be
satisfied. This can, however, always be arranged by taking
my sufficiently large, while keeping a and b fixed anywhere
below the thick line.

We have verified independently the existence of these
winding solitons, by solving numerically the equations of
motion. Determining the complete region of stability in the
(my,k,e) space is straightforward but beyond the scope of
the present work. Let us conclude instead with a comment on
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the potential importance of such nontopological solitons,
should they turn out to exist in the electroweak model. Since
they decay by quantum tunneling, they could be stable on
cosmological time scales. Assuming they are quantized as
bosons, they should have zero charge and higher moments in
their ground state. Furthermore their expected size is -
~1/my,, their expected mass in the TeV range, while their
annihilation cross section, being essentially geometrical,
should be somewhat larger than weak cross sections. These
properties would make them serious candidates for cold dark
matter in the Universe.
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