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Temperature and entropy of a quantum black hole and conformal anomaly
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Attention is paid to the fact that the temperature of a classical black hole can be derived from the extremality
condition of its free energy with respect to the variation of the mass of a hole. For a quantum Schwarzschild
black hole evaporating massless particles the same condition is shown to result in the one-loop temperature
T=(8' M) '[1+tr(8aM ) '] and entropy S=4~M —alnM expressed in terms of the effective mass M of

a hole together with its radiation and the integral of the conformal anomaly 0. that depends on the field species.
Thus, in the given case quantum corrections to T and S turn out to be completely provided by the anomaly.
When it is absent (o.= 0), which happens in a number of supersymmetric models, the one-loop expressions of
T and S preserve the classical form. On the other hand, if the anomaly is negative (tr(0) an evaporating
quantum hole seems to cease to heat up when its mass reaches the Planck scales.

PACS number(s): 04.70.Dy, 04.62.+v

Black hole thermodynamics is known to possess a number
of puzzles such as the meaning of black hole entropy, the
information loss problem, and the operation of the general-
ized second law [1].The principal difficulty on the way to
their resolution is the lack of a consistent theory of quantum
gravity. Even the investigation of quantum effects on the
classical curved backgrounds sometimes represents a techni-
cal problem where results can be obtained only approxi-
mately. This is a reason why exactly solvable two-
dimensional models of black holes are of great interest at the
present moment [2].

The aim of this paper is to show how the one-loop cor-
rections to the temperature and entropy of the four-
dimensional Schwarzschild black hole with massless quan-
tum fields can be derived explicitly in a simple thermo-
dynamical treatment based on the scaling properties of the
theory.

To begin with, we recall that the energy E and entropy S
of a canonical ensemble at the temperature P can be de-
rived from the free energy F(P) as

8
E = (PF), S= P(E F). —

(BF)p=0, (2)

These quantities for a system being at the fixed temperature
change until a system reaches a thermal equilibrium charac-
terized by a minimum of F [3].In this state the condition of
extremum for F,

Now, returning to thermodynamics of black holes, an ex-
tremality condition of F, similar to (2), can be used to relate
the temperature of the hole with its other parameters (mass,
charge, etc.). To see this, we make use of the Gibbons-
Hawking approach to gravitational thermodynamics I4]. In
its framework the free energy in the semiclassical approxi-
mation is given by the Euclidean Einstein-Hilbert action
W, &

with suitably subtracted boundary terms:

PF(P) = IIr'.j(P)
I r

8+gd x+2 (K Ko) Qhd x—~.
16m~g

This functional is taken on the corresponding gravitational
instanton. To elucidate the idea, consider as an example the
Schwarzschild black hole with the mass m. The Euclidean
metric reads

2m' ( 2m)ds= 1 — d7+ 1— dr +r dA (5)

and the presence of the temperature P ' implies the period-
icity of this solution in 7'

0~ r~P.

Although at arbitrary P and m the space (5) has a conical
singularity at the horizon r=2m, the integral curvature in

(4) on such a space is well defined and is nonzero. One can
show [5,6] that, on (5),

gives a relation between P and other parameters of the en-
semble. Moreover, the first law of thermodynamics in its
simplest form

/ P
R+gd x=4' 1 — A,8am (7)

turns out to be a consequence of (1) and (2).

(3) where A = 16~m is the area of the horizon. Plugging (7) in

(4) and taking into account the boundary terms, we get the
free energy
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F(P,m)=m —47rm P (8)

Then, finding the extremum of (8) at fixed P

BF(P,m) =1—87rmP =0
Bftl

(9)

one can obtain the desired relation p '=(8am) ' between
the temperature of the Hawking radiation and the mass of the
hole. However, as distinct from a normal canonical en-
semble, a black hole is the maximum of F(p,m) rather than
the minimum, which indicates its well-known instability due
to evaporation. Finally, definitions (1) applied to (8) show
that the energy of the system equals the mass of the black
hole, whereas its entropy is given by the Bekenstein-
Hawking formula

E=m, S= 4A. (10)

Note that expressions (10) of F. and S do not depend on
temperature p ' at which they are evaluated. This is a fea-
ture of the classical theory and this is not true in general.

For simplicity we deal with the Schwarzschild black holes
but one can show that an analogous consideration for
charged holes or those in a cavity of a finite size is also
possible. In particular, in these cases the value of the Hawk-
ing temperature can also be obtained in the same manner
from the extremum of I' with respect to variation of the mass
of the hole when other parameters are fixed. This fact is not
surprising. Indeed, even if the gravitational action (4) is con-
sidered on a class of manifolds admitting conical singulari-
ties, its extrema do not change and they correspond to the
smooth geometries [5,6]. A physical reason for this is the
absence of such a matter distribution over the horizon which
could give rise to conical defects. On the other hand, differ-
ent masses m under fixed p are equivalent to Euclidean
black holes with different ranging of the time coordinate ~,
and their free energy has the extremum when the conical
singularity vanishes, which is usually associated with the
Hawking temperature [4].

Consider now the black-hole thermodynamics with the
one-loop quantum corrections. We will be interested in the
Schwarzschild hole evaporating massless particles, so far as
in this case quantum effects can be evaluated explicitly. In
quantum theory the effective action and the free energy read

pF(p) =W(p) =W,I(p)+W, (p)

Here W„ is the classical action (4) and W& is a one-loop
contribution to it from No scalar fields and, possibly, from
other fields of the higher spins (HS's), which depends on the
model in question,

its horizon [8]. However, for the case of the Schwarzschild
hole the role of R terms in the Lagrangian is reduced to
irrelevant constant in the entropy [6], and for this reason we
omit these terms. For massless fields there is also an infrared
divergence in (12). It can be eliminated in the same manner
[4] as for the classical Einstein action (4) by subtracting from
the effective gravitational functional W (11) additional terms
given on a distant spatial boundary r = ro. After the subtrac-
tion, the action (11) turns out to be finite on (5) and includes
terms of the order O(ro ) that can be neglected in the limit
ro~~. We imply that infrared divergences are removed in
such a way but do not write the boundary terms in (11)
explicitly since their form is also irrelevant for further con-
sideration.

For the functional (11) taken on the space (5) the only free
parameter, apart from p, is the mass m of the hole and as in
classical theory we can consider its variation with respect to
this parameter. Thus, the extremality condition of F(P) can
be represented as

~ aw~~
P —87rm+ = 0.

Bm ]
(13)

Equation (13) indicates a correction 8 W& to the Hawking
temperature which can be calculated as follows. Consider the
scaling properties of 8'& that depends on m through the
background metric (5) and on P through the boundary con-
ditions. Assuming W& to be a renormalized action, one can
write

W~(P, g„„(m))=W~(Pn, n g~„(mn ))
= Wg(Pn ',g~„(mn '))

T~+gd x —a,„,r(PP~') lnn,

(14)

where a is a parameter corresponding to arbitrary, not nec-
essarily infinitesimal, change of scale and Pir—=8mm. Note
that P and m scale as a length; restoring the gravitational
constant G, one should write mG in (5) instead of m.

The last term in the right-hand side (RHS) of (14) appears
due to the breaking in W& of the conformal invariance to be
held for classical massless fields. It includes the standard
trace anomaly of the renormalized stress tensor
T~= —(16m ) 'az determined by the az coefficient in the
DeWitt-Schwinger proper time expansion [9]. In our case
T~ does not depend on time so far as the space-time (5) is
static and the integral of the trace anomaly can be repre-
sented as

N()
W& = ln detV V"+ HS's0 p (12)

fP fco
d7.

JO 32m
r dr dAT"=o (15)

computed on the background space (5).
Several remarks concerning (11) and (12) are in order. To

get rid of the standard ultraviolet divergences in W&, one
should include in (11)higher order curvature terms. This also
enables one to remove completely [7] the additional diver-
gences in the entropy of a black hole that are concentrated on

7 233
No N1/2+ ~3N1 + N3/2 2I~245' 4 4 (16)

where o. is the same integral at p= p~. The latter depends
on the numbers N, of the fields with the spin s entering in
the model [9,10]:



R5354 DMITRI V. FURSAEV

There is also an additional anomalous term a,„,r(PP~ ) in
the transformation law of W& due to the conical singularities
of the background manifold; a,„gppH ) is an integral over
the horizon surface which has been exactly found for the
scalar determinants in

I
11].However, the only thing impor-

tant for us is that this addition disappears at the Hawking
temperature:

T= Trr(M)
t
1+— (24)

where TH(M) =(87rM) is the classical Hawking tempera-
ture de6ned for a hole with the mass M. The one-loop
entropy can be recovered from (24) by making use of
Clausius's rule

a,„,happ„')=O, p= p„=8mm. (17)

It is suitable to choose a =m and represent (14) as

W&(P, g~„(m)) = W&(Pm ',g~„(m = 1))

+[crppH' —a,.„,r(ppH )]lnm

—=f(pm ',m). (18)

This immediately results in the relation

)awol ( afi P(afi
( am )

tarn),

m (ap)p, ~ p)aw~&

Inserting (19) into condition (13) we have

(19)

p /aw~)
P —8 7rm ——

m i ap)
CT 1——a,„„(ppH') =o

m

and p can be found from (20) by iteration in the Planck
constant fi as a series. Thus, taking into account (17), one
obtains the expression

/ aw~~P=8~ m+ + o(A, '). (21)

The quantity a&w& in (21) is the thermal energy of quantum
fields associated with the radiation of a hole and it is an
unknown functional of the background metric. Fortunately,
there is no need to calculate it explicitly as long as Eq. (21)
can be rewritten through the total internal energy of the sys-
tem

a ) awgi
F. = (PF) = m+ =—M.

ap ( ap )
(22)

(
P=8m M-

8mM)
(23)

I replacing m by M in the anomalous term in (21) results in a
correction O(fi )]. Consequently, the one-loop temperature
reads

The constant M can be considered as the effective gravita-
tional mass including the energy of the radiation and, as
distinct from the classical mass m, it is an observable param-
eter of the theory. In terms of M and in the first order in
fi, p takes the simple form

5=
] =4' —olnM

T (25)

and it differs from the Bekenstein-Hawking entropy by the
logarithmic term. Another way to derive (25) is to use the
statistical-mechanical definition (1) of S. Equations (24) and

(25) represent the main result of this paper. Remarkably T
and 5 can be found explicitly and coming out is the only new
coefficient o. of the field species given by Eq. (16).

The temperature T has been derived from the extremum
of the one-loop free energy or, which is the same, of the
effective gravitational action W; see (11).Although W is a
nontrivial functional of the metric, one can expect that it
possesses the same property as the Euclidean Einstein action
(4) when quantum effects are weak and has the extrema on
the smooth manifolds with the black hole geometry similar
to (5). This seems to be a natural assumption because, as was
pointed out, nonsrnooth solutions with conical singularities
would correspond to some specific matter distribution con-
centrated on the horizon surface of a hole. Therefore, in the
quantum case one can repeat the same arguments given
above for the classical action (4) and relate the extremum
(13) of W with vanishing of the conical singularity for the
Schwarzschild solution deformed by one-loop quantum cor-
rections. After that the temperature (24) should be related
with the one-loop surface gravity /c as T=(2m) k and,
hence, one can identify it with the temperature of the Hawk-
ing radiation in presence of the back reaction.

Let us discuss these results. As is seen from (24) and (25),
in the model in question the difference of T and 5 from their
classical form is completely provided by the conformal
anomaly (16). In this context it is interesting to pay attention
to the role played by the anomalous trace in two-dimensional
theory where it determines the Aux of the Hawking radiation
I 12]. In four dimensions the anomaly is known to be absent
in the models of %=8 and %=4 supergravity and in the
%=4 super Y'ang-Mills theory

I 10]. Thus, following from
(24) and (25) is an interesting consequence that for these
models the one-loop corrections can change the mass of the
Schwarzschild black hole, whereas the form of the thermo-
dynamics is left the same as in the classical case. In general,
the behavior of T and 5 depends on the sign of o.. The latter
is positive when spins 1 and 3/2 dominate in the theory and
then quantum effects accelerate evaporation of the hole by
increasing its temperature.

A qualitative difference from the classical black hole ther-
modynamics appears for the negative anomaly a.~O, when
the scalars, spin 1/2 particles, and gravitons prevail. Then,
the increase in the hole temperature T slows down. More-
over, in this case, when mass approaches the Planck scales
M= +oMpi, „,k, T reaches a maximum and after that starts
to decrease, a hole cools down. Surely, in this domain the
one-loop approximation is not reliable and another, probably,
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nonperturbative treatment is needed. However, if (24) is used
for extrapolation to the Planck region, it shows that tempera-
ture is null for some small or zero values of M, which can be
interpreted as the end of evaporation. If this were actually
true, the black hole evaporation would finish by a pure
vacuum state.

Our analysis would be incomplete without comparing
Eqs. (24) and (25) with the one-loop quantities derived by
taking directly into account the back reaction caused to the
Schwarzschild metric by the quantum matter [13,14]. How-
ever, to employ the back-reaction method, one needs the
renormalized stress tensor that is known for the Schwarzs-
child hole in four dimensions only in the Page approximation
[15].Nevertheless, there is a qualitative agreement between
Eq. (24) and that reported in [13,14]. In particular, the maxi-
mum of the radiation temperature was also mentioned in [14]
for the gravitation-dominated matter. It is also worth pointing
out that a logarithmic dependence of the one-loop black hole

entropy on the mass, similar to (25), has been found out in a
number of two-dimensional models, for instance in [16],and
has been argued to occur in the membrane approach to the
description of black holes [17].

One should remark in conclusion that the reason why the
simple expressions for T and 5 have been obtained in our
method is that the Schwarzschild metric possesses the only
dimensional parameter m. Thus, it is interesting to repeat the
analysis for more general black hole geometries and massive
quantum fields and see how the properties of the considered
model can change.
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