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Y(3S)~Y(1S)mn decay: Is the mm spectrum puzzle an indication of a bbqq resonance'?
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The vr7r mass spectrum in Y(3S)~Y(1S)mm has a peculiar double peak structure. This structure and the

Y(1S)m spectrum are reproduced by introducing a triangle singularity associated with a bb7r resonance

(J = 1+) in the mass range 10.4 —10.8 GeV.

PACS number(s): 13.25.Gv, 14.40.Gx

The hadronic transitions Y(nS) ~Y(mS) 7rrr are of par-
ticular interest for exploring nonperturbative QCD interac-
tions. The standard mechanism for these transitions is
thought to be the emission of gluons, followed by their had-
ronization to two pions as shown by Figs. 1(a,b). It was
calculated by various nonperturbative QCD multipole-
expansion models [1—4]. All of them gave a single peak in

the mvr mass spectra at high values. This is consistent with
the data for Y(25)~Y(1S)7r7r and Y(35)~Y(25)mm
transitions, but disagrees with data for the Y(3S)~
Y(15)wrier transition which shows a peculiar double peak in

its m spectrum [5,6]. Several mechanisms have been sug-
gested, such as including the known m~ final state interac-
tion [4], or introducing m m. and/or Y vr resonances [4,7,8], or
considering a BB intermediate state mechanism [9—11],
etc. , but all of them either could not explain the double peak
puzzle or demanded very cumbersome assumptions [5].

In the present paper, following Voloshin's idea [8], we
suggest the resolution of the Y(35)~Y(15)7r7r puzzle by
introducing a resonance in the Y(15)vr system —a four
quark resonance bbqq with isospin I= 1, see Fig. 1(c). But
contrary to Voloshin's proposal, we assume this resonance is
outside the Dalitz plot of the produced particles Y(1S)arm,
i.e., its mass M&~M~(3g) p ~ Therefore it does not pro-
duce a peak in the Y(1S)7r spectrum and only influences the
~m spectrum by the process with subsequent rescattering of
pions as shown in Fig. 1(d). The qualitative feature of the
spectrum for Y(3S)—+ Y(15)rr~ is that an anomalous peak
occurs in the m m mass spectrum just where the mass of the
Y(15)7r system reaches its maximum, i.e., the top of the
Dalitz plot [5]. If the triangle diagram of Fig. 1(d) plays a
role, this is exactly where one expects such a band of events.
The triangle diagram with a resonance in the intermediate
state contains an anomalous logarithmic singularity close to
the physical region for three-particle final states [12—14].
The closer the bb~ system lies to the physical region, the
stronger the anomalous band of events will be. This property
has recently attracted attention to the triangle diagram in
other processes [15-18].

In summary, two types of processes are assumed to be
responsible for the decays Y(nS)~ Y(IS)mm: (i) the stan-
dard decay mode Y(nS) ~gluons+ Y(mS) ~ vrvrY(mS)
with 7rm final state interaction included [Figs. 1(a,b)]; (ii) the
production of the pion and the virtual resonance X(bbqq)
(I=1 and mass in the range 10.3—10.8 GeV) with subse-

quent decay X~Y(mS) 7r [Fig. 1(c)]and a further pion-pion
interaction [Fig. 1(d)]. The process of Figs. 1(c,d) was con-
sidered in Ref. [4], but the approximation used there had the
consequence of losing the triangle diagram singularity.

Because of the centrifugal barrier effect, the quantum
numbers for the X resonance are expected to be J =1+,
which gives an S-wave coupling of the XYm vertex. Then
the following formula gives the amplitude of the decay
Y(nS)~ Y(mS) m7r with all processes of Fig. 1 taken into
account:

T=e"(n)e"(I) g~„n„
e' osin8'0

+A„~T„„(sir,sz3, s) .

v(ms)

T(ns)

T(mS)
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FIG. 1. Processes which are taken into account in the present
model: (a,b) diagrams with gluon emission and their transition into
mvr; (c,d) production of the resonance A' with subsequent rescatter-
ing of the produced pions.

Here e is a polarization vector of Y and g, is the metric
tensor. The first term in the square brackets describes the
standard amplitude of Figs. 1(a,b): Bo is the mm S-wave
phase shift with I=O and p„=gl —4/L /s is the invari-
ant mm phase space volume. This is the standard gluon-
multipole-plus-current-algebra model with pion final-state
interactions [4]. The second term describes the process of
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with

e' osin6o
+2 A ',(s)

P
(2)

ds' p "dA g „—p~, /s
A "„(s)=

2 7T s' —s —lE) 4W MR

Here Mz and I z are the mass and width of the resonance X,
p, 3 and s;3=p, z are the total momentum and the energy
squared of the system of outgoing Y and pion i; p and
s =p are the momentum and squared energy of the X reso-
nance in the triangle diagram, and the integration over 0,
means integration over angular distribution of intermediate
pion, where z axis is defined by momentum of outgoing Y.
Here for the triangle diagram Fig. 1(d), we assume as usual
[12—18] dominance of the triangle singularity contribution.
The dispersion integral in Eq. (2) should not be taken liter-
ally because of the tensor factor g „—p~„/s. First of all
this factor must be expanded over external momenta and the
dispersion integral taken for invariant functions. The details
of such a procedure can be found in Refs. [19,20], but be-
cause of the large mass of Y mesons this procedure can be
simplified.

The term e„(n) (p~, /MR) e,(m) is of the order
of k /M~ where k is momentum of the Y-vr system. There-
fore this term is small in the region considered and can be
neglected for the calculation of the first two terms in the

T, and the imaginary part of A '. In the calculation of the
real part of A ', such a term gives a divergence in the integral
at large virtualities of the X resonance. To get rid of this
divergence we apply a cutoff procedure assuming that the
contribution from the large virtualities (that means small dis-
tances) is effectively taken into account by redefinition of the
parameter a„.If a cutoff parameter A is much smaller then

MR the term proportional to 1/M„can be also neglected for
calculation of the real part of the A '. In that case the integral
becomes convergent and a cutoff parameter can be spread to
infinity A~~. Thus we obtain the following expression for
the amplitude T:

X 1T,(S,3,S23,S) =g~v 2
R sy3 ™RIR

1 e' sin 6o+ 2, +2 A '(s),
v~~

where

ds' p "dz 1

J 4~2 7r s s EEJ 4rr MR s

Here z corresponds to the angle between an intermediate
pion and outgoing Y.

The invariant energy squared of the X resonance is equal
to

resonance production and the subsequent rescattering of the

pions, Figs. 1(c,d). For ~+ vr production, T, is

2 2
gyv P13pP13v/MR gpv P23pP23v/MR+

s= p, +m +2k3pk, o
—2 k3k,

'

where p, ,k~o, k] are the mass, energy component, and abso-
lute value of space components of the intermediate pion,
while m, k3p, k3 are the corresponding characteristics of the
outgoing Y. Performing the integration over z we obtain the
following expression for the amplitude A ':

g Tl'( )
g4 m s' —s —ie 4k k'

MR p, + m —2k3ok,'o+2k3k]
Xln l

Mz —p, + m —2k3pk lp 2k3k]
(4)

We calculate this integral with use of the dispersion rela-
tion integral over urer invariant energy s'. Then

k3o=
W —m —s'

k3= gk30 —m,

~s'
k10 2 ~ k 1 ~k10

where W is the mass of the initial Y. The integration over
s' near the square root singularities should be performed
with the shift W~ W+ i e. In Eq. (2) the isotopic structure of
the amplitudes is taken into account as well as the production
of vr m in the intermediate state of the triangle diagram. For
the pion final-state interaction amplitude T =e' osin+/—p, we take the form of Ref. [17].

Using Eqs. (1), (3), and (4) with eight parameters (MR,
I R, three n„, and three l1.„—=A„ /a„) we fit the
invariant mass spectra of the three reactions
Y(35)~Y(15)7r+ 7r, Y(35)—+ Y(25) 7r+ 7r, Y(25)~
Y(15)7r+7r simultaneously. The data in our fit are taken
from the CLED Collaboration [5] (circle) and the CUSB
Collaboration [6] (square). A typical fit is shown by solid
curves in Fig. 2 with Mz = 10.5 GeV, I =- 0.15 GeV,
P 3]= —3.78, X3p= —0.76, and X2i= —2.02. The n„con-
stants are absorbed into the normalization factors which are
normalized to the number of events measured. The solution
has y = 164 for 104 degrees of freedom. A big contribution
to the y arises from the older data of CLEO for the Y~
invariant mass spectra [open circles in Figs. 2(b, d)]. The y
for the newer data for the Y(15)7r spectrum [block squares
in Fig. 2(b)] is good. Further data on the Y(2S)m spectrum
to update Fig. 2(d) would be helpful. As a comparison, we
also show the case without resonance production (i.e.,
l1.„„,=0) by the dashed curves in Fig. 2; these have

y =640. The virtual production of the X resonance im-
proves the fit to the pion-pion invariant mass spectra for all
three reactions and at the same time does not disturb the
Y(IS)m — spectra very much since the resonance is located
outside the Dalitz plot. In Fig. 2(e), we also show the more
precise data of the ARGUS Collaboration [21] (triangles).
They are compatible with our solution.

In principle, there should be some prior relationship be-
tween 1 R and the values of A, , and also between the val-
ues of A„ themselves. But due to lack of knowledge of
these relationships, we take all of them as free parameters in
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FIG. 2. Typical fit with M&=10.5 GeV and
I'tt= 150 MeV. The data are taken from Ref. [5]
(circle) and Ref. [6] (square). The dashed curves
are with the standard mechanism [Figs. 1(a,b)]
only; the solid curves are with both the standard
mechanism and the X(bbqq) resonance produc-
tion mechanism [Figs. 1(c,d)].
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our fit. It may be worthwhile in the future to study micro-
scopically whether the values we fit here are reasonable. The
fit is not very sensitive to the width of the resonance. For
M&= 10.5 GeV, if we change the width from 150 MeV to 0
or 300 MeV, the y increases by 26 for 104 degrees of free-
dom. As for the mass of the resonance, if we change it from
10.5 to 10.4 GeV, y increases by 25; if we increase the mass
above 10.5 GeV, we can get an equally good fit by increasing
the values of X, , i.e., increasing the coupling of the reso-
nance with Ym and therefore also its width. Its strong effect
on Y(35) suggests its mass is close to Y(3S), so we limit its
mass value below 10.8 GeV.

%'ith our model, the angular distribution for the pion de-

cay angle cos0 in the pion-pion rest system is quite flat,
close to the result of the conventional mechanism, since
pion-pion S wave dominates in both models. So our model
cannot explain the slight slope downward from cos0*=0 to
cos0 *=1 reported by the CLEO Collaboration recently [5].
But the discrepancy is small and may be explained by a little
mixture of D wave component in Y(35-) [22].

A place to check our mechanism is to measure the invari-
ant mass spectra of Y(45)~Yerbs We expec. t a similar
double peak would appear for pion-pion invariant mass spec-
tra unless the coupling of the resonance to Y(4S)-7r is very
small due to some peculiar reason.

We conclude that the existence of an I= 1 J = 1 reso-
nance in the Y(15)vr system is a possible solution of the
Y(35)~Y(IS)vr" 7r decay puzzle. It explains naturally
all the invariant mass spectra in Y(nS)~ Y(mS)vrvr Ac-.
cording to our estimation the mass of this resonance is in the
region 10.4 —10.8 GeV. To find this resonance is important
since a resonance with I= 1 and hidden b flavor would indi-
cate definitely the existence of resonances in the four-quark
system, bbqq. Four-quark resonances have been widely dis-
cussed but as yet there is no definite indication for their
existence.
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