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Phase transition for gravitationally collapsing dust shells in 2+ 1 dimensions
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The collapse of thin dust shells in (2+1)-dimensional gravity with and without a cosmological constant is

analyzed. A critical value of the shell s mass as a function of its radius and position is derived. For A&0, a

naked singularity or black hole forms depending on whether the shell's mass is below or just above this value.
The solution space is divided into four different regions by three critical surfaces. For A~0, two surfaces
separate regions of black hole solutions and solutions with naked singularities, while the other surface sepa-
rates regions of open and closed spaces. Near the transition between a black hole and naked singularity, we find

~-c~(p —p*)~, where P = 1/2 and ~ is a naturally defined order parameter. We find no phase transition in

crossing from an open to closed space. The critical exponent appears to be universal for spherically symmetric
dust. The critical solutions are analogous to higher dimensional extremal black holes. All four phases coexist
at one point in solution space corresponding to the static extremal solution.

PACS number(s): 97.60.Lf, 04.20.—q, 04.60.Kz

Following the work of Choptuik [1],critical behavior has
been found in several models of black hole formation [2—8].
In these models, the space of solutions is separated by a
critical surface into a region of black hole solutions and a
region of solutions which are not black holes. There exist
continuous parameters with critical values on the boundaries
separating these regions. The critical solutions are universal,
and scaling laws with critical exponents have been found.
For the case of collapsing spherically symmetric inhomoge-
neous dust, the existence of different phases has been known
for some time [9,10], and recently the order parameters and
their critical values have been found [11].So far, the behav-
ior near criticality has not been studied.

Since there is presently no deep understanding of this
general phenomenon, the study of simple models of gravita-
tional collapse may be useful. In this paper, we study col-
lapsing spherical thin dust shells in (2+1)-dimensional grav-
ity with both a vanishing and negative cosmological
constant. Imposing junction conditions across the dust shell,
we derive a relation for the total mass of the system in terms
of the rest mass of the dust shell p, , its initial radius ro, and
its initial velocity r'0. We show that the solution space is
divided into four regions. For A =0, the solutions in the four
regions are (1) open conical spaces [12], (2) open three-
dimensional Misner- Taub-NUT (Newman-Unti- Tamburino)
(MTN) spacetimes, (3) closed conical spaces [12], and (4)
closed MTN spacetimes. For A(0, the solutions in the four
regions are (1) open anti —de Sitter (AdS) conical spaces
[13], (2) exteriors of three-dimensional black holes [14], (3)
closed conical AdS spaces [13], and (4) interiors of three-
dimensional black holes. We find the critical surfaces sepa-
rating the four regions and study the critical behavior in their
vicinity. Following [1—7], we define the order parameter, ~

as the total mass of the system. For A(0, we show that near
the two critical surfaces separating black holes and solutions
with naked singularities, the order parameter behaves as

~-c~(p —p*)~,

where P=1/2 for both surfaces. p is an affine parameter
along any curve in the space of solutions that crosses the
critical surface at p=p*, and c~ is a constant. For A=O,
there exists an analogous phase transition with the same ex-
ponent. In going from an open to closed space, we find

P = 1 suggesting that in that case there is no phase transition.
We now consider a collapsing spherical shell of dust in

2+1 dimensions and derive the junction conditions which
allow us to relate the exterior and interior geometries. The
trajectory of the shell forms a two-dimensional hypersurface
X in the (2+1)-dimensional spacetime. Let the exterior (+)
and interior ( —) spherically symmetric metrics be given by

ds = A(r )dt +B (r )—dr +r d@ . (2)

dl = —dv +r (r)d@ (3)

The surface stress tensor for dust is S,=o.u„u where
u~—= (ct/Br)~ and o are the three-velocity and the mass den-
sity of the shell with ~ the proper time. The junction condi-
tions across the shell are (1) continuity of the induced two-
dimensional metric h; on X and (2) a discontinuity of the
extrinsic curvature determined by the shell's stress tensor.
The components of u~ are t, l' inside and outside the shell
where the overdot is equivalent to d/dr . The induced two-
metric is given by
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Continuity of h;, across the shell yields

r~(r) =r (r) —=R(r). (4)
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The second junction condition can be obtained by decompos-
ing Einstein s equation into components normal and tangen-
tial to X. The components of the normal n" to the hypersur-
face are n'= ~(B/A)u" and n"= ~ (A/B)u'. Integrating the
tangential components of Einstein's equations across $, one
obtains the junction condition [15]:

[K;,—h;,Ki] = 8 mGS;,

where K;,=h, h,.VknE is the extrinsic curvature and i,j, . . .k E

are tangential components. The brackets denote the disconti-
nuity of the enclosed expression across the shell. From
[G„;]= 0 and the junction condition (5), one obtains the con-
servation equation

(6) 1.5

where
I j is the covariant derivative in $.

The r~ component of (5) for the metric (2) becomes

—+ (u") = 8mGo. .
r B (7)

FIG. 1. Solution space for A=0 with 6= 1/4. The lower and

upper solid lines correspond to p = p,,i (y = 0) and p =p, 3

(y=0), respectively. The dashed line corresponds to p, = p,,z
(y= —I' ) The upp. er dotted line corresponds to p, = p, ,4. The so-
lutions in the four regions are (I) open cones, (II) open Taub-NUT
spaces, (III) closed Taub-NUT spaces, aud (IV) closed cones.

Projecting the conservation equation (6) onto u" produces an

equation for o.: (I+r )" +sgn(n+)(y+r )'t =4Gp, . (12)

do/dr+ ui;o.
.—0.

From the two-metric (3), one finds u/, = r/r Substitutin. g into

(8) and solving for o. leads to

(9)

i 1/2

Sgn(tl ) 2 +r
F' I

+ sgn(n+) 2 +i =46p„(10)

where sgn(n &+) is the orientation of the normal to X in the
inside and outside spaces, respectively [16].One can easily
see that the accelerations on both sides of the shell vanish.
This contrasts with 3+. dimensions where the accelerations
are nonzero, but equal and opposite on the two sides of the
shell.

All spacetime solutions to vacuum 2+1 Einstein gravity
with vanishing cosmological constant are locally Oat, but can
have nontrivial global identifications. Consider the general
static spherically symmetric spacetime [12]

ds = —ydt +dr /y+r d@, 0~@~2~

where y is a constant. y=1 corresponds to Minkowski
space. For 0(y—=n (1, the spatial geometry of (11) de-
scribes a cone with a deficit angle b, @= (1—n) 2m and mass
m=(1 —n)/46 [12]. For y(0, (11) describes Taub-NUT
(Misner) space [17] with t spacelike and r timelike. Now,
consider a dust shell with a flat interior geometry
[B = 1, sgn(n ) = 1] and with exterior geometry given by
(11). (10) then yields

where the constant p, is the rest mass of the shell ~ The other
component of (6) implies that the dust trajectory is a geode-
sic of the two-metric which is already clear from the form of
(3). Substituting (9) into (7) yields

Since p, and y are constants, we recover the radial geodesic
equation, r =0.

For a given p, and i, (12) determines the exterior geom-
etry. There is no dependence on the radius of the shell be-
cause there is no length scale in 2+1 gravity with A=O.
Consider fixed r and increase p, from zero. There are four
ranges of p, describing qualitatively different exterior geom-
etries shown in Fig. 1.

The four regions are as follows.

(I) 0(p(p. i=(46) [(1+r ) " Irl]-
[sgn(n+) = —1].

The exterior geometry is an open cone with mass m given by

m=(4G) '{1—[1—86p, (1+r )'~ +166'p, ]'t ). (13)

We would like to thank Jorma Louko for this important observa-
tion.

At each time t, space is described geometrically by a
truncated cone of deficit angle A@=8mGm. The top of the
cone corresponding to the inside of the shell is replaced by a
fiat disk [Fig. 2(a)].

For a shell at rest (i.=O), m=p, is recovered. As
p, ~p, ,= 1/4G, the cone limits to an infinite cylinder [Fig.
2(b)]. The coordinates (t, r, p) are singular in that case. One
can define the coordinates T= nt and p=(r, —r)/n (where
r, is the constant radius of the shell). In the limit n~O we
get the infinite cylinder metric ds = —d T2+ d p2+ r, d P~
For r 40, the mass (13) depend's on the kinetic energy of
the shell as well. In this case, we can obtain the limiting

geometry for p, —+ p, ,& by defining the coordinates u = n t
and'
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FIG. 2. Spatial 2 geometries for A = 0 and r =0: (a) open co'ni-

cal space (m (m, = 1/4G), (h) the infinite static cylinder

(m =m, ), (c) closed conical space (m) m, ), and (d) collapse onto
a particle of mass mo.
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(14)

The spacetime outside the shell is therefore three-
dimensional Minkowski space with the null-rotation identifi-
cation @-P+2ir [18].

1
(II) p, ,i(/L(p, ,2= (1+r )' [sgn(n+) = —1].

The exterior geometry is Taub-NUT, described by (11) with

y~0 and r&r, .

1
(III) w, 2(/ (e,3=4G I:(1+r')'"+ lrl]

[sgn(n+) = + 1].

The exterior geometry is closed Taub-NUT, described by
(11) with y( 0 and r(r, .

1
(I&) ~,q(p(p, ,4= (1+r ) ~ [ sgn(n+) =+1].

2G

The metric has a smooth n —+ 0 limit approaching
ds2= —(r,) ~du +2dudv+u d@ The vecto. r 8/8$ is a
null-rotation generator, and in Minkowskian coordinates

(x,x',x ), it can indeed be expressed as a linear combina-
tion of rotation and boost generators

The exterior geometry is a closed cone [see Fig. 2(c)] with a
mass

1
m= (1+[1—8Gp, (1+r )

'~ +16G p, ] ~ j. (15)46

~r' ~ r'
ds = —' —2+y dt + —2+y~l2

dr +r

I=(—A) '", 0(@(2~ (16)

where y is a constant. y=1 corresponds to anti —de Sitter
(AdS) space. For 0(y= n (1, we have anti —de Sitter
space with a deficit angle b, /=2m(1 —n) describing a point
particle with a mass m = (1—a)/4G [13]. In the limit
A~O, one recovers the point particle solutions in [12].For
y(0 the solution (16) is a black hole with an Arnowitt-
Deser-Misner (ADM) mass M= —y/8G defined relative to
the M = 0 vacuum. The singularity r = 0 is located behind an

event horizon at rH= $8GMl. The black hole solutions ap-
proach anti —de Sitter space asymptotically. They can also be
obtained geometrically from anti —de Sitter space by identi-

fying under the action of a boost. The M =0 solution has an
infinite throat of vanishing radius.

One should distinguish the Banados-Teitelboim-Zanelli
(BTZ) mass M (which is in fact the ADM [20] mass) from
the Deser —Jackiw —'t Hooft (DJ'tH) mass m defined in

[12,13].The difference is due not only to different choices of
vacua, but to different choices of time slices as well. The
DJ'tH mass is defined as [12] m= f gg& lT—&d x, where
g& & is the two-dimensional metric on a spacelike surface.
On the other hand, the BTZ mass is defined as
M—=f g gt lTod x where g—t l is the three-dimensional
background metric. In the definition of the BTZ mass, t in

(16) is the time parameter, while in the definition of the
DJ'tH mass, it is nt.

Now there is an additional conical singularity outside the
shell with mass m*= 1/2G —m fixed by the Euler number

of the space [see Fig. 2(c)]. As p, ~p, ,4, the geometry de-

generates to a disk. For p, ~ p, ,4, m becomes negative so
the physical solution space is the region p,(p, ,4 in Fig. 1.

From Fig. 1, one observes that (p, =1/4G, r=0) corre-
sponding to the static infinite cylinder solution [Fig. 2(b)] is
a special point in the solution space, in which all four phases
coexist. For a shell at rest (i =0) regions (II) and (III) are
absent. As p, exceeds p, ,= 1/4G, the geometry goes directly
from an open cone to a closed cone with the infinite cylin-
drical geometry at p, = p, The mass rn, is exactly the bound
that was found in the general case of (2+1)-dimensional
gravity [19].As was observed in [12], one can go beyond
m=m, .

All classical solutions to 2+1 gravity with A~O corre-
spond to anti —de Sitter (AdS) space locally. However, non-
trivial global identifications can lead to very different prop-
erties including different values of the mass as well as the
existence of event horizons or naked singularities. For the
analysis of collapsing dust shells, it is most convenient to
describe the solutions analytically.

The general spherically symmetric static solution in
(2+1)-dimensional cosmological gravity can be written as
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FIG. 4. The order parameter u as a function of p=r'0 with
ro/i=ro/I=1/4 and 4G/t+=(4G/t, ) =2 ~. The upper part,
a)0, corresponds to region I in Fig. 3, and the lower part, n(0,
corresponds to region IV.

(upper) shaded surfaces in Fig. 3 (see also Fig. 4). From (23),
we see that the critical exponent is P= 1/2 as one approaches
the critical surface from any direction.

Consider approaching the critical surfaces from regions II
and III. The DJ'tH mass in those regions is ill defined. A
geometrical quantity which is sensitive to the phase transi-
tion and is a continuation of u to regions II and III is the
black hole radius rH. Using (18), we find rH-c (p —p*) t

and thus again obtaining the same exponent P=I/2 as in
(23).

A value of 1/2 for the critical exponent P was found in
certain models in 3+1 dimensions [5—7] and also in 1+1
dimensions [4]. Our critical solution does not appear to be
self-similar. So it is not clear if there is a deeper relation

In [1—7], the black hole mass was used as order parameter, but in

four dimensions, this is proportional to the black hole radius.

between these models and the one considered here. However,
since our critical solution is very similar to a higher dimen-
sional extremal black hole, a natural question is whether a
phase transition also occurs in other models of the formation
of extremal black holes. Some indications for that can be
found in [5].

Near the y= —(ro/I + i o) surface, one finds P = 1 using
either a or rH or M as order parameter. Thus, there is no
phase transition in crossing from an open to closed space. A
way to see the distinct behavior of the transition between
open and closed spaces is to consider the static case with
4 =0. Now, the only parameter is p, , and the transition con-
nects regions I and IV directly. We find ~=c (p, —p, *),
and thus indeed P= 1.

In this paper, we described the phase transition which
occurs in the gravitational collapse of dust shells in (2+1)-
dimensional gravity. We found that the solution space is di-
vided into four qualitatively distinct regions. There is critical
behavior near the transition between black holes and solu-
tions with naked singularities. One can easily generalize our
results to higher (or lower) dimensional solution spaces.
Consider for example collapse into a conical space, with in-
terior mass mo [Fig. 2(d)]. We then have a four-dimensional
solution space, and furthermore, one finds that~—c (mo —mo, ) t2 as well. On the other hand, in the case

0

of the collapse of a homogeneous ball of dust in 2+1 dimen-
sions [21], the total mass is given by M= p, —1/8G and is
therefore only a function of p, . So we have effectively a
one-dimensional solution space, and if we use our definition
for the order parameter, we find .~= (p, —p, ,)", where
p,,= 1/8G. So, it seems that our results and in particular the
value of the critical exponent are quite general in the case of
spherical dust collapse in 2+1 dimensions.
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