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The dependence of the critical exponent 3 on the shape of the incoming flux near the threshold of black hole
formation is first studied in the context of the Russo-Susskind-Thorlacius (RST) model. In order to describe a
generic incoming flux, two parameters (a,n) are first introduced. The critical exponent B is found to be
1/n, which is parameter dependent. And 8=0.5 is not universal; it is just a special case for n =2. The apparent
horizon and singularity curves for the generic parameter n are also evaluated in the scaling limit, which do not
take the universal form. The singularity curve for n=1 even includes the parameter a. All of these indicate
that critical phenomena perhaps do not exist in the RST model due to the linear nature of the RST equations
which also results in no self-similar oscillations in the RST model.
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Recently, critical phenomena have been shown to occur
near the threshold of black hole formation. Choptuik [1] first
observed this critical behavior in the spherical collapse of a
massless scalar field. Abrahams and Evans [2] found a simi-
lar behavior in the axisymmetric collapse of gravitational
waves. Critical phenomena have now also been observed in
radiation fluid collapse [3]. Some of Choptuik’s results have
recently been confirmed by Gundlach, Price, and Pullin [4].
All of these seem to indicate that critical behavior is a ge-
neric feature of gravity.

Nevertheless, Choptuik [1] only numerically discussed
the mass M py of the resulting black hole as a function of the
distance ¢ in the initial data space from the threshold. For
small & he finds a power law M pyz=K 6%, where the critical
exponent S is near 0.37, and his result appears quite univer-
sal. But there is little analytic or conceptual understanding of
these interesting phenomena. In order to give an analytical
explanation of these phenomena, Strominger and Thorlacius
[5] first studied the corresponding power law M gz=K 6%, in
the context of the two-dimensional Russo-Susskind-
Thorlacius (RST) model [6,7]. They discovered the critical
exponent B equals 0.5, and though their result was quite
universal and insensitive to the precise definition of § or
scalar field couplings. In addition, Strominger and Thorlacius
also found there are some apparent differences between their
results and those of Ref. [1]. First, their critical exponent is a
rational number whereas Choptuik’s appears to be irrational.
Second, there is no analogue of the self-similar oscillations
in the RST model. They guess this may be a special feature
arising from the linear nature of the RST equations, and ex-
pect the more general two-dimensional models (which are
not analytically soluble) might exhibit such oscillations.

As is well known, the self-similar solution which exhibits
local self-similarity should be closely related to existence of
critical phenomena [3,8]. Because of the absence of the self-
similar oscillations for the RST model, one may ask whether
the critical phenomena occur near the threshold of black hole
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formation, that is, whether or not the critical exponent
B=0.5 is universal in the RST model. In order to answer this
question, the dependence of the critical exponent 8 on the
shape of the incoming flux near the threshold of black hole
formation is first studied in the context of the RST model.
And for describing a generic incoming pulse two parameters
(a,n) are first introduced. In the scaling limit, we show that

MBH:Kﬁl/n. (1)

So the critical exponent 8 is 1/n, which depends on the
parameter n of the incoming flux. And 8=0.5 as discussed
in Ref. [5] is not universal, it is just a special case for
n=2. The apparent horizon and singularity curves for the
generic parameter n are also evaluated in the scaling limit,
which do not take the universal form. The singularity curve
for n=1 even contains the parameter . All of these indicate
that critical phenomena perhaps do not exist in the RST
model. The reason for this is that critical behavior is a non-
linear dynamical behavior, so critical phenomena should not
appear from the linear RST equations. And no self-similar
oscillations in the RST model also reflect the linear nature of
the RST equations.

Now let us consider the RST model; the semiclassical
effective action is, in the conformal gauge [6],

1 N
S=;j d2x 26—2¢—E¢ (9+§_p
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where p is the conformal factor, ¢ is the dilation and f; are
N scalar matter fields. This model differs from the original
Callan-Giddings-Harvey-Strominger model [9] by a finite lo-
cal counterterm, which restores a global symmetry of the
classical theory.

In the Kruskal gauge with p= ¢+ 3n(N/12), the semi-
classical equations are simply

8,0_fi=0, 9,0_Q=—\2, —3Q=T, +t.,
3
where

g2 Ly 1 1N )
=N € PRAwTE 4

6
Th. =52 (3:f)". 5)

i=1
The function ¢, (x*) takes the value ¢, =—1/4(x")? in

Kruskal coordinates. The field redefinition (4) is degenerate
at Q=1 and Q<32 does not correspond to a real value of
¢. RST impose the following boundary conditions at the

curve (=1, wherever it is timelike [6]:

9 Q) 0=14=0. (6)

The boundary conditions (6) ensure semiclassical energy
conservation and also that the physical curvature remains
finite at the boundary curve as long as it is timelike.

The solution corresponding to incoming matter energy
flux is given by [5,6]

1
Qx*,x7)= —)\x+()\x“+ x P+(x+)) + %M()ﬁ)

1
- M[xz(x7)]—Hn[x" /x5 (x7)], ()

where

M(x+):)\f0x dy+y+Tf++(y+), (8a)

P+(x+)=f0" ay*1l (), (8b)

and x5 (x7) is the x* value of the point on the boundary
curve from which the reflected signal propagates to
(x*,x7). Wherever the boundary curve is timelike, it is de-
scribed by

Nxp=—P(x5)—

)

—.
4xp

However, if the incoming energy flux becomes larger than
the outgoing Hawking flux of a two-dimensional black hole,
T/, . (x*)>1/4(x*)?, for some value of x*, the boundary
curve becomes spacelike. The spacelike segments of the
boundary curve are curvature singularities. They form inside
regions of future trapped points which are bounded by an
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FIG. 1. Kruskal diagram for black hole formation and evapora-
tion in the scaling region. A near-critical flux of matter energy is
incident from x~ = — . The solid curve is the )= % boundary and
the dashed curve is the apparent horizon. The spacelike portion of
the solid curve is the black hole singularity.

apparent horizon, located at 3, =0 [10]. As pointed out in
Refs. [11,6], the apparent horizon coincides with the bound-
ary curve where the latter is timelike, but where the bound-
ary becomes spacelike the two curves separate and the ap-
parent horizon cloaks the singularity, as shown in Fig. 1.
Once the incoming energy flux falls below the threshold
value, the black hole evaporates and the apparent horizon
approaches the singularity. The curves join again at the end
point of the evaporation, which is denoted by E in Fig. 1.

The null line segment x ~=xz , x5 (x5 )<x"<xj , is the
global event horizon of the geometry. We define the black
hole mass as the incoming energy of the null matter swal-
lowed by the black hole during its lifetime:

Mgy=M (xg)—M[xj (xg)]. (10)

Since both ends of the global horizon are on the boundary
curve and also on the apparent horizon, it follows from (7)
and (9) that

)Y
MBH=Zln[x;/x;(x;)]. (11)

In order to discuss arbitrarily small black hole formation
just above threshold, we first introduce two parameters
(a,n) to describe a generic incoming flux, which is given by

T () =(+ o[ 1—a(ln AxT"+- - J(xH) 72, (12)

where higher orders in the Taylor expansion of T7, , only
contribute terms with higher positive powers of 8, which can
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be ignored in the scaling limit. The incoming flux depicted
by (12) has a maximum at x*=1/\, where its value is
N2(3+ &), and it is below threshold everywhere except near
xT=1/\ so that only a single small black hole is formed.
From the physical viewpoint, the incoming flux with differ-
ent parameters n give the same physical picture; i.e., they all
describe a single small black hole formation near the thresh-
old.

Now let us evaluate the Kruskal coordinate of point A
(x4 ,x;), where the boundary curve turns spacelike. As
shown in Fig. 1, x, takes a maximum value on the apparent

ZHOU, MULLER-KIRSTEN, AND YANG

51
To leading order in §, we obtain
S 1/n
Ax; =1 —41/"(;) . (16)
From (9), we get
1 1/n
= 1 _ " Aln
Ax, X P (1/\)— 3+ 5( a) n+14 . (17)

Since we are interested in the §<<1 limit, it is convenient to
shift and rescale the Kruskal coordinates around point A as

horizon curve; i.e., follows:
dxo 1/n
7 ul =0. (13) )\x+=1+(;) [at—41m], (18a)
FH =y =y
1 1/n
Applying d/dx}; to both sides of (9) yields Ax =— X P (1/\)— i+ 5( ;) a + s 14”"}. (18b)
A2 dxp =—7/ (x}H)+ 1+ . (14) The origin of the (a*,a ™) coordinates system has been cho-
dx;, XATHET A (x)? sen where, to leading order in &, the boundary curve turns
spacelike, as shown in Fig. 1.
Then we have, from (13), From (8b) and (12), we evaluate P, (x*), then insert
P.(x*) and (18) into (9). In the scaling region in which
— Tj;x( XX) + W =0. (15) higher order terms in § can be dropped, the apparent horizon
X curve is
|
_..(a+_4l/n)+ l (_ 1)” (a+ _41/n)n+l_ ____41/'1 for )\X+$1
" 4 n+1 H n+1 ’
-+
aglag)= 1 n (19)
—(afy—4")+ 5 ——=(af—4")""1— ——4  for A\xT>1.

4 n+1

Equation (19) is independent of the parameter a except in
the definition of the scaling variables (18), but it includes the
parameter n indeed. As an example, we choose n=2, then
(19) is reduced to

n+1

which is the same as Eq. (14) of Ref. [5].

Even though (20) does not explicitly contain the param-
eter «, we still cannot say the apparent horizon is universal,
since (20) is just a special case for n=2.

Expressing (7) in terms of (a*,a”) coordinates, the sin-

- _ 2
ag(ag)=—3a;"+ a5, (20)  gularity curve for n=2 can be obtained:
|
_ n (=1)" n+4 1 1 _
(o™ L Unn+2 +
+—8—[aB(aS)—4/"]" =0 for \xt<1, (21a)
_ n 1 n+4 1 1 _
—<as + n+141/n)(as+_41/n)_%_(a;_41/n)2+Z(_ 2(n+2) + = + _j)(a;_4l/n)'z+2+%[a;—(as )_41/!1]2
ot Unqn+2 +
+———Tay(a;)—4"]""2=0 for Ax">1. (21b)

8
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Equation (21) does not include the parameter «, but it is directly related to the parameter n. Especially for n=1, the
singularity curve is also dependent on the parameter «, and this can be seen from the equations

1+«
2

—(a; +2)(a} —4)—Ha—4)>—H(a]—4)*+ lag(a;)—4)°+YHas(a,)—4)*= for Axt<1, (22a)

—(a; +2)(a) —4) = Ha] —4)*+ K(a] —4)*+

From the above equations, we find the apparent horizon and
singularity curves contain the parameter n. Particularly, for
n=1, the singularity curve is explicitly dependent on the
parameter «. These results show that the apparent horizon
and singularity curves do not take the universal form in the
scaling limit.

Since both end points of the global event horizon are
points on the apparent horizon curve (19), and the end point
of evaporation (F) is also on the singularity curve, we can
determine the coordinates of these two points from (19) and
(21); i.e.,

1(=1)" n
T (gt _4qln _ +_4lmyn+1_ _ " 41/n
ag (aB 4 )+4 n+1 (aB 4 ) n_+_14 >
(23a)
aA:_(a+_4l/n)+l (a+_41/n)n+l__ n 41/n
£ B 4 n+1""8 n+1  °~
(23b)
— a*+_l_4l/n (a+_4l/n)_.L(a+_4l/n)2
E n+1 E 2\“E
1 n+4 1 1
+ - — 4+ — +_qln\yn+2
4( 2(n+2)  n+1 2)(“15 4
N (_1)n+1 N
+ %(‘13 _41/n)2+ (aB —4]/")"+2:O, (230)

8

where we only consider the n<2 case. For n=1, (23c) should
be replaced by (22b). Then we have the following solution
for (23):

ap=f, az=fy’ for n<2, (24a)
a2=f§sl)=f%”(a), a;= gl)=fg)(a) for n=1.
(24b)

It is obvious from (23) and (24) that even though ag , a ;
contain the parameter n, they do not include 8. For n=2,

o
5 [ag(a,)—4]?+Haz(a,)—4)>=0 for \xT>1. (22b)

ay , ap are especially independent of the parameter «, but
for n=1, a g , a ; are related to the parameter « indeed.
Then the black hole mass (11) is to leading order seen to be

MBH=K(a,n,)\)51/" (25)
with
A —1/n[ £(n) (n)
K(anN)=7 a ")~ f§] (26)

where we have used (18a) and (24) to derive (25). Equation
(25) shows that the critical exponent 8 is 1/n, which is pa-
rameter dependent.

So far we have successfully evaluated the apparent hori-
zon and singularity curves in the scaling limit for the generic
parameter z, and find the critical exponent 83 is 1/n, which is
parameter dependent. When n=2 is chosen, our result is
reduced to the case of Ref. [5], i.e., 8=0.5. From the above
calculation, we know that our result is quite sensitive to the
precise definition of &, and the critical exponent 3 depends
on the shape of the incoming flux. Now even though we have
studied the dependence of the critical exponent 8 on the
parameter n of the incoming flux, we have not determined
whether B is still 1/n when the coupling constants of the
theory change. A similar critical phenomenon near the
threshold of weak coupling singularity formation has been
recently discussed in Refs. [12—14]. As pointed out in Ref.
[14], the presence of Inéd in the expression for InMpy may be
particular of the exponential couplings. This suggests that
M =k 8® may be violated for other families of couplings.
All of these indicate that critical phenomena which include
power-law behavior, discrete scaling relations, and a form of
universality might not occur in the RST model due to the
linear nature of the RST equations which also results in no
self-similar oscillations in the RST model.
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