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Class of Einstein-Maxwell dilatons
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Three different classes of static solutions of the Einstein-Maxwell equations nonminimally coupled to a

dilaton field are presented. The solutions are given in general in terms of two arbitrary harmonic functions and

involve among others an arbitrary parameter which determines their applicability as charged black holes,
dilaton black holes, or strings. Most of the known solutions are contained as special cases and can be non-

trivially generalized in different ways.

PACS number(s): 04.50.+h, 04.20.Jb, 04.70.Bw

I. INTRODUCTION

The study of the gravitational interaction coupled to the
Maxwell and dilaton fields has been the subject of recent
investigations. Einstein-Maxwell fields of black hole type are
probably the most interesting objects predicted by classical
general relativity. Dilaton fields appear (coupled to Einstein-
Maxwell fields) naturally in the low-energy limit of string
theory and as a result of a dimensional reduction of the
Kaluza-Klein Lagrangian. Therefore, the study of the dilaton
field coupled to matter is of importance for the understanding
of more general theories. In this work we investigate the
Lagrangian density [I]

M= g —g[ —R+2(b, 4) +e F ],
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where a semicolon denotes the covariant derivative with re-
spect to g~ and a comma represents partial differentiation. A
few exact solutions of Eqs. (2)—(4) are known which reveal
many interesting features of the dilaton field (see Ref. [I]
and the literature cited therein). In this paper, we obtain sev-
eral solutions to Eqs. (2)—(4) by applying the potential space

where g=det(g~„), tM, , v=0, 1,2,3, R is the scalar curva-
ture, F, is the Maxwell field, and 4 is the dilaton. The
constant +~0 determines the special theories contained in

(1). For a= +3, the Lagrangian (1) leads to the Kaluza-
Klein field equations obtained from the dimensional reduc-
tion of the five-dimensional Einstein vacuum equations. For
u= 1, the Lagrangian coincides with the low energy limit of
string theory with vanishing dilaton potential [2]. Finally, in
the extreme limit n=O, Eq. (1) reduces to the Einstein-
Maxwell theory minimally coupled to the scalar field.

The field equations obtained from (1) are

formalism originally developed by Neugebauer and Kramer
for Einstein-Maxwell fields [3].

We assume that the spacetime be characterized by two
Killing vector fields X and Y and introduce coordinates t and

P which are chosen as X=&/Bt and Y= 8/8$. The corre
sponding line element can then be expressed as

ds =f(dt —todg) f [e (—dp +dz )+p d@ ],

where f, co, and k are functions of p and z only.
In Sec. II we introduce the abstract potential space that

leads to a set of equations equivalent to the field Eqs. (2)—(4)
for the metric (5). It turns out that for special values of the
parameter a, the main field equations may be reduced to a
chiral equation which can be solved by using the method of
harmonic maps. In Sec. III we present two classes of exact
solutions, the first of which describes a general static gravi-
tational field coupled to a dilaton field, both of them being
determined by an arbitrary harmonic function. The second
class of solutions contains two harmonic functions which
determine the gravitational, dilaton, and electric fields. Sev-
eral particular solutions of these classes are derived and
briefly discussed.

II. THE POTENTIAL SPACE

Because of the nonminimal coupling of the electromag-
netic and dilaton fields in the Lagrangian (1), the explicit
form of the field equations for the line element (5) becomes
very cumbersome. It turns out that the metric functions f and
co must satisfy two partial, second order differential equa-
tions which depend also on the electromagnetic and dilaton
fields. Moreover, the function k satisfies two partial, first
order differential equations which, however, can be inte-
grated by quadratures once f and co are known. In general, it
is very hard to obtain directly exact solutions to this system.
Therefore, we will apply here a simplifying approach which
is based upon the introduction of an abstract space with co-
ordinates defined by the metric functions entering (5). To
obtain the "metric" that determines the abstract space, we
introduce the line element (5) into the Lagrangian (1) and
neglect the total divergence terms which contain second or-
der derivatives.
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The resulting Lagrangian depends on the metric functions as
well as their first order derivatives, and may be handled like
a Lagrangian for a mechanical system with coordinates
which coincide with the metric functions of (5). We then

apply a Legendre transformation involving all the cyclic co-
ordinates of the Lagrangian. This procedure is similar to that
used in classical mechanics to obtain the Routh function, and
has recently been used in other cases [4,5]. The resulting
Lagrangian is then the metric determining the abstract space,
and may be written as

the original Lagrangian (1) and, as pointed out above, a
Legendre transformation has been used which eliminates all
the terms containing the respective "velocity" Dk from the
Lagrangian (6). As mentioned above, from the original field
equations we obtain two differential equations for k that may
be written in terms of the coordinates of the abstract space in
the form

kp=4 2 fp f +ep e+ z+W (Xp X)

M= dS =
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where D =(8/Otp, 8/Bz) is a vector operator with its "dual"
D=(8/Bz, —8/Bp} such that DDG(p, z)=0 for any arbi-
trary function G(p, z). The "coordinates" of (6) are defined

by the equations

&z= 2 fpfz+epez+ fi/zppz p( eXp—z+e, Xp)
p
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where the electromagnetic vector potential A „=
(A„O,O,A&) has two nonvanishing components only, in ac-
cordance to the symmetry properties of the gravitational
field. According to their definition, the coordinates f, e, P,
X, and K entering Eq. (6) may also be interpreted as the
gravitational, rotational, electric, magnetic, and scalar poten-
tials, respectively. The variation of (6) with respect to the
potentials leads to the Klein-Gordon equation

1
D K+ —DpDK —DK ——K —Dp ——DX ~ =0, (8)

p 4f(
the Maxwell equations
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and the Einstein equations

I
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Notice that the latter system of differential equations and
the Lagrangian (6) do not contain the function k explicitly.
This is due to the fact that k is a cyclic coordinate of

Since Eqs. (8)—(12) follow from the Euler-Lagrange
equation applied to the Lagrangian (6) and the latter can be
considered as a line element in the potential space, then we
conclude that any solution to the field equations (6)—(8) may
be interpreted as a geodesic in a five-dimensional abstract
space with "coordinates" f, e, p, X, and K. This interpre-
tation is of special interest since one can use the symmetries
of the geodesics generated by (five-dimensional) Killing vec-
tors, affine collineations, etc. , in order to relate different so-
lutions in the (four-dimensional) spacetime. However, this
task is beyond the scope of this work and will be treated in
further investigations.

III. EXACT SOLUTIONS

It is still very difficult to find the exact solutions to the
system of coupled differential equations (8)—(12). In a recent
work [6], Matos investigated a special case (a= Q3) of the
Lagrangian (1) in five dimensions and found out that the
solution of the main field equations can be reduced to an
equivalent linear problem, based on the Lax pair representa-
tion, which leads to a chiral equation for certain combina-
tions of the spacetime metric functions or, equivalently, of
the potentials in the abstract space. The respective chiral
equation turns out to be invariant with respect to SL(3, R)
transformations and hence solutions of the field equations
can be classified with respect to the subgroups of
SL(3, R). It can be shown that the existence of a chiral equa-
tion is related to the geometric properties of the potential
space. In fact, the reduction to the problem to a chiral equa-
tion is allowed only if the potential space corresponds to a
Riemannian symmetric space (vanishing of the covariant de-
rivative of the Riemann curvature tensor).

Unfortunately, it is not possible to adapt the results of [6]
in the present case because the Riemannian space defined by
Eq. (6) is not symmetric and, consequently, no chiral equa-
tion exists that could be used to simplify the field equations
(8)—(12). It turns out that this property holds only in the

special cases a= 0, Q3. However, we were able to generalize
some of the special solutions presented in [6] to include the
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f=e~", 1~ =1~ eP, e=f=y=0, (15)

case of arbitrary o.. Without details of calculations we
present the resulting solutions and briefly comment on their
properties.

First, we present the general static axisymmetric solution
with an arbitrary harmonic dilaton field. The line element is
that of Eq. (5) and the potentials are given as

Schwarzschild-like dilaton, a solution that could be used to
describe the initial state of a collapsing configuration.

The generic form of the second class of solutions may be
written as

f=fo(, ~+, g),
~'=~', (a,X,+azX2)pe'o'+r'o q1 &zr,

where Ko is an arbitrary constant, P and y are constants
related by

2 Cl' 2

a,X, + a4X2

a,X,+azX2 ' (19)

(16)

with n being the arbitrary parameter entering the Lagrangian
(1). Furthermore, )1. =k(p, z) is a harmonic function; i.e., it
satisfies the two-dimensional Laplace equation

where a1 . . . fo q1, qz, 1».o, Xo, and To are constants. Fur-
thermore, l». = l1.(p, z) and r= 7(p, z) are harmonic functions;
X, and Xz represent functions that can be given in terms of
r. In fact, Eq. (19) contains two further subclasses that fol-
low from the different values of the functions X1 and Xz.
The first one corresponds to the choice

1
+ —X +k „=0. (17) qrr

'i gz= eqz'. (20)

According to Eqs. (13) and (14), the metric function I»: can be
calculated for any given X by means of

In this case, the constants entering the solution (19) are re-
lated by

4arazfo+ Ko(1+ u )(a1a4 —aza3) 0.2 (21)

k p= —p(k —
l». ,), k, = ypl1. pl»,

y
(18)

Equation (15) shows that the harmonic function X. deter-
mines the gravitational as well as the dilaton field. In the
limiting case b=0 (rI1=0), the solution reduces to the well-
known Weyl static vacuum solution [7]. For an asymptoti-
cally flat spacetime, the function P may be chosen as

P„(cos6r)
~X qn n 1 +o~ (2 2)1/2

n=o (pz+zz) z

where q„are arbitrary constants and P„(cosO) are the
Legendre polynomials of order n. A special case of the gen-
eral solution is that of a Schwarzschild-like black hole dila-
ton which corresponds to the choice k=)».&=in(1 —2m/r),
where m=const and r is a radial coordinate determined by
p= gr 2mrsin6r and z=(r ——m)cos8. This solution was
first obtained by Janis, Newman, and Winicour [8]. They
analyzed the behavior of the Schwarzschild sphere r = 2m,
showed that it becomes a singular point, and conjectured that
the truncated Schwarzschild solution, where the space sud-
denly collapses from a radius slightly greater than r = 2m to
zero, is a more likely final state of a generic collapse. This
conjecture was further studied by Christodoulou [9], but as
no more independent solutions to the Einstein-Klein-Gordon
field equations are known, the question remains open. Re-
cently, several time dependent solutions to these field equa-
tions has been found; see, for example, Ref. [10].This fact,
together with the general solution for an arbitrary harmonic
dilation presented in this work, will contribute to settle down
the question of the final state of a generic collapse as well as
that about the cosmic censorship conjecture. For instance,
the choice k = X&+ X~, where k~ is an arbitrary harmonic
function, may be used to add a multipole structure to the

The electric potential P is completely determined by the har-
monic function ~ which always appears in the exponential
function. To obtain the second subclass of solutions (19), we
must restrict the values of the constants q &

and q2, and
specify X, , and X, z as

q, = —
qz and X,=r, 12=1. (22)

In contrast with subclass (21), the electric potential P is now
given as the ratio of two linear combinations of 7.. For the
choice (22), the constants satisfy the relationship

4a1fo —Ko(I+ n )(a1a4 —aza3) 0. (23)

(24)

where rg~, ~ is the Levi-Civita pseudotensor. This duality
rotation, which also involves the dilaton field, may be used
to generate the magnetic counterpart of the generic class
(19).Accordingly, for any particular electrically charged so-

The generic solution (19) contains two arbitrary harmonic
functions and a large number of constants. This allows us to
generate particular solutions with totally different properties.
The electric potential P can be made to correspond to any
desired electric multipole structure (monopole, dipole, quad-
rupole, etc.) by appropriately choosing the value of the har-
monic function 7.. Once ~ has been fixed, it still remains the
freedom of the function k which can be used to fix the gravi-
tational potential f such that it describes an arbitrary mass
multipole configuration. Consequently, the harmonic func-
tions X. and v allow us to "construct" any arbitrary combi-
nation of mass and electric multipoles. So far only electri-
cally charged solutions may be derived from the generic
solution (19). However, it is easy to see that the field equa-
tions (2)—(4) are invariant under the transformation
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lution contained in (19), the magnetically charged solution
may be obtained by changing the sign of the dilaton.

Now we derive some special solutions contained in (19).
Consider the subclass (22) with the following special values
of the constants

where r is a radial coordinate related to cylindrical
coordinates by means of p= Pr +(r —r+)rsin8 and
z=[r+(r —r+)/2]cos8. Inserting these values into Eqs.
(19) and (20), we obtain

ro )~o a3 0 ai a2 fo= tx= 1 = tco= 1 (2&)

According to Eqs. (22), the resulting solution takes the form

I' r —r 'I (
f= 1+ ~1+

r
2 1+

~ J

+2f=, tc =1+r,1+r ' ' 1+7'' (26)
r+r

fp= &p= 1 qi=)~o=o, 7o=q22=

r+ 2Q
ai = 1 —a2=, a4= —a3=, (27)

r+ r r+ —r

where r+, r, and g are constants. With this choice of the
constants the harmonic function X does not enter the result-
ing solution. We fix the remaining function v. as

1
~= —ln 1+

q2

r —r+
(28)

which is equivalent to the static dilatonic version of the
Kastor-Trashen [11,2] solution for the value
v=22M;/~r r;t Here—M; and r; are positive constants, the
sum is over all positive integer values of i, and r represents
a radial coordinate. This solution represents a collection of
extremal electrically charged black holes which are static
because the electric repulsion is balanced by both the gravi-
tational and dilatonic attraction. Originally, this solution was
derived in the low energy limit of string theory (u= 1), but
letting in (22) n arbitrary we easily obtain the generalization
to Kaluza-Klein and Einstein-Maxwell theories:
f=(1+7) ~, tc =(1+7)p, /=2(1+u ) (1+v)
where y and P are given as in Eq. (16). This new exact
solution could be important in the understanding of the event
horizon, since constant u obviously adds new structure to the
horizon of the static case of the Kastor-Traschen solution.

Another interesting special solution may be obtained by
considering the subclass (20) with the following values of
the constants:

This solution was originally obtained by Gibbons and Maeda
[12]; the representation given here coincides with that of
Horne and Horowitz [1][after performing the coordinate dis-
placement r~r+r in Eqs. (6)—(10) of Ref. [1]].

Another special solution contained in (19) was recently
given by Matos [13]for an arbitrary magnetic field coupled
to the dilaton. It is direct to see that it is contained in (19) by
using the dual transformation given in Eq. (24), and setting
rp=O and u= v3.

All the special solutions given here contain other particu-
lar solutions in each of the theories that can be obtained by
specifying the value of a. We believe that all known static
solutions of the field equations following from the Lagrang-
ian (1) are contained in Eqs. (19), (20), and (22) as special
cases. It would be interesting to find stationary solutions with
both electric and magnetic fields. This could be done by
using the symmetry properties of the metric (6) of the poten-
tial as mentioned above. In fact, we obtained all the Killing
vectors of metric (6) but, unfortunately, they cannot be used
to generate solutions since they correspond to "gauge trans-
formations" of the potential; i.e., the "stationary electromag-
netic" solutions generated by applying infinitesimal Killing
transformations on the solution (19) contain only trivial an-

gular momentum and magnetic field terms that can be elimi-
nated by appropriate coordinate transformations. Conse-
quently, we have to derive more general symmetry properties
of the potential space (affine collineations, curvature col-
lineations, etc.). This task will be treated in further investi-
gations.
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