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Derivative expansion of the effective action and vacuum instability for QED in 2+1 dimensions
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We investigate the effective action of (2+1)-dimensional charged spin-1/2 fermions and spin-0 bosons in the

presence of a U(1) gauge field. We evaluate terms in an expansion up to second order in derivatives of the field

strength, but exactly in the mass parameter and in the magnitude of the nonvanishing constant field strength.
We find that in a strong uniform magnetic field background, space-derivative terms lower the energy, and there

arises an instability toward inhomogeneous magnetic fields.
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fective action for a single massive 2-component spinor ferm-
ion differs from M through the inclusion of the parity-
violating Chem-Simons term [4]. To obtain a sensible
derivative expansion, we assume either that the derivatives
(i.e., the momenta) are small compared to the mass m, or
that they are small compared to the background field strength
magnitude, such as the magnitude of a constant magnetic
field, or both. Under these circumstances, we have the ex-
pansion (valid for both actions in (2+1)-dimensional space-
time)

The effective action provides an extremely useful tool for
the investigation of instabilities such as spontaneous symme-
try breakdown in quantum field theory. These phenomena are
frequently driven by low momentum dynamics, so that a
small momentum approximation to the effective action may
suffice. Electrodynamics in (2+1)-dimensional space-time
(QED&) with massless or massive charged spin-1/2 fermions
or spin-0 bosons, especially in the presence of a strong uni-
form magnetic field, is a field theory model with potentially
many applications in condensed. matter and particle physics
[1]. Its dynamics appears intricate and incompletely under-
stood, and may well reveal exciting new physical phenom-
ena.

In the present Rapid Communication, we evaluate the ef-
fective action for spin-1/2 fermions or spin-0 bosons of
charge e in the presence of a U(1) gauge field in a derivative
expansion [2]. We obtain contributions with no derivatives
and two derivatives (total) on the field strength, but our result
is exact in the mass of the charged particle, and is also exact
in the magnitude of the field strength. This calculation —in
fact to all orders in derivatives —results entirely from one-
loop effects, and reduces to the evaluation of functional de-
terminants of spin-1/2 and spin-0 gauge covariant derivatives

+2 =po+ e [B F B"F ]pi+ e [B„F„B"F"]p2

+e2[B F„B"Fl"]p&+e [F"B„FF"Bg ]p4

+ e4[Ft"B F F"Bg ]ps+e [B~F F"Bg~]p6

(2)

f
i dx&—= ~in Det fD D"+m +eX,~"F~„) (1).

Here, M- are the effective Lagrangians for fermions ( —)
and bosons (+), and D„=B~+ieA~. For
X~"=(i/4) [y~, y'] produces the effective action for a
4-component spinor consisting of 2-component spinors of
masses m and —m, respectively, whereas for M+, X~+"=0
produces the effective action for spin-0 complex scalars, for
which the spin coupling term is, of course, absent. The ef-
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up to terms involving at least three derivatives. We find it
more convenient to use the "dual" field strength F~=
2et'" F„„, and F2 =F~F~= 2F g ~", with B= Fo, —
E'= —e "Fj the usual magnetic and electric fields. We have
made use of the fact that F~ satisfies the Bianchi identities
B F~=i(BE BE) B=O to r—es—trict possible contributions
in (2). The coefficients p; are functions of
e F =e (B E), and of—the mass parameter m. They are
Lorentz and gauge invariant and even under F~~ —F~. No-
tice that in (2) we have not retained terms that are odd under
FI"~—F~, even though they would be allowed by Lorentz
and gauge invariance (for example e~" B~F B~g„and
ep" B F2F B Fg „).Such terms have vanishing contribu-
tion in view of charge conjugation symmetry of (1), a prop-
erty usually referred to as Furry's theorem.

The above expansion may easily be rewritten in terms of
E and B, which may be particularly useful when investigat-
ing dynamics around large constant magnetic fields. We can,
in fact, exploit the global Lorentz invariance of the effective
action to express the effective Lagrangian (2) in a Lorentz
frame in which the constant part of E vanishes [5]
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=q0+e [BBBB]q&+e [EE]q2+ e [BEBE]q3

+e [BEBE]q4+ —e [BEBE+BEBE]qs

L——e [BBE BB—E] q6, (3)

where the q; are functions of eB with the renormalization
condition q0(0)=0. The functions p; and q; are algebra-
ically related as follows:

We need to retain second order derivatives in this expansion
to linear order, since by integration by part in xp, they yield
terms bilinear in single derivatives of F.

As is well known, the constant F~, problem is quadratic
and may be solved completely [6,10].The derivative expan-
sion we are interested in is thus a perturbation around con-
stant F„,. We denote by L" for n ~0, the contribution to the
interaction Lagrangian L resulting from the nth expansion
term in (7), containing n derivatives on F. It is convenient to
rearrange the expectation value of (5) as

po=qo

Pt= —(qq+q3+q4+qs)/(16e F ),

p2 (q3+ q4+ qs) /4

p3 —(q3 —q4+ qs) j

p4= (qt+ 4q2+ q3+ q4 qs 2q—6)/(4e F ),
ps= (4q2+q—3+q4+qs)j(4e F )

p6= (q3 q4+ qs+-q6) j(4e'F')

(4)

exp d7L

&T fT
exp d7L exp d7. L —L

L free L free+I 0

(8)

t T
exp d r(L L)—

L free+I 0

To the order we are interested in, the exponential in the sec-
ond factor may be expanded, and we get

In the remainder of the Rapid Communication, we shall
determine the functions p; and q; explicitly, using the
Schwinger proper time method [6], reformulated in terms of
quantum mechanical path integrals over closed loops
y~(r +T)=y"(r) and for fermions also with additional
one-dimensional Grassmann variables [7] P"( r+ T)

(r) rThis .method is particularly convenient to use in
the background of constant E and B fields, where ordinary
Feynman diagram techniques are cumbersome [4,8]. The ef-
fective Lagrangian is given in dimensional regularization
around d = 3 by the following expectation value [9]

I T
= 1+ dr(L )Lfree+LO

Jo

~T fT
+— d7 dr'(L (r)L (r'))Lfree+IO.

2qo Jo

The first factor in (8) is just the constant electromagnetic
field problem, and is easily evaluated

exp d ~L—

dT 2 T I(2~~) —dl2e —I Hvl2(ef0drL —
) f '(5)

Jp T '+
(b T/2) coth(b T/2) for ( —) fermions

(bT/2)/sinh(bT/2) for (+) bosons.
(10)

with C = —1 for a 2-component spinor, C = —2 for a
4-component spinor and C+ =1 for a complex scalar. Here
the free and interacting Lagrangians are given by

1
L+" y~" L+ =———ieA„(x0+y)y~

free ' I IL '"=L+"+ pp~ L =L+—+ Fp"F„„(x0+y) —p".

(6)

The vacuum expectation value in (5) is taken with respect
to the free Lagrangian, xp is the average position of the
closed loop at which M- is evaluated and f0d7y(r) = 0. To
evaluate M— in a derivative expansion, we expand L — in
derivatives of A and F. In the Fock-Schwinger gauge, we
have

We shall henceforth use the abbreviation b=e(F ) ~ . To
obtain the correction from derivative terms of F in (9), we
need y~ and ter" propagators, in the presence of constantF, fields. They are

(y+y") = ( r/~" F+F")G0+F+F—'G&+i e+""F„G2,
(11)

(rir~P") = ( r/~" FI'F")S0+F~F'—S~+i e"' F S2,

where F"=F"(F) ~ . The scalar functions G and S are
given as functions of 7.= 7z —7.2

1 cosh(b
l rl —b T/2) 1

2b sinh(bT/2) b T '

1
2

1 T
G (r) = — lrl'+-lrl-—

2T 2 12 '

A„(xo+y)=4'F„(xo)+3y y'BA, (xo)

+
~sy

"y y'B.BK, (xo)+ (7)

1 cosh(b
l rl —b T/2)

2 cosh(b T/2)
(12)
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1
Si(7)= —e(—r).

2

Here e(r) = +(—) for r)0((0), and the functions Gq and

S2 will not be needed explicitly, except for the fact that
G2= bGD, S2 = bS0 .

From the above formalism, we obtain the following re-
sults for the functions q; in (3):

( 1 ) 3/2

g ds e m e 's f;(s).(4meB~ g p
(13)

In the fermion case (2-component spinor), they are expressed
in terms of the function 8 (s)—=scoths:

31
fo = —(eB)' —(~- —1),

5

5

3, 1
f = ——8'+—

45 2'

1 „1 1, 1
f = ——(s —3)E" ——(s +3)—8' +—8

6 3 5 3

1 „1, 1 1
f4= 8" + —8'———8 ——,

8 25 6 4'

1
2 „1 2 1, 1 1

fs= — (3 —2s )8" ——(s —3) —8' +—812 6 5 3 2'

1
~

1
2

1
~

1
f = ——8" ——(s'+3) —8'+ —, (14a)

31
fo = (eB)' —(~+ —1),

5

3, 1
f,=—8,'+45

1
2 „1 2 1, 1

f =—(s —3)E" ——(s —6) —8' +—8

1 „1 1, 1
f5= (3 —2s )8'++ —(s —3) —8+—

5

1„12 1, 1
f,=—8" +—(s'+3) —8' +—8

4 + 6 5 + 4 (14b)

whereas in the boson case, they are written in terms of
8+ —=s/sinhs:

The integrals in (13) can all be expressed explicitly in terms
of generalized Riemann ( functions [11].

It is instructive to consider two important physical limits.
In the massless limit, m =0, we have

(eB) t

/BLAB

)

+2(2~)' i eB )
(15)

with n = g(3/2) =2.6, P = —(15/167r) ((5/2) = —0.4 and

n+=(1 —1/Q2) ((3/2)=0.8, P~= —(Q2 —1) 7r/4 $(1/2)
—[1—1/(2 Q2) ](15/16') g(5/2) =0.2. Notice that
diverges in the B~O limit for massless particles. Rather, the
small B limit should be taken relative to the scale set by the
fermion or boson mass. Thus, one should expand the effec-
tive Lagrangian in terms of the ratio of the cyclotron energy
scale eB/m and the rest mass energy scale m:

m (eB~ BBBB m (eB~~ (2) + 3 I 2 +.
247r (m ~

eB 60m t m

(16a)

m ~ eB) BBBB m ~ eB~~ (2)
2 + 2 +. .

~

487r ~m J eB 240m ~m
(16b)

The most immediate physical consequence to be drawn
from this work concerns the stability of a state in which the
background electric and magnetic fields are nonzero. In four-
dimensional QED, a uniform electric background field pro-
duces an instability which leads to the spontaneous creation
of electron-positron pairs. In the present case of three-
dimensional QED, the same instability exists for electric
fields. In addition, however, there now also arises an insta-
bility related purely to magnetic fields.

For both bosons and fermions, the presence of a uniform
magnetic field increases the energy of the state for all values
of the mass, as can be seen directly from (13) and (14)
[fp(s) is a negative function for fermions and for bosons].
On the other hand, the presence of inhomogeneities in the
magnetic field may lower the energy. This is determined by
the functions f,(s) appearing in (14). For large mass
[m))(eB)' ], the leading derivative terms in the effective
action (16) have a positive coefficient and lower the energy
as soon as inhomogeneities are introduced. For bosons, this
phenomenon disappears when the mass falls below a certain
critical value m=0.9(eB) ~ . For fermions, however, the
sign of the derivative term does not change with mass and
inhomogeneities in the magnetic field always lower the en-
ergy. Our conclusions are of course limited to the approxi-
mation in which the derivatives on the magnetic field are
much smaller than either (eB)" or m. Our result should be
compared with the case of 3+1 dimensional QED, where no
such instability has been found [2].

Physically, the magnetic field itself is dynamical and we
briefly discuss how the above conclusions are modified. Dy-
namics in QED3 is usually introduced through the Maxwell
Lagrangian (E B)/2 or thro—ugh the Abelian Chem
Simons term, or both. If only the Maxwell term is added, the
conclusions of the preceding paragraph are not modified. In-
deed, we may then focus on perturbations around constant
magnetic field that are time-independent, so that no Auctua-
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tions in the electric field arise to this order. Again, these
perturbations will be inhomogeneous, they will lower the
energy and create an instability. When a Chem-Simons term
is present, the electric field couples directly to the magnetic
field and all terms in the effective action (3) should be re-
tained in the analysis. It is possible that under these circum-
stances, the constant magnetic background state is stabilized,
but we have not completed the investigation of this effect.

The above conclusions may be relevant to some recent
proposal concerning the stability of the B= 0 state in
QED3 and the possible associated breaking of Lorentz in-
variance. In [12], a version of QED~ is proposed with chiral
fermions and a bare Chem-Simons term, arranged precisely
in such a way as to cancel the induced Chem-Simons term. It
is argued in [12] that dynamical fluctuations in the electro-
magnetic fields are responsible for an instability of the B=0
state and that a state with nonzero uniform magnetic field is
the correct ground state.

We reconsider these assertions in light of the above re-
sults. First of all, our use of the effective action has the
advantage that Lorentz invariance is preserved at all stages
of the calculation. Then, if indeed a ground state were to
arise with nonzero and uniform vacuum expectation value
for the magnetic field, we can use the above analysis to study
the dynamics of small fluctuations around the proposed state.
As shown above, time-independent fluctuations produce an
instability towards inhomogeneities in the magnetic field. It
appears that the uniform magnetic field state is not a stable
one, but restructures itself in an inhomogeneous pattern with
lower energy. Thus, the conclusions of [12], based upon the

assumption that the ground state is supported by a uniform
magnetic field appear to deserve further investigation. For
example, it is important to understand the effect of a chemi-
cal potential [13]on our calculation of the effective potential.

The present analysis itself may, however, shed light on the
nature of the true ground state of QED3. For example, our
analysis could be used to extend the results of [14],concern-
ing dynamical flavor symmetry breaking in QED3 by a mag-
netic field, to the case where inhomogeneities are present.
Furthermore, from some points of view, this theory is similar
to four-dimensional QCD [15]. It was shown in [16] that
(compact) QED3 confines electric charges with a linear po-
tential, just as in QCD. This confinement comes about be-
cause instantons disorder magnetic and electric fields. From
this analogy, one may reasonably conjecture that the true
ground state of three-dimensional QED is more like the QCD
ground state with disordered magnetic fields than like an
ordered uniform magnetic field. Our calculations indeed
show an instability of the uniform magnetic field state to-
wards a more disordered state with inhomogeneous magnetic
fields.
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