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The Wess-Zumino consistency condition for four-dimensional Einstein gravity'is investigated in the space of
local forms involving the fields, the ghosts, the antifields, and their derivatives. Its general solution is con-
structed for all values of the form degree and of the ghost number. It is shown in particular that the antifields

(=sources for the BRST variations) can occur only through cohomologically trivial terms.
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The Wess-Zumino (WZ) consistency condition
I I] is a

central equation in field theories with a local gauge symme-
try. At ghost number zero, this equation characterizes the
consistent deformations of the original classical action; i.e.,
its solutions exhaust all possible local perturbation terms that
can be added to the action while maintaining the number (but
not necessarily the form nor the algebra) of the original
gauge invariances I2]. An example is given by the Yang-
Mills cubic vertex, which is contained in a ghost number
zero solution of the WZ consistency equation for a system of
free Abelian gauge fields. At ghost number one, for which it
was initially discussed, the WZ consistency condition con-
strains severely the form of the candidate anomalies. Finally,
as it has been shown in I 3], this condition yields at negative
ghost number the characteristic cohomology of the field
equations I4], which includes the nontrivial conserved cur-
rents.

We present in this Rapid Communication the general so-
lution of the WZ consistency condition for pure four-
dimensional Einstein gravity, for arbitrary values of the form
degree and of the ghost number. Couplings to matter and
gravity in other spacetime dimensions can be handled along

the same lines by our method I5] but are not treated here for
the sake of briefness. We shall just comment on these gener-
alizations at the end of this article, as well as on the modifi-
cations that arise if one adds to the Hilbert-Einstein Lagrang-
ian higher powers of the curvature. For simplicity, we
assume that the spacetime manifold ~ has the topology of
R and work in global coordinates x~ (p, = 0,1,2,3) through-
out. Also, we consider only "perturbative gravity,

" in which
one restricts the tetrads to lie in a cohomologically trivial
open neighborhood of some regular background configura-
tion. A full treatment will be given in I5]. Our approach does
not use power counting and is purely cohomological.

In terms of the Becchi-Rouet-Stora-Tyutin (BRST) opera-
tor s given below, the WZ consistency condition reads ex-
plicitly

sa+db=o,

where a and b are local differential forms and where d is the
spacetime exterior derivative. Trivial solutions of (1) are
given by a = sm+ dn and satisfy indeed (1) due to
s =sd+ ds = d = 0. The investigation of (1) for gravity has
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already received considerable attention in the past, particu-
larly at ghost number one (anomalies) [6] but also at ghost
number zero (deformations of the Hilbert-Einstein action)
[7], as well as for all ghost numbers [8].Our analysis goes
beyond previous works on the subject in that we do not
impose any a priori form to the dependence on the antifields.
This means, for instance, that we allow in principle for de-
formations of the Hilbert-Einstein action such that the origi-
nal off-shell closed gauge algebra is replaced by a new, pos-
sibly off-shell open, gauge algebra. It turns out, however-
and this is one of our main results —that all solutions of (1)
involve the antifields only through trivial terms. Hence, our
results justify the simplifying assumptions made in previous
studies.

The relevant algebra for the discussion of (1) is the alge-
bra of local differential forms. This algebra is the tensor al-
gebra F=Q(~IIM, where Q(~) is the algebra of exte-
rior forms on the manifold ~ and where M is the algebra of
local functions. A local function is by definition a function of
the tetrad e„' (a =local index, p, =world index), of the dif-
feomorphism ghosts (~, of the Lorentz [or SO(4) in the Eu-
clidean case] ghosts C'. "=—C ', of the corresponding anti-
fields e,*~, g*, and C,*b, and of their derivatives up to some
finite order. Thus, here, local functions do not depend on
x~; the explicit x" dependence is included in the factor
Q(~ of K As standard in field theory, we shall assume
that the local functions in M depend polynomially on all
their arguments, except on the undifferentiated tetrad, which
may appear nonpolynomially (e.g. , the inverse tetrad E," is
allowed).

In the algebra of local differential forms, the BRST dif-
ferential s acting on e~', gl', C'", e,*", g*, and C,*b is
obtained by taking the antibrackets with the solution S of the
master equation [9,10]. In the case of gravity, whose gauge
symmetries form a closed algebra, the construction of S pre-
sents no difficulty. One finds that S is given by the sum of
the Einstein action and of integrated terms of the form "an-
tifields" times "BRSTvariation of the corresponding fields. "
V/e leave the details to the reader —the explicit form of s is
given below in terms of a different set of variables.

In order to analyze (1), it turns out indeed to be more
convenient to express the local functions in terms of new
variables, which are

e* = e e*~/ea p a (7)

Cl = Cl /e, (,*=E~((„*—co„C,*)/e (8)

where 6 is the Koszul-Tate differential which has antighost
number —1 and y has antighost number 0. This decomposi-
tion is by now quite standard [11,12]. The differential 8
plays a crucial role below and acts on P,C, W", M„* ac-
cording to

BW"= BC = 8$'=0, BC,*b= —2e(*„b),

a e*b= Rb+ ,'d-R, ag.*=-D,e*'—
BD, . D, 4~ =D„.D, 8'4~, (10)

where R„b=R„,b' is the Ricci tensor and R is the scalar
A A

curvature. The differential y acts on (',C, W", W„* accord-
ing to

yW"=(PD, +C M )W", yW„*=(PD,+C M )W„*,

with e = det e„', (iv) R,b
=E,~Eb "R~, are the tetrad com-

ponents of the curvature tensor R~„=B„cd,— . , and (v)
D, =E„~(8~ ld„M—l) Th. e symbol Ml =M,—b acting on a
variable belonging to a representation of the Lorentz group
stands for its Lorentz variation; it satisfies [Ml,Ml]
=fll M&, where flJ are the structure constants of the Lor-
entz algebra. One easily verifies that each local function of
the fields, the antifields, and their derivatives can indeed be
expressed as a local function of the variables (2)—(6) and
vice versa.

The BRST transformations of the UI and VI are extremely
simple since they just read sUI= VI, sVI=O. Accordingly,
the UI and VI belong to the contractible part of the algebra
and do not contribute to the BRST cohomology. The BRST
transformations of P, C, W", and W,* are slightly more
complicated. To display them, we decompose the BRST op-
erator as

yg'=C Mlp, yC= —'CC f +R
{W")={D,, D, R,b'. m=0, 1,...), (2)

{ga Cl) ga gp. a CI Cl+ gp, l

{W„*)={D. .D. C„*:m=0, 1,...), (4)

{Ui)—{8(~,, ~ e~)', 8(~ . . . ~ o)~) . m=0, 1, . . .), (5)

{I )={U). (6)

Here (i) the index I collectively denotes the antisymmetric
pair of Lorentz indices ah, k =—k' = —k ' (we use the sum-
mation convention k kl=k' k,b/2), (ii) co is the standard
torsion-free spin connection, (iii) the antifield variables
@„*=e,*,Cl*,g,

* are defined by

where we have set C Mlp = Cb'( and R
=(1/2)p( R,b . The variables W" and W„*, whose BRST
variations do not involve derivatives of the ghosts, have been
called "tensor fields" in [13].

Our first result is the following.
Theorem 1. The general solution of the Wess-Zumino

consistency condition involves the antifields only through
trivial contributions.

In order to prove this theorem, we shall need two crucial
properties of the BRST differential. The first is the fact that
the Koszul-Tate differential provides a resolution of the al-
gebra of on-shell functions. It is actually a generic feature of
the antifield formalism [11,12]. The second is peculiar to
theories with diffeomorphism invariance and relates in a
simple way the cohomology H(s/d) of s modulo d to the
cohomology H(s) of s itself (BRST invariance condition
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sa =0) [8,13].We shall describe these two features in turn.
We shall then provide the demonstration of the theorem.

Antifields were introduced by Zinn-Justin in order to con-
trol how the nonlinear BRST symmetry survives renormal-
ization. They were known in that context as sources for the
BRST variations. It turns out that a different interpretation of
the antifields is of greater interest for cohomological inves-
tigations. It is that the antifields provide a resolution of the
algebra of functions on the stationary surface [11,12], even if
one takes locality into account [14].This property means (i)
that an antifield independent local function can be written as
a 8' variation if and only if it vanishes on-shell, and (ii) that
the homology of 8' is trivial at strictly positive antighost
number, HI, (8)=0 for k) 0. While the first property is well
known and somewhat trivial, the second property is more
subtle and holds because the antifields associated with the
ghosts properly take care of the relations among the equa-
tions of motion (Noether identities).

For pure gravity, the acyclicity of 6' extends to the coho-
mology of 8 modulo d, which has been shown in [3] to be
isomorphic to the characteristic cohomology associated with
the equations of motion. Indeed, thanks to general theorems
valid for generic gauge systems [4,3], HI,(8/d) vanishes for
k)2. It was also shown in [3] that H2(8/d) vanishes for
gravity because there is no global reducibility identity among
the gauge transformations. Finally, Hi(b/d), which is iso-
morphic to the space of nontrivial conserved currents, van-
ishes in pure gravity because of a remarkable result due to
Anderson and Torre [15].Thus, one has also Hk(8/d) = 0 for
k) 0 in addition to HI, (8') = 0 for k) 0. We shall need below
a Lorentz invariant refinement of this result, namely, that if
BM+ B~j"= 0 where M= eL(WW*) is a Lorentz invariant
density of antighost number k)0, then M= 8m+8 k~,
where m has the same covariance properties. This refinement
is fully proved in the more complete version [5]of this Rapid
Communication.

The second property needed for the proof of the theorem
relates solutions of sa+ db =0 to solutions n c M of
sn=O. Consider a nontrivial cohomological class of s in

i.e., a zero-form u 4 sP solving su= 0 (with
u- u+ sP). Without loss of generality, one may assume that
u depends only on the tensor fields Wand W*, and on the
undifferentiated ghosts $,C. One can construct from u solu-
tions of sa+db =0 in two different ways.

(a) Because sx~=sdx~=0, any form co e Q(~) times
u satisfies s(cou) =0, and thus, is a solution of (1) with
b = 0. This solution is trivial if co =d rg.

(b) Let s=s+d, @=P+e'dx~ and C =Ct+ co dx~. It
is easy to verify that the action of s on W W, g, and C is
exactly the same as the action of s on W W*, (, and C.
Thus, s cx = 0, where u is the multiform obtained by replacing
g for g and C for C in u. Each component of u of definite
form degree k (=0,1,2,3,4) is a solution of (1) which is not
trivial because n itself is nontrivial.

As shown in [8,13], (a) and (b) yield the most general
solution of (1). That is, any solution of (1) is a linear com-
bination of solutions of type (a) and of solutions of type (b).
Therefore, in order to solve (1), it is enough to compute the
cohomology of s in M. Notice that all nontrivial four-forms
solving (1) are of type (b), since any volume form co

e A(~) is exact. Accordingly, the descent equations [16]in
gravity go all the way from form degree 4 to form degree 0
[i7,i8].

In order to compute H(s), we decompose s according to
its degree in the Lorentz ghosts C, s = s &+so+ s&, with

siC = —'C C f s,Y=CMtY, (12)

(13)

s &C =8, s &7=0. (14)

Here, we have set WP = &C =0, WW" = PD,W',
WW,*=PD,W„*, and Y—= (WW*, g). The differential si
increases the number of Lorentz ghosts by one unit and is
just the standard coboundary operator for the Lie algebra
cohomology of the Lorentz algebra so(3,1), whose cohomol-
ogy is well known. The differential so does not modify the
number of Lorentz ghosts, while the differential s &

de-
creases it by one unit.

Let u be a solution of su=0. We may also decompose it
according to its powers in the Lorentz ghosts,

0+ ' ' + +N From su= 0, one gets s~ &w =0 i
n& is a cocycle of the Lie algebra cohomology.
Up to s&-trivial terms that can be absorbed by redefini-
tions, the most general s &-cocycle is given by
u~=XP,(WW, g)co'(C), where the polynomials P, are
Lorentz-invariant functions of their arguments (MtP, =O)
and where the co'(C) belong to the basis of the Lie algebra
cohomology of so(3,1) explicitly given by
(co'}=(1,8, , 82, 8i62}, wh~~~ t i= r/" r/ "r/' C,bC„Cd/.
and 02= e'"'"rg' C,bC„Cdf Thus, N=O, 3 or 6.

We start with the case N= 6. If one inserts the expression
u6=P(W W*, (') 8, 82 in the condition su=0, one gets at
C-degree 6 the equation (8'+P 8, 82 =s, (something),
which is possible only if the right- and left-hand sides vanish
separately [(6'+~P is a Lorentz invariant polynomial, and
no s i -cocycle XP,co' of the above form is s &

-exact unless
P,=0 for all r's]. Thus, (8+P = 0. We analyze this equa-
tion by decomposing P according to the antighost number,
P =Po+ . +P, . The condition (8+S)P=0 implies~,=0. Assume t 4 0. Since W acting on invariant poly-
nomials is just the exterior derivative operator (after the sub-
stitution g~~dx~), the covariant Poincare lemma [8] im-
plies that P, is W-trivial in the space of invariant
polynomials in WW*, g, unless it contains the "volume
form" 0"=$ $ $ $ (the substitution g~~dx" yields
O~d xe). However, even in that case, the next condition
BP,+RP, , =O (with t 4 0) implies that P, is 8-trivial
modulo & [see above discussion on the invariant homology
H(8/d)] and can thus be absorbed by allowed redefinitions.
Accordingly, we may assume t=0, i.e., P does not contain
the antifields. The condition ~'=0 implies then that P has
the form P=a+8m(W') where a is a constant (covariant
Poincare lemma again; W-exact pieces can be absorbed by
redefinitions).

If a 4 0, n6 cannot be completed to a BRST cocycle.
Indeed, the obstructions for doing this are the characteristic
classes fi=R'"R, b and f2= e' '"R,bR,d, which do not
vanish even on shell and can thus not be written as 8 varia-
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tions. Accordingly, we must take a =0, in which case
u6=0m(W") 8t82 is a BRST cocycle.

One repeats the discussion in exactly the same way for the
terms of lower order in the Lorentz ghosts, which must fulfill
the BRST cocycle condition independently of the term of
order 6, since this one satisfies that condition by itself. For
N=O, one gets in addition the constant solutions. Since 0"

has maximal degree in the (~, one has actually 0'8;= 0'8;,
where 8; is obtained from 0; by replacing C by the ordinary
Lorentz ghosts C . We can thus conclude the following.

Theorem 2. Up to s-trivial terms, the general solution n of
the BRST cocycle condition su = 0 does not depend on the
antifields and is given by

n=a+OL(W", 8;),

ru(x~, dx~)[a+ 0'L(W", 8;)] (16)

and of solutions of the form

1
—,dx~' dx~k(~k+t . $~4e, e L(W", 8;) (17)

where co e Q(~) is not exact, k = 0,1,2,3,4 and
L(W, 8;) is a Lorentz invariant polynomial in its arguments.
In particular, the most general local four-form solving (1) is
given by d xeL (W", 8;)+ sm+ dn

Thus, the only solutions with ghost number zero and form
degree four are given by Lorentz-invariant polynomials in
the curvature components R,b,d and their successive covari-
ant derivatives D, . -D, R,b,d times ed X. This means

1 m

that all the consistent deformations of the Hilbert-Einstein
Lagrangian are exhausted by such perturbations, which have
the same transformation properties as the Hilbert-Einstein

where a is a constant, I. is a Lorentz invariant polynomial,
and 0=/ g'g ( .

Theorem 1 follows from Theorem 2 since the process by
which one constructs H(s/d) from H(s) does not introduce
any antifield dependence.

One can be even more explicit and list all the solutions of
(1).By the first procedure (a) described above, one generates
from the BRST cocycle OL(W", 8;) solutions of the form
cu(x",dx")O'L (W', 8;) at ghost numbers 4, 7, and 10
and form degrees 0,1,2,3. The multiform 6 obtained by
the second procedure (b) is simply ( ( ((L(W", 8';)
and thus the solutions of type (b) read
(1/k! )dx» dx~kP'I+ & . .P4e . . .'eL (E",8;) at re-

spective form degrees k = 0,1,2,3,4 where ep/23 1,
dx~dx'= —dx "dx"=—dx~ 8 dx". This establishes the fol-
lowing theorem.

Theorem 3. Up to trivial solutions, the general solution of
the Wess-Zumino consistency condition is a linear combina-
tion of solutions of the form

Lagrangian itself (scalar densities). Consequently, there is no
deformation of the pure Einstein theory that leads to a non-
trivial deformation of the gauge algebra, even in the class of
deformed algebras that close only on shell.

Similarly, there is no solution at ghost number 1 and form
degree 4, i.e., no gravitational anomaly (in four dimensions).
Replacing the consistency condition ya+ db = 0 studied ex-
tensively by previous investigators [6,8] by the weaker con-
dition pa+ db=0, which is what the inclusion of the anti-
fields effectively amounts to, does not introduce new
nontrivial solutions. Here, = means "equal modulo terms
that vanish on shell. "

Finally, there is no solution of the WZ consistency condi-
tion at negative ghost number. In other words, the character-
istic cohomology for pure four-dimensional (perturbative)
gravity vanishes: all p-forms that are closed on shell

(da =0) are automatically exact on shell (a =db)
(0(p(4). This result was known for p=3 [15] or p=1,
[4] but had not been fully established for p=2 although
partial results had been derived some time ago [19].(If one
goes beyond perturbative gravity and takes into account the
nontrivial cohomology of the tetrad manifold, there are non-
trivial topological conservation laws which will be discussed
at length in [5].)

In this Rapid Communication, we have given the explicit
list of all the nontrivial solutions of the WZ consistency con-
dition for pure (perturbative) Einstein gravity in four dimen-
sions. We have shown in particular that the dependence on
the antifields can always be removed by adding trivial terms.
Our method applies also if one includes matter couplings or
if one modifies the Hilbert-Einstein Lagrangian by adding
higher powers of the curvature, but there may be then modi-
fications in the final results. Indeed, Yang-Mills fields bring
in nontrivial solutions of their own [20]. Furthermore, there
may now exist nontrivial conserved currents (associated e.g. ,
with baryon number conservation). In that case,
H (s/d)-Ht(8/d) does not vanish and moreover, non-
trivial antifield-dependent solutions can be constructed at
non-negative ghost number, but only at ghost number 2 or
higher if the Yang-Mills gauge group is semisimple. The dis-
cussion follows closely the pattern developed in [21]and the
details will be reported elsewhere [5]. [We shall discuss also
in that paper the extension to all spacetime dimensions ~3,
where there are more antifield-independent solutions-
Chern-Simons terms in odd dimensions and Lorentz anoma-
lies of the Adler-Bardeen type in 2 mod 4 dimensions. ]
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