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Dyonic black holes in effective string theory
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The spherical symmetric dyonic black hole solutions of the effective action of a heterotic string
are studied perturbatively up to second order in the inverse string tension. An expression for the
temperature in terms of the mass and the electric and magnetic charge of the black hole is derived
and it is shown that its behavior is qualitatively difFerent in the two special cases where the electric
or the magnetic charge vanishes.
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At present, string theories are the most promising at-
tempt to unify gravitation with the other fundamental
interactions. It is therefore of great interest to study
their phenomenological consequences, in particular in the
context of gravitational physics.

For this reason, the modifications to black hole physics
induced by string theory have been extensively investi-
gated. Because of the diKculty of treating the full the-
ory, a &uitful approach has been the study of its low
energy limit by means of effective field theoretic actions,
obtained as an expansion in the inverse string tension
n'. These actions describe the dynamics of the low en-
ergy excitations of the string spectrum, which comprise
in the simplest case the graviton, a dilaton, an axion,
and gauge fields. In particular, some exact solutions have
been obtained for the lowest order approximation to the
action [1—3]. The main difference for the Einstein the-
ory is the presence of a nonminimal coupling of the dila-
ton with the other 6elds, which changes drastically the
physical properties of the black hole, and in particular
the thermodynamics. For charged black holes, for exam-
ple, the temperature becoxnes independent of the charge,
at variance with the Reissner-Nordstrom solution of the
Einstein-Maxwell theory.

The results obtained in [1—3] are, however, valid only if
the order o.' corrections in the gravitational sector of the
effective action are neglected. These corrections consist
essentially in the presence of a higher derivative Gauss-
Bonnet term coupled to the dilaton. In a recent paper [4],
we examined how the magnetic charged dilatonic black
hole solutions of effective string theories obtained in [1]
are modi6ed when the order o.' terms in the efFective ac-
tion are taken into account. Of particular interest were
the thermodynamical properties of the solutions, which,
contrary to the solutions of the leading order action, ex-
hibit a dependence of the temperature on the magnetic
charge of the black hole. In particular, these solutions
can reach a vanishing temperature for a 6nite value of
the mass, and therefore admit a stable remnant as a final
state of the Hawking evaporat;ion. .

In this paper we extend our investigation to the case
of dyonic black holes. When higher order corrections to
the action are neglected, the dyon. ic solution has been
obtained &om the magnetic one [1] by exploiting the
SL(2,B) dilaton-axion symmetry of the leading order

terms in the perturbative expansion of the action [2].
Even if it has been conjectured that this symmetry might
be an exact symmetry of the full theory [3], it is not,
however, a symmetry of the order n' action, since, for
example, the Gauss-Bonnet term in that action is not
invariant under the SL(2,R) symmetry. It has been ar-
gued, however, that the symmetry could still be present
in a highly nontrivial and nonlinear way and therefore
not order by order in perturbation theory [5].

It is therefore interesting to obtain some explicit re-
sults also for the electric charged case. Adopting the
techniques of Ref. [4], we then perform a perturbative
calculation of the spherical symmetric solutions of the or-
der o.' action around the background constituted by the
Schwarzschild solution with the other fields set to zero.
For a detailed discussion of the choice of this particular
background and other technicalities we refer to [4].

The most; interesting result of our analysis is the dif-
ference in the behavior of the temperature for an elec-
trically charged black hole with respect to the magnetic
one when higher order terms are taken into account. In
fact, it appears that the lowest order corrections to the
temperature, which arise at order o,', have opposite sign
in the two cases, so that for a purely electric black hole at
this order of approximation the temperature is a mono-
tonic decreasing positive de6nite function of the mass for
any value of the charge and therefore cannot give rise to
stable remnants.

A similar approach was adopted in Ref. [6] for the ax-
ially symmetric charged black hole, but the calculations
were performed only up to order o.', so that the correc-
tions to the temperature could not be observed.

The bosonic sector of the dimensionally reduced effec-
tive action for the heterotic string is given up to order a'
by [7]

S~~ —— d x —g R. —3e H~~H~~

—2(V'O)'+ ne '~(8 —E )],

where o. = o.' j8, I' is the Maxwell field strength, and 8 =
'R

& &
—4K &+ 'R is the Gauss-Bonnet term. Actually,

at order o., terms of the kind H2(V4)2, RH2, 'R(V'4) 2,
etc. , are also present in the action [8], but we shall not
consider them, since they contribute to the Geld equa-
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tions only to order n or higher in the background we are
considering and therefore are not relevant for our calcu-
lations. For the same reason we do not consider order o.2

corrections to the action.
The explicit form of the axion field H b in terms of

the potential B b is

to H, such that

44
Habc = 2&abcde

the field equations stemming &om (1) can be equivalently
derived froin the action [2]

II~b~ —l9[~Bb~] + n(A[~BbA~] + (8 [~Ob4J ~]

+ inn

rnid

nl

where the Chem-Simons terms have been taken into ac-
count. Because of the presence of these terms a solution
presenting both electric and magnetic charge will also
have a nontrivial axion field [7].

It is well known that if one defines a scalar field a, dual

Sg —— d x —gX —2 V4 ——e V'a

ne —(F —8)]
—na(F F —7ZR,),

where

2 &abcdFabFcd &
+~ 2 &abed +abc f+cde f ~ (4)—1

The field equations can then be written as

'R = 2V O'V e'+ 2e V aV a+ 2ne (F „F„p—4g „F )

+4o.e 4'Rp( V'n) V'p4 —2R „V'p V'p4 —g „Rp~V'pV'~4 —'RV' V„C

+-,'g „ZVpVpe —2X, „pVpV, C

—8ne 4'Rp( V'„)4V'p4 —2R „V'p@V'p4 —g „Rp~V'p@V'~4 —'RV' 4V'„4

+ 2gm, nKVp4'Vp@ 272qm, npVp@Vq4' + 4O' Cblm, n+ajm. nVEVjG + CaEvnnRbjm, nVEVj 0 (5a)

V24 = —e 2~(8 —E2) + —,'e4~(V„a)',
2

Vp(e V„a) = n(FF —'RVZ),

—24 1V„(e F„)= e„Fq„V„a-.

(5b)

(5c)

(5d)

It is convenient to define a new scalar Beld 6, such that

Vpb = e V'pa .

This simplifies the field equation. In particular,
q~ + q~+ q~a

ig —
Q2 ' 01 Q2 (9)

and magnetic charge, q and q, respectively, is given in
orthonormal coordinates by

V2@ n —24 (g F2) + 1 —44(Vb)z2'
V b = n(FE —RR) . (7b)

d8 = —Adt +A dr +BdO

where A = A(r), R = R(r). This particular form of the
metric is suggested &oin the exact solution found in [2]
in the absence of the Gauss-Bonnet term (see also [4]).

The general spherical symmetric solution of the gen-
eralized Maxwell equation (5d) containing both electric

We want to find a perturbative expansion of the so-
lution to (5) around the background constituted by the
Schwarzschild metric of mass m with vanishing dilaton
and axion. Our expansion will be in the parameter o, or,
more correctly, in n/m2. We adopt a spherically sym-
metric ansatz for the metric:

We can now expand the fields in n as

A = A, (1+n@, ~ n'g, + . . .),

R = r+ OP(+ O. P2+2

n0'1+ n 4'2+ ' ' b nX1+ n X2+ . (1o)

where Ao
——(1 —2m/r) ~ and @;, p;, P;, and y; are

functions of r Moreover, &o.m (9),

q~ 2Apyt'

E,~ 1

Fol ~ + n 24'1
F2 F2

and hence
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2 2

2 ™e +2m —4q —+4q
'q

r4 r4
73 —45q

60m3r

Xl—2q q —+r (12a)
73 —15q +30q, —15q —60q q + 15q,+ 60m2r2
73 + 45q2 73 + 5q2 + 50q2 112m 8m2

45mr3 30r4 75r5 9r6

qeqrn gl 1FE 4 +4o. q —+2q, qr4 e 77K 4

(12b)

The Geld equations can now be expanded by inserting
(10) and (11). At first order in a one has

3 3 —2(q2 +q2 2 1

2 r+ 2
'+3 +3

I

4 —4(q' —q.') + (q' + q.')' 2 —q' + q.'
8m2r 3mr

7 —3(q2 —q2) 16m 24m

[.(.—2m)&', ]' = 4",-,
(13a)

(13b)

1 —2(q —q,')(r —2m) g2 ———
3mr2

ll —5(q2 —q, )
2

3r3

«
pq

——0, (13c)
[2 —50(q' —q,')]m 272m'

15r4 15r6 (16)

[(r —2m)@i]' = ——,pi- qe+ q~ (13d) and hence, up to order o.2,

q2 + 2 1+ 2 2 (1l

(14)

We pass now to evaluate the second order corrections,
which satisfy the equations

[r(r —2m) P2]' = 2 piP', —48m2 ( pii+-
r r

+2(q +q. ) —,+4(q —q. )—„,
r(r —2m)

+2q q —+r
r —2m 2 +1[r(r —2m)y'2]' = 2 pig', + 4q

+8q q

8m II $ /2
p2 —r4'i + 2 pl —erg i

r —2m «r —m, m
[(r —2m)@2]' = — p2 — p2 ——

2 pq

+, p —(q. - q )—„, + 2(q + q. ) —,
2m 2 ~ 2 &i 2 ~ pi
r

(r 2m „.3m,+4m
~

i' —2

(15)

X&
qeqrn —

2

The asymptotically 8at solutions of (15), with boundary
conditions such that m is the physical mass of the black
hole, are given by

If one requires asymptotic flatness, a solution of (13) can
be obtained such that @i ——0:

1 2+q2 —q2 m 4m 2q q+ —2+, I
xi=-

m
~

2r r2 3rs) ' mr
2 2qe+q~

px =— gi ——0.
2m

(17)

, &q, (2m)T = P 8~m 1 —a —2@2(2m)

2 73 —45(q2 —q2) l= 8~ml 1 —o.
120m4

2m 1+ 2q2 —2q2 2 1~1—

2+ q.' —q' 73 —45q', (1l f1'
2m 60ms

I r) ~r2)
(2a 3a'l 1 5+ 6q.' —2q'

qeqvn + 2, +
~m m2) r 2m2r2

+0] —
i .

%'e stress again that corrections of order o.2 or higher to
the action, as given, for example, in [8], do not contribute
to our calculations before order n, so that they can be
consistently neglected in our approximation.

From the solutions (17) it follows that the black hole
has a dilatonic and axionic charge given respectively at
order a by D = (2+q2 —q )a/2m and A = (2q, q )a/m;
these are not, however, independent parameters, but are
functions of q, q, and m, in accordance with the weak
form of the no-hair conjecture [9]. The metric has a sin-
gularity at r = r a(q2 + q2 )/m and a horizon at
r = r+ 2m(1 —[1 —2(q, + q ) ]/a~12m2). We no-
tice that, when r ) r+, the singularity is naked. This
regime is, however, out of the range of our approxima-
tions.

The temperature of the black hole can be readily ob-
tained by requiring the regularity of the Euclidean section
and is given by [4]
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This should be compared with the value T = (8vrm)
found in [2] when the order n' corrections to the action
are neglected: the temperature is no longer independent
of the electric and magnetic charge. However, while for a
black hole carrying only magnetic charge the temperature
has a maximum and then goes to zero for a finite value
of m [4], the temperature of a purely electric black hole
is at this order of approximation a monotonic decreasing
function of the mass and therefore no massive remnant
is to be expected in the last case. It is also amusing to
notice that for q, = q the temperature coincides with
that of an uncharged black hole.

I wish to thank M. Cadoni and N. R. Stewart for help-
ful discussions.

APPENDIX

We show here that the perturbative result in the ab-
sence of higher order corrections agrees with the exact
solution found in [2]. If one neglects the Gauss-Bonnet
term, the field equations are, at first order,

qe[r(r —2m) P', ]' =

[r(r —2m)y', ]' = 4 (A1)
Il

pq ——0,
( m qe+q~2 2

[(r —2m)@g] = ——pg-r2 2r2

whose solutions are

(q q ) + 2(q + q )

After a lengthy but straightforward calculation, one ob-
tains

4 2 2 4 2 2
qe 4qe qm qm qe+q~

4m r X2 = —q~qm m r

(q.'+ q' )'
8m2r

Substituting the results in (10) and (11) yields

(A4)

2 2=1— 2 2'4+ qmB =r —0! r )m

ge qe qm
~

qe qm3' — ')
oi = — += —o, &+o,

mr 2
~

2mr

l L qm

2mr

4 4 2 2 4

+ 2 qe qeqrn qm +4m2r2

As expected, these results coincide with the expansion in
n of the exact solution found in (3):

II ~/2
p2 = r9' y ark

r —2m I/ r m /
2m 2[(r —2m)@2]' =—

2 2
qm qe qeqrn

X12mr mr
(A2)

ds = —
I
1—2m), l 2m'i

") & ")

m, 2
p~Xi + 4q~ —,r r

p&
+8qtnqe 2 )r2 r3

2 2qe+qm
px =—

2m
At second order, the field equations become

»&~+ (q-'+q!) —'

+4(q -q. ) —,+2. . —,p1 X1

+ 2r(r —2m)y,

[r(r —2m)y2]' = 2

(A3)

, l, — (':+'-') dn,
2m

mr[mr —n(q2 —q2 )]

( (mr)' —2cxq2mr + n2q2(q2 + q2 ) )

2mr —n(q2 + q' )
(mr)2 —2nq, mr + n q2(q, + q2 )

qm
r2 ' r(r —n(q, + q )/2m)

[1] D. Garfinkle, G. T. Horowitz, and A. Strominger, Phys.
Rev. D 43, 3140 (1991).

[2] A. Shapere, S. Trivedi, and F. Wilczek, Mod. Phys. Lett.
A 8, 2677 (1991).

[3] A. Sen, Nucl. Phys. B404, 109 (1993).
[4] S. Mignemi and N. R. Stewart, Phys. Rev. D 47, 5259

(1993).
[5] J. H. Schwarz, in String Theory, Quantum Gravity and the

Unification of the Fundamental Interactions, Proceedings
of the Workshop, Rome, Italy, 1992, edited by M. Bianchi

et al. (World Scientific, Singapore, 1993), p. 503.
[6] B. A. Campbell, N. Kaloper, and K. A. Olive, Phys. Lett.

B 285, 199 (1992).
[7] B. A. Campbell, M. J. Duncan, N. Kaloper, and K. A.

Olive, Nucl. Phys. B351, 778 (1991).
[8] D. J. Gross and J. H. Sloan, Nucl. Phys. B291, 41 (1987);

see also K. Sfetsos and A. A. Tseytlin, Phys. Rev. D 49,
2933 (1994), and references therein.

[9] S. Coleman, J. Preskill, and F. Wilczek, Mod. Phys. Lett.
A 8, 2353 (1991).


