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Scaling of Aharonov-Bohm couplings and the dynamical vacuum in gauge theories
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Recent results on the vacuum polarization induced by a thin string of magnetic 6ux lead us to
suggest an analogue of the Copenhagen "Hux spaghetti" QCD vacuum as a possible mechanism for
avoiding the divergence of perturbative QED, thus permitting a consistent completion of the full,
nonperturbative theory T. he mechanism appears to operate for spinor, but not scalar, QED.
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Perturbative quantum electrodynamics (QED) is
known to produce a divergence of the charge-charge cou-
pling n at high mass or small length scales, and there
is an important open question whether the full, nonper-
turbative theory exists. We have been inspired by recent
results on vacuum currents induced by a thin string of
magnetic Hux in spinor (or scalar) QED to examine a
picture of the vacuum structure which suggests that for
the spinor case the theory may exist after all. By this
we mean that there may be a consistent if not unique ex-
trapolation into the strong-coupling domain. Likely this
would entail the appearance of new degrees of keedom,
as occurs in the long-distance domain of quantum chro-
modynamics, where quarks and gluons are replaced by
color-neutral baryons and mesons. A successful extrapo-
lation of QED would be unprecedented, since the famil-
iar pattern is one in which phenomena at short distance
scales are found to underlie those at longer distances,
with the latter insensitive to many details of the former.
Nevertheless, QED provides what may be the first arena
in which such an occurrence is at least conceivable, per-
haps explaining why there has long been fascination with
strong-coupling QED [1].

The Grst step in our approach is to consider a re-
organized perturbation theory for a difFerent running
coupling —not the usual coupling of two charges, but the
coupling of an electric charge to a line of magnetic Aux.
We call this, for obvious reasons, an Aharonov-Bohm
(AB) coupling [2]. This new coupling might give bet-
ter guidance than the old because, while it does grow
stronger at small distances, to one-loop order in o. it
does not diverge. An attractive aspect, at least for cal-
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culational convenience, is that the AB coupling always
has zero engineering dimension, not just in the case of
four spacetime dimensions as with the traditional charge-
charge coupling. This simpliGes the "dimensional book-
keeping, " and facilitates comparison of the behavior in
spacetimes of different dimensions.

Let us review the recent results as a background for our
proposal. Vacuum currents circulate around an arbitrar-
ily thin Hux string [3—6], generating additional magnetic
Hux in the region outside the string. Serbryanyi [3] cal-
culated, to lowest nontrivial order in o. but all orders in
the Aux, the induced current for scalar electrons. For
spinors the results are qualitatively di6'erent, and were
obtained by Gornicki [4] (see also [6]). Below we recount
the main features of these induced currents, emphasizing
the difFerence between scalar and spinor QED in 3+1 and
2+ 1 dimensions. This leads us to deGne a charge-Qux

P function which reproduces the results of the conven-
tional charge-charge P function for small Hux, and which
suggests that QED might possess a "Hux spaghetti" vac-
uum at scales where its coupling becomes strong (short
distance, high energy), reminiscent of the Copenhagen
picture for quantum chromodynamics (QCD) at long dis-
tance scales [7]. At first sight this exacerbates the con-
sistency problem, since now it becomes necessary to Gnd
a mechanism which not only arrests the growth of o. at
small distances but also is able to support strong Huxes
in tubes of small radius. We shall be seeking evidence for
such a mechanism, and arguing that we Gnd it in spinor
QED.

The fermionic-induced current may be constructed by
computing single-particle currents &om the exact solu-
tions of the Dirac equation with a classical background
electromagnetic Geld, and then summing the contribu-
tions of these currents for all negative energy (i.e., occu-
pied) states. In this approximation one is treating the
fermions as quantized Gelds while ignoring the Huctua-
tions of the gauge Geld, which explains why the calcula-
tion is exact to lowest nontrivial order in n but all orders
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in flux. Consider the static flux F to be confined in an in-
finitely long zero-radius flux tube, and choose the scalar
potential Ao ——0. CP invariance implies that the in-
duced charge density (j ) vanishes in 3 +1 diinensions,
while the induced current (j} is in general nonvanish-
ing. Translational and rotational symmetries enable us
to write (j) = j (r)P in cylindrical coordinates, r being
the distance f'rom the flux tube in the z = 0 plane. The
dependence of the current j (r) on the Hux F is given by
[4, 6]

jr (r) = sgn(F) jy(r),
with

so that the induced flux is logarithmically divergent. We
shall come back to this point shortly. For the analogous
problem in 2+ 1 dimensions [5, 6], with massive fermions
which break parity, one has in addition to (j) a nonvan-
ishing (jo}and an induced angular momentum. However,
unlike (j}, the induced charge and angular momentum
are nonvanishing even for integer F and are not periodic
in F because they receive contributions &om threshold
(energy = km) states that do not contribute to (j). In a
further distinction, logarithmic divergence of the induced
flux for small radius does not occur in 2+1 dimensions, h
fact linked with the superrenormalizability of this theory.

For scalar QED the current is [3, 4]

F—:sgn(F) (N + b),
N c Z+u(0),
0&b&1,

(2)

j. (") = sgn(F) j.(")

&.'(r) =
4 bg '(r) —~y(r)l

(4)

and

~y(r) =—e sin(&r) (mr) 2

dt t exp t — — Kb t
2t

FIG. 1. The I' dependence of the induced fermionic cur-
rent. j& (r) (solid line), scalar current j, (r) (dotted line),
and spin-1 current (dashed line) at a fixed nonzero value of r.
Positive current is screening, that is, induces Qux opposed to
the applied Bux in the string.

Here m is the mass of the fermion of charge e, Ks(t) is
the modified Bessel function, and the subscript f in (1)
and (3) refers to fermions.

It is apparent Rom (3) that for a fixed Hux the induced
current is a monotonically decreasing function of r and
vanishes exponentially for large r. The variation of the
current with F is sketched in Fig. 1. A number of features
should be noted. First, the current vanishes at integer
values of Hux, just as the AB effect does [2, 8]. Second,
for F ) 0 the current does not change sign and is periodic
under the shift F ~ F + N, N E Z+ [4, 6]. Last, the
current is antisymmetric about F = 0 as required by
charge conjugation. Thus the direction of the induced
current is always such as to produce a fIux opposing the
applied one. This means that one may deduce the sign
of the confined flux by looking at the induced current in
the region outside the flux tube.

The current in (3) behaves like e/r near the origin,

where F, h, and jy(r) are given by Eqs. (1)—(3) and the
subscript s in (4) refers to scalars. The scalar current
vanishes at half-integer values of flux in addition to the
integer ones, as shown in Fig. 1. From (3) and (4) we see
that for F ) 0 (the results for F & 0 follow by charge
conjugation), the current is not of fixed sign but rather
opposes the applied flux for 0 & F & 1/2 while rein-
forcing it for 1/2 & F & 1, the pattern repeating with
period 1 for F ) 1. Therefore, unlike the spinor case, for
fundamental charged scalars the induced current outside
the solenoid does not reveal the sign of the flux in the
solenoid. The scalar and spinor currents difI'er because
the interaction of a spinless charged particle with a thin
Hux tube is a pure AB effect [2], while for the spinors an
attractive magnetic moment interaction permits penetra-
tion of a low-energy electron to the interior of the tube
[8-12].

It is remarkable that the access of electrons to the in-
terior of a thin flux tube produces sensitivity only to
the sign of the Hux (in addition to the fractional part).
However, as mentioned above, the sensitivity to abso-
lute magnitude of F for parity-violating QED in 2 + 1
dimensions [5, 6] cautions us that the precise sensitivity
in different situations depends very much on the symme-
try constraints. Sensitivity to more than the fractional
part of the flux may be viewed as a failure of decou-
pling between high- and low-energy phenomena: When
the radius of the tube is arbitrarily small, fermions con-
fined inside would have arbitrarily high energy. Nev-
ertheless, low energy fermions in the partial wave with
smallest total kinetic angular momentum and magnetic
moment parallel to the flux still penetrate enough to re-
veal information beyond the AB phase. Thus the interac-
tion between electrons and thin flux tubes characterized
by purely magnetic fields provides an example midway
between the pure AB case and the general case of dis-
tributed magnetic fields.

I et us recast the above discussion in a difFerent form.
A powerful concept for understanding the scale depen-
dence of the dynamics in some field theory is the P func-
tion, which gives, for example, the dependence on dis-
tance r of the force between two electric charges. If the
force is written as
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we want to know how the product qqq2 changes as we
change the length scale by a factor A. One may find this
by computing the induced vacuum charge density gener-
ated by one of the charges. On dimensional grounds, the
density at small distance scales must go as n/rs, so that
the change in total charge between two shells of radii ri
and r2 is proportional to o;ln(ri/r2). The result of this
by now standard calculation for spinor QED is [13]

ln(qiq2)
din A

where a is the fine structure constant, and the expression
is valid to lowest nontrivial order in o.. The vacuum
screens the interaction between the two charges, so that
as they move closer together the effective charge product
is less screened, and increases logarithmically.

Consider now the scale dependence in the coupling of
a charge q to a line Hux I". At the same (one-loop) order,
the answer may be deduced for spinor QED from Eq. (3).
At small r and small E, the induced current becomes pro-
portional to eF/r . Integrating this current leads to an
induced magnetic field proportional to eI'"/r, so that the
induced flux between two shells depends logarithmically
on the ratio of the shell radii. The final result for our
new charge-Hux P function in this small I' regime agrees
exactly with the conventional P function, as we would ex-
pect because the small flux is just generated by a current
of charges, and the coupling of two charges should deter-
mine the coupling of a current with a charge. However,
a new feature emerges when we consider flux of arbitrary
magnitude. Then, as seen in Fig. 1, the charge-Hux P
function always produces screening, trying to drive the
flux to the next smaller integer value as the length scale
increases, so that the P function vanishes for any inte-
ger E. Put differently, as the charge and the flux string
are brought closer to each other (i.e., as the length scale
decreases), the charge-flux product rather than diverg-
ing approaches the next higher Aharonov-Bohm quantum
value.

We are now in a position to paint our picture of the
QED vacuum: A magnetic Held Huctuation produced by
charged-particle excitations in the vacuum is strong at
short-distance scales. Then, as perceived at large dis-
tances, the (screened) flux due to this Huctuation ap-
proaches an integer, because these are the values required
by the zeros of our P function. This suggests that in pure
QED the vacuum might be a "spaghetti" of exponentially
thin flux strings, each perceived on moderate or large dis-
tance scales as carrying very nearly an integer number of
flux units. Phrased differently, this assertion becomes al-
most a tautology. Since charge-charge coupling becomes
strong at short distances, so must charge-flux coupling.
Thus, finding a mechanism to support such a flux be-
comes an important new requirement for demonstrating
that QED is consistent. We shall return in a little while
to arguments that a suitable mechanism indeed exists in
spinor QED.

Such a vacuum could have some interesting properties.

For example, if the approximately integer flux at large
distance scales were nonzero, a particle with charge in-
commensurate to that of the electron would excite the
flux spaghetti so that the effective mass of the parti-
cle would be raised to a scale characteristic of the flux
tube radius. This would be a self-consistent solution,
since such massive charged particles would not contribute
to the P function in the perturbative regime. Thus,
the QED vacuum might produce "spontaneous elec-
tric charge quantization, " since incommensurate charges
would be allowed in principle, but could not have low
mass. Also, one must reconsider the coupling between
two point charges in the background of the flux spaghetti.
We discuss below how the presence of the spaghetti could
damp the otherwise catastrophic growth of the coupling
found in conventional perturbation theory.

Let us reiterate our picture of QED at exponentially
short-distance scales: The charge-charge coupling in-
creases, and fluctuations become stronger accordingly
until the flux spaghetti can be supported. Once the
spaghetti is produced, the coupling stops growing. The
QED vacuum is then filled with a spaghetti of strong but
finite magnetic Hux tubes (with all possible velocities,
to assure Lorentz invariance), and the coupling is large
but finite. Recently one of us [14] considered a different
possibility, with all magnetic flux suppressed at short dis-
tances. While this is conceivable (i.e. , it also may resolve
the logarithmic divergence of magnetic flux mentioned
earlier), it leaves still open the original question of con-
sistency of purely electric coupling at short distances.

One may ask about the energy cost of producing a
spaghetti vacuum for QED. Flux costs energy, and thus
the spaghetti vacuum possesses higher electromagnetic
field energy than the standard perturbative vacuum.
However, in the large-coupling regime the nonperturba-
tive energy functional may prefer to develop flux quanta
with the field distributed over a small length scale in the
vacuum. A related picture has been studied intensively
for (2 + 1)-dimensional QED [15].

While we do not know how to carry out a precise anal-
ysis in 3+ 1 dimensions, we feel that there are sugges-
tive qualitative indications that the scheme is consistent.
First, assume that there are in the vacuum flux tubes
(with all possible velocities, as mentioned earlier) pos-
sessing a certain, exponentially small radius. Electron
wave functions which are spread out over regions large
on the scale of this radius will be insensitive to the pas-
sage of such a tube, effectively equivalent to a pure gauge
transformation. On the other hand, wave functions con-
fined to a region small on this scale will be buffeted by
the passage of flux tubes of all velocities, and hence fluc-
tuating fields of unlimited mean-squared strength. This
means that the effective mass of the electron will in-
crease rapidly and without limit as the squared four-
momentum passes through a critical value corresponding
to the inverse-squared radius of the flux tubes, generating
a natural cutoff for the electron propagator and assuring
consistency of the theory.

Near that cutoff, electrons should have large effective
mass, and therefore propagate nonrelativistically. This
means that fluctuations in which electron-positron pair
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magnetic moments at neighboring sites are lined up will
be favored by relatively low action (compared to config-
urations with random orientation of neighboring mag-
netic moments), leading immediately to tubes of Hux
with the appropriate radius. Thus the assumption of
Hux spaghetti for spinor QED leads to a mechanism gen-
erating flux spaghetti.

For scalar QED the charge-Hux P function deduced
from the sxnall Hux limit of (4) agrees with the stan-
dard one-loop result [13], which is 1/4 the spinor value.
For larger flux, the scalar charge-Hux P function tries as
length scales increase to drive the Hux to the nearest in-
teger, with the P function vanishing both at integers and
half-integers. Note that our suggested mechanism for
self-consistency of the flux spaghetti does not work for
scalar QED, since here there are no magnetic moments
to line up into tubes of Hux. Thus scalar QED might well
be inconsistent even if spinor QED were consistent.

It would be interesting to duplicate the computations
of the charge-Hux P function for one more case, that of
charged spin-1 particles. %'hile we are unaware of such a
computation in the literature, we may guess the qualita-
tive character of the effect from known results (see [16—18]
and references therein), as sketched in Fig. 1. Since the
usual perturbative P function of such a theory (which
in its simplest form is precisely Yang-Mills gauge theory
[19]) has opposite sign from that in the scalar and spinor
cases, one expects that as length scales grow (rather than
shrink) Huxes should increase. This sign reversal of the
P function has been described as a paramagnetism of the
vacuum [17]. The vacuum for charged scalars is diamag-
netic, although as we have seen it actually pushes the
flux towards the nearest integer value, whether higher or
lower.

The diamagnetism for charged spinors has been ex-
plained as a consequence of the Pauli principle [17, 18]
but we feel this is only part of the story: The magnetic
Geld attracts electrons with appropriately oriented mag-
netic moment, thus reducing their efI'ective mass. For
particles in the Glled negative energy sea this reduction
in mass actually raises single-particle energies, and hence
increases the vacuum energy. Thus the entire Dirac sea
picture, which includes more than the Pauli principle, is
needed to understand the diamagnetism. For spin 1 the
paramagnetism of single-particle states should translate
into a reduction in vacuum energy associated with zero-
point oscillations, thus explaining the changed sign of the
P function in non-abelian gauge theories: Spin 1 is the
Grst value for which the naive single-particle paramag-
netism is realized also for the Geld theory vacuum.

The charge-flux P function for this case indicates that
here also Hux spaghetti must be an important aspect
of the QCD vacuum. Such a picture was proposed by
Nielsen and Olesen [7] on the basis of a closely reasoned
and intricate analysis building on the stimulating work of
Savvidy [20] and others. The P function approach intro-
duced here gives an alternative way to understand why
such a structure should be natural, and the dynamical
considerations for spinor QED suggest that gluon mag-
netic moments could support this structure.

Recent results in numerical lattice gauge theory for

noncompact QED might be relevant here. Efforts to use
this theory to build a base for continuum QED are ham-
pered by the fact that one would expect new degrees
of &eedom to be excited in the strong-coupling domain
(degrees of freedoxn which from the conventional view-
point would be called. "fundamental, " since they would
be found at small distance scales), but without know-
ing what they are one cannot incorporate them into the
lattice theory. There has been a fierce debate about
whether strong-coupling noncompact lattice spinor QED
does [21] or does not [22] imply a nontrivial continuum
theory. However, the most appropriate use of the lattice
calculations might well be to suggest what new degrees of
freedom could appear at strong coupling. In this connec-
tion, noncontroversial aspects may be relevant: In the
strong-lattice-coupling regime there is chiral symmetry
breaking (electron mass of the same order as the lattice
scale), strong alignment between fermion magnetic mo-
ment and magnetic field (such as we propose), and the
appearance of magnetic monopoles [21]. The monopoles
had not occurred to us before, but upon reHection seem
a possible corollary to the other phenomena: At short-
distance scales where we suggest that electron degrees of
freedom become latent, perhaps latent monopoles are on
the same footing. This opens the possibility that at high
energies the classical electric-magnetic duality rotation
symmetry [23] is restored for the full quantum system
[24], leading to a unique fixed point for the electromag-
netic coupling a = 1/2. This is larger thaxi the naive or
perturbative critical value n = 1/4vr [25].

By drawing attention to flux tubes the new descrip-
tion has identified a possibly important feature of the
vacuum on scales where the perturbative coupling be-
comes strong. This suggests qualitatively similar behav-
iors for the QED vacuum at small distance scales and the
QCD vacuum at large distance scales. Our more detailed
if still crude considerations indicate that there is a dy-
namical mechanism to support Hux tubes in spinor QED,
which therefore may join QCD as a consistent theory in
the sense of possessing a natural extrapolation to the
strong-coupling regime. It is tempting to identify these
flux tubes with the strings of string theory, suggesting
that a string structure might be deduced by extrapola-
tion &om the physics of lower energies in a wide class
of (nonasymptotically free) gauge theories. In contrast
to the possibility of extrapolation of spinor QED, scalar
QED instead may resemble P theory, which is believed
to become consistent only if new short-distance degrees
of keedom are added "by hand. " If all this be so, then it
may show at a deeper level than before that the electron's
intrinsic magnetic coupling is essential to the complete-
ness of QED. There remains the formidable task of de-
veloping a systematic calculational scheme which could
put these qualitative ideas on a sound. footing.
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