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Symmetry properties of the effective action for high-energy scattering in QCD
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We study the eftective action describing high-energy scattering processes in the multi-Regge limit of
QCD, which should provide the starting point for a new attempt to overcome the limitations of the lead-

ing logarithmic and the eikonal approximations. The action can be obtained via simple graphical rules
or by integrating in the QCD functional integral over momentum modes of gluon and quark fields that
do not appear explicitly as scattering or exchanged particles in the considered processes. The supersym-
metry is used to obtain the terms in the action involving quark fields from the pure gluonic ones. We ob-
serve Weizsacker-Williams-type relations between terms describing scattering and production of parti-
cles.

PACS number(s): 12.38.Bx, 11.10.Jj, 11.10.Kk, 11.80.Fv

I. INTRODUCTION

In experiments at collider energies kinematical regions
become accessible that are characterized by two momen-
tum scales, both much larger than the typical hadronic
scale p. Processes dominated by this kinematics are
called semihard [1]. The main features of such processes
are calculable perturbatively. Unlike in usual hard pro-
cesses, large contributions having typically a logarithm of
the large scales from each loop change the result qualita-
tively compared to the Born contributions.

If the largest scale determines the scattering energy
and the second scale determines the typical transverse
momentum or the momentum transfer, then the
semihard kinematical region falls into the Regge region.
This situation we encounter in deep-inelastic scattering at
small values of the Bjorken variable x. Here we have for
the scattering energy squared s = —Q /x, where Q" is
the momentum transferred by the photon, and therefore
we have

s ))—Q ))p
The low-x region of structure functions becomes impor-
tant in hard processes at higher energies. Minijet pro-
duction in hadronic collisions provides a further example
of semihard Regge processes. Clearly here the separation
of the perturbative contribution is more dificult corn-
pared to the first example. Nevertheless at increasing en-
ergies the semihard features should show up more and
more clearly, for example, in selected final states with a
large rapidity gap between two jets, as proposed in [2].

The perturbative Regge asymptotics has been investi-
gated in the leading logarithmic approximation (LLA)
[3]. The resulting amplitudes do not satisfy the s-channel
unitarity constraints, and in particular a powerlike in-

creasing contribution to the total cross section is ob-
tained. In the structure functions this appears as a fairly
strong increase at small x; i.e., the gluon density becomes
so large that the concept of quasifree partons is no longer
applicable.

The eikonal approximation developed by Cheng and
Wu [4] for Abelian gauge theory ensures s-channel uni-
tarity (but it does not ensure unitarity in subenergy chan-
nels). The generalization to the non-Abelian case en-
counters difficulties, which are understood from the point
of view of the LLA. At high energy the scattering is
dominated by the exchange of Reggeized gluons with
multiparticle intermediate states in the s channel (pertur-
bative QCD Pomeron). In the Abelian case the scattering
amplitude with photon quantum numbers in the t chan-
nel gets no corrections in the LLA. In QED multiparti-
cle s-channel states become important only on the level of
the e ln s approximation ( e +e pair production) [5].

Therefore there is no eikonal scheme relying only on
the elastic Born amplitude in the non-Abelian case. An
eikonal scheme starting from the Pomeron is used in
some models. However, this does not provide an approx-
imation to QCD Regge asymptotics, because the interac-
tions of the QCD Pomerons are not negligible. A Pome-
ron eikonal approach to the problem of low-x asymptot-
ics of structure functions has been developed in [1].

High-energy scattering in the Regge regime has been
studied in gravity in order to understand quantum gravi-
ty and strings [6] (in accordance with graviton Reggeiza-
tion). The eikonal scheme works here, but it neglects the
multigraviton intermediate states, which contribute in
the LLA because of the graviton self-coupling [8]. As in
non-Abelian gauge theories the conventional eikonal
scheme has to be replaced by a unitarization scheme
based on the LLA results [7].
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(1.3)

In the LLA the elastic amplitude is dominated by the ex-
change of two Reggeized gluons in the color singlet states
interacting by the exchange of gluons in s channel [3]. To
obey s-channel unitarity, contributions from the ex-
change of more than two Reggeized gluons have to be in-
cluded. These contributions are higher-order corrections
from the point of view of the LLA. We keep the condi-
tion of the s-channel multiparticle states being in multi-

Regge kinematics. In this sense we would like to include
only a minimal set of higher-order corrections to the
LLA. Contributions from two or more particles being in
non-multi-Regge kinematics are not included in the first
step. They lead to corrections to the scattering and pro-
duction vertices considered below and to new vertices. A
program to investigate such corrections has been started
in [11].

The equations for the contribution of the exchange of
more than two Reggeized gluons turn out to be fairly
complicated [12]. Moreover, we cannot restrict ourselves
to a small number of Reggeized gluons. Also the repre-
sentation of the problem in the form of a Reggeon cal-
culus is not very helpful because of the complicated
multi-Reggeon interactions. As a new idea the effective

PA, k, k~ kn —1 kn pgi

Qqt q& qn+&t

PA

FIG. 1. The general inelastic process in the multi-Regge ki-
nematics.

Including multiparticle production the unitarity condi-
tions become more involved. Unitarity has to be obeyed
in all subenergy channels of the inelastic amplitudes
[9,10]. The dominating contribution in the LLA comes
from multiparticle states obeying the conditions of
multi-Regge kinematics (see Fig. 1):

s =(pA +pB ) =2(papa )

s;=(k;+k; &) =2(k;k;, ), i =1, . . . , n+1,
~0 PA' ~n+1 PB'& ~i q'+1

action approach was proposed [13].
The effective action describes the scattering and pro-

duction of particles in the multi-Regge kinematics. In
particular, the tree approximation of the rnultiparticle
amplitude reproduces the leading contribution from the
sum of tree diagrams of the QCD. Compared to original
QCD this formulation is significantly simpler since it
does not involve fields with Lorentz and spinorial struc-
ture. This is related to the fact that in the LLA the heli-
cities of scattered particles are conserved.

In the considered multi-Regge kinematics there is a
natural separation of the longitudinal and transverse
directions with respect to the scattering axis. The struc-
ture of the effective Lagrangian rejects this separation
and, in particular, one can achieve its form emphasizing
the scale and conformal symmetries separately in the lon-
gitudinal and transverse subspaces. The conformal sym-
metry in the impact space turned out to be a useful tool
for investigating the partial waves for the QCD pomeron
and the odderon [14,15]. This gives us reason to expect
that this effective action can be transformed (in the im-
pact space) to a two-dimensional model exhibiting full
conformal symmetry and will permit us to apply the
powerful methods developed for the two-dimensional
conformal models.

Reference [13]dealt with pure gluondynamics and with
quantum gravity. In a previous paper [22] the effective
action for full QCD including quarks was obtained
directly from the original QCD action by eliminating
with the help of equations of motion certain field modes.
In the present paper we discuss in detail some aspects of
the derivation and symmetry properties of the effective
action.

In the next section we derive from tree graphs the
effective vertices for scattering and production of quarks
and gluons. By an appropriate choice of the quark wave
functions and the gluon polarization vectors these ver-
tices can be represented in a simple form. In order to
write down the effective action with these vertices one
has to choose fields describing the scattering and ex-
changed particles. Our choice of fields is based on sym-
metry arguments discussed in the following sections.

We show that the effective action can be obtained
directly from the original QCD action by separating the
momentum modes of the fields according to the multi-
Regge kinematics and integrating out the modes of high-
ly virtual momenta. The fields appearing in the effective
action are now defined in terms of certain modes of the
original gauge and fermion fields. In Sec. III, we outline
the derivation under a slightly different aspect compared
to the paper [22]. We treat mainly the gluon case and
discuss shortly the generalization to quarks. In Sec. IV,
we use supersymmetry arguments to obtain the fermionic
terms out of the gluonic ones.

In Sec. V, we write the fermionic terms in such a way
that the action shows a clear separation of longitudinal
and transverse subspaces. A definite behavior with
respect to rotations and dilatations in both subspaces can
be attributed to the fields. We give the supersymmetry
transformation relating gluonic and fermionic terms.

Recently Verlinde and Verlinde [16] proposed an
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effective action for high-energy scattering in gauge
theories based on elegant geometrical arguments. We
comment on the relation to out multi-Regge effective ac-
tion (see also [22]).

II. THE EFFECTIVE VERTICES

In this section we derive the effective vertices and
graphical rules, which reproduce in a most economic way
the leading contribution in the multi-Regge kinematics
(1.2) to multiparticle tree amplitudes. Then the effective
action is written down in such a way that it reproduces
these rules.

We start from tree-level helicity 2~2 and 2~3 ampli-
tudes. It is essential to choose wave functions for gluon
and quark helicity states in a convenient way. The re-
sults for the tree amplitudes allow one to read off the
graphical rules. For writing the effective action we have
to introduce fields, the asymptotic states of which corre-
spond to the helicity state wave functions.

In what follows we decompose all the momenta ac-
cording to Eq. (1.3). In a similar way we also decompose
the gluon wave function (for notational simplicity the
color indices are suppressed) s"(k, A, ) with the helicity A.:

(p~E) (p~E)
s"(k, A, ) = pg+ p&~+@~(k,i, ).

papa p~p'a
(2.1)

Since in the multi-Regge kinematics we have a separation
of the longitudinal and the transverse components it is
very convenient to introduce the light-cone variables and
the complex transverse coordinates:

E~L (k, + ) =eL (k) (5", i—5~2)+ — p~zv'2 &2s k+

E~L(k, —)= (e~L(k, +)]*;
(b) in the R gauge,

(2.5)

E~(k, —)=e~(k) —(6", i—V~)+ pg . ,&2 ' ' &2s k
(2.6)

E~(k, + )= [E~(k, —) j" .

The helicity states given by Eqs. (2.5) and (2.6) are deter-
mined up to the phase factors eL(k) and e~(k). As a
consequence of Eq. (2.4) they are subject to the gauge
transformation

eL(k}=— [e~(k}]*.k (2.7)

We proceed in the similar way in the case of quark
fields. The quark helicity states u (k, A, ) have the follow-
ing forms (again the color indices are suppressed): (a) in
the L gauge,

QL(k, +)
uL(k, +)=

y (k, y (k +)=
+2k+

(the subscripts L,R denote the L or R gauges, respective-
ly). The gluon helicity states' have the following: (a) in
the L gauge,

k+ =ko+k3, k =k~+ik~, k*=k~ —ik~,

e+(k, A. ) =Eo(k, A, )+s3(k, A, ),
e(k, k) =ej(k, A)+ie~(k, I), ,

a, =-,'(a,+a, ), a=-,'(a, —ia, ), a*=(a)",

a x =a x =ax=a*~*=i .

(2.2)

uL, (k, —)=C[u (k, +)] (2.8)

y~ (k)
u~(k, —)=

+2k
P~(k, —

)

(C is the charge conjugation matrix); (b) in the R gauge,

(k~e~ )

d~(k, A, )=d~„(k,A, )—2 2 k~~,
k~

(2.3)

We choose the incoming particles momenta as
p"„=(+s /2)(1, 0,0, 1) and pg=(+s /2)(1, 0, 0, —1).

The straightforward method to obtain the effective ac-
tion uses the explicit form of the helicity wave functions.
In the case of gluons these wave functions E~(k, A, ) can be
written down in the axial gauge where the gauge-fixing
vector is either the incoming momentum p~ (L gauge) or
the incoming momentum p~ (R gauge), as shown in Fig.
1. Moreover they can be parametrized by their trans-
verse components e~(k, A, ) (see [13]). Then the gauge
transformation of the transverse components e~z(k, A, ) of
the gluon wave function,

(2.9)

uz(k, + ) =C [uz(k, —)]

(2.10)

In Eqs. (2.8) and (2.9) the functions y~(k) and g~(k) are
arbitrary phase functions modulo which the helicity
states are determined [compare Eqs. (2.5) and (2.6)].
Since the helicity wave functions uL and u~ are physical-
ly equivalent [i.e., uL ( k, A ) =uz ( k, A ) ] we get

1/2

XL, (k) = „, I Xg (k) l*k

written down in the complex number notation takes the
form of the phase transformation

eL (k, i, ) = — [ez(k, A, )]*k (2.4)
The helicity state in the axial gauge defined by the vector n"

(nk&0) is an eigenvector of the rotation generator belonging to
the little group simultaneous of both vectors k" and n".
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which is the relation analogous to the gauge condition
(2.7).

Consider now as an example the tree approximation of
the gluon production in the quark gluon scattering. For
definiteness we take the case that all particles have the
same helicities I,=+. As known from Refs. [3,17] the
result, being a sum of many Feynman graphs, can be
written in the factorized form as shown in Fig. 2 (where
gluons and fermions are denoted by wavy and solid lines,
respectively). Using the form of helicity states intro-
duced above and the complex number notation we obtain

PA'

PA PB

FIG. 2. The gluon production in the gluon-fermion scatter-
ing.

eL(k)*
[gt~.„eB(pz )gB(p„.)V'2p„. ], g&2t„"„q&, [gt„BV'2PB+XL(PB)eL(PB ) ]

k q2
(2.11)

where the matrices tb, are the color group generators of the quark representation. Expression (2.11) is a product of the
effective vertices corresponding to the scattering processes appearing on both ends of Fig. 2 and the gluon production
vertex. They are connected by the propagators of the helicity + fermionic particles (1/q').

We present also for further reference the expression describing the helicity —gluon production in two-fermion
scattering (both having the helicities +). The tree-scattering amplitude (see Fig. 3) has the form

n& 1 kn)n2 ~ Re (k)'
[g~2t„„XB(pg )+B(pg ) —,'(pg +pg )], ig~2f q, qz k'

2tB'B+L (PB') +L (PB ) g (PB + +PB'+ ) 1

where f' ' are the color group structure constants. There appears in the large square brackets the efFective vertex
describing the gluon production from the t-channel gluon line [13].

Another example is provided by the helicity + fermion production in the quark gluon scattering (again all gluons
have the helicities +) as is shown in Fig. 4. The tree approximation scattering amplitude has the form

n2A'A 1
eR(PA) eB(PA ) '(PA —+PA —)]—

— n, , gL(k)x gv'2t„„'—q', V'k+ 1

q2
, [gt„BV'2pB+&L(pB )eL(pB. )'] . (2.13)

Again from Eq. (2.13) one can read ofF the corresponding
effective vertices and the propagators.

As these examples show, despite the color indices there
are no other indices. This is an essential simplification in
comparison with the original formulation presented in
Refs. [3,17]. Appendix B collects Feynman rules from
which one can write down the corresponding expression
for arbitrary process under consideration.

We want to write the effective action which reproduces
the above tree formulas. For this the wave functions
ei, eR,yL, yR have to be related to the wave functions of

yL(k)
y+(k) =V'2k+

y~+(k) =V 2k+
yL(k)

(k) =V 2k, , (2.14)
XB(k)

y*(k)=V 2k
gB(k)

k

fields appearing in the effective action. These relations
are

eL(k) eB(k)$*(k)=2&2, (f(k)= —2v 2
k k

PA~ PB
PA' PB'

PA PB

PA PB

FIG. 3. The gluon production in the gluon-gluon scattering.
FIG. 4. The fermion production in the gluon-fermion scatter-

ing.
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The Coulomb interaction in the t channel is carried by
real A+ fields in the case of gluon and in the case of fer-
mion by complex a+, a+ fields [22]. The gluonic fields

A+ should not be identified with the light-cone corn-
ponents of a gluonic four-potential (see Sec. III).

S =Sk+S, +S,++S
where

(2.15)

The effective action reproducing the effective vertices
and propagators discussed above is given by

Sk SkS+S

S,=f d x[—
—,'(O'P')O(BQ")+iy 'Cluny +i@ OB'y '],

Sk = d x[ —2A+BB'A' ia—+8'a ia—+'Ba ia —'Ba+ ia—8'a+*],kp

(2.16)

S, = g f—d'x —(a a*y)T (ay*)A; ——(a*y)T (a ay*)A; —[g*,t (a aq )]A; —[y, t'(a, a*~")]A;

a" t—'(d y )(BP'*)—a+ t'(8 y+ )(B*P')—(8 j* )t'a+ (BP") —(8 g )t'a+ (8"P')

(2.17)

S, = —g fd'x —(a a'y*)T'(ay)A' ——(a*(t)*)T (a ay)A —[y't (a ay )]A2 2

—[g t'(a a*~*,)]A' —a*t'(a,y )(ay') —a t'(8 y')(B*P")

—(B~g* )t'a (BP') —(8 g )t'a* (O'P'*) (2.18)

S =g fd x(P'(BA )T'(8*A ) —P'*(8"A )T'(BA )

2
——{p'[—a+t'(Ba )+(8*a+)t'a* ]+/" [a+t'(8*a* )

—(Ba+ )t'a ]

+y'[ —(pa* )t'a++a t'(8*a+ )]+/'*[(8'a )t a+ a* t'(Ba+—)]]
+i [g t'a* (O'A+ ) f ' t'a —(BA+ )+a t'y*(8*A+ )

—a' t'y (BA+ )

+a+ t'y~+(8*A' ) a+t'g+(BA ' )+j—+t'a+ (a" A '
) —g+t'a+(~A ')]) . (2.19)

The bar over fermionic fields denotes complex conjuga-
tion (only for the Majorana particles we have g=y',
a=a*). The indices a and a refer to the adjoint repre-
sentation of the gauge group and the quark representa-
tion, respectively. In brackets bilinear in gluon fields the
trace in the adjoint representation is understood. T' are
the matrices representing the generators of the adjoint
representation:

( T') = if '"' (A. , T'M2—)= if '"'A )A p .—

In brackets bilinear in the quark fields the sum over the
gauge group indices of the quark representation t' and
over flavors is understood. The operator
o=4(a a —aa*), @=a—a.

In the next sections we present the symmetry argu-
ments which justify the choice of fields given by Eq.
(2.14) and lead to the effective action (2.15).

III. EFFECTIVE ACTION
FROM THE QCD FUNCTIONAL INTEGRAL

In the previous section the effective action was ob-
tained by analyzing the leading contributions of tree
Feynman graphs. On the other hand, effective action is
conventionally understood as a result of some fields ap-
pearing in the path-integral representation being integrat-
ed out. The aim of the present section is to show that
also the effective action (2.15) can be obtained in such a
way, i.e., by integrating over certain modes in the original
QCD action. This integration procedure differs in some
aspect from those which one encounters most frequently.
In the usual situation one integrates over all modes of the
fields which do not appear in the initial and final states.
In our case, because of the multi-Regge kinematics (1.2),
the outgoing particles are close to one of the incoming
momenta p„or p~. The virtual particles transferring the
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momentum through t channel carry small longitudinal
momenta. Because of this separation the integration over
modes which are absent in the resulting effective action is
more sophisticated than in the more familiar cases
(Heisenberg-Euler electrodynamics or the integration
over heavy fields). A similar asymmetric separation of
modes appears in the derivation of the effective action for
the high-temperature limit.

We consider the high-energy scattering of gluons and
quarks of peripheral type, i.e., with momentum transfer
of order p~, where s &&p~ &&p . In the leading contribu-
tion essentially all produced particles are in momentum
space either close to the incoming particle pz or close to
Pg.

Let us start the discussion with the pure gluonic case.
We shall concentrate first on the particles Aying approxi-
mately in the direction of the incoming momentum pz
and treat the other incoming gluon as an external source.
In the light-cone axial gauge A' =0 the gluonic part of
the QCD action expressed in terms of the light-cone com-
ponents A+ and the transverse components A~
[Eq. (2.1)] takes the form

We define

(3.2)

and integrate over this field combination. Simulating the
effect of the particles Qying close to pz by an external
source, the modes of A + with small k could be used to
describe this source.

Performing the Gaussian integration over A'+ we ob-
tain

S = f d x —A'OA' +gf' '(A'8 A ) 8 A'P4 1 1
1 2 g a

2

+ g gabcIab'c'( A b g A ca) ( A b'g A c'p)
2 CT

a2 P

gf ' 'A—A ' 8 A 'P
CT P

S = f d'x —A' A "+—(a A' +a A-)'1 1

2 + 0'

2
g gabe gab'c' A b A c A

b'o
A c'P (3.3)

2
g yabcyab'c'A b A cA b'aA c'p

4 0 P (3.1)

gf' '{A'—8 A )A' gf' 'AbAcB—A'p The transverse components A are the physical gluon
fields. We use the complex notation for transverse vec-
tors and derivatives introduced above to write the action
in the form

S = d" ——A' A" t [AT'c3 —A*—] 8 '(BA'+O'A") — [(AT'8 A*)]B: [AT'd A*]

2

+i—[ AT'A *](BA—O' A *)— [ AT'A "][AT'A *]
2 8

(3.4)

We divide the transverse gauge fields A' into parts with
respect to the corresponding momentum k:

A'~ A'+ A;+A' .

A. represents the modes where

k+ k «kk*-p~~.

(3.5)

(3.6)

This is the typical momentum range for exchanged parti-
cles in the peripheral scattering.

A, represents the modes where

k+ k»kk*-p2 . (3.7)

These modes will be integrated out in the next step. We
integrate generally over all modes with ~k ~))p,f. For-
mally our approximation does not include the effects of a
running coupling. They are not associated with loga-
rithms of the large energy s. However, from this it be-

comes clear that in the resulting action the coupling is to
be understood as renormalized at a scale of order pz,
which we assume to be large compared to the hadronic
scale p.

The original notation A is kept for the modes, where

k+ k -kk*-p~~ . (3.8)

ik+k kk'i &(pi . — (3.9)

The effect of pairs of particles not being in the multi-
Regge configuration as well as the effect of particles being

This is the typical momentum range for scattering and
produced particles going in the s-channel direction.
Moreover, the dominant contribution comes from s-
channel intermediate states with particles strongly or-
dered and well separated in longitudinal momenta ac-
cording to the multi-Regge condition (1.2) and close to
mass shell: i.e.,
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off shell (in addition to the effects obtained by integrating
over A, below) go beyond our approximation. A sys-
tematic study of such corrections has been started in [11].

Now we analyze the terms resulting from the action
(3.4) after substituting the decomposition (3.5) with
respect to momentum modes.

The kinetic term decomposes into three parts. By
definition the propagation between different modes is
small. In the kinetic term of A the transverse derivatives
and in the one for A

&
the longitudinal derivatives dom-

inate

f de[ —2A', a, a A;* —
—,
'A' A"+2A'aa*A *] .

(3.10)

We concentrate now on the second term in (3.4). Its
dominant contribution comes from the configuration,
where the field, on which 8 acts, has large k and the
field on which 8 ' acts has small k . From this we un-
derstand that the form of this term with respect to 0
leads naturally to the ordering of k and to the multi-
Regge kinematics (1.2).

Consider first the case if both fields entering the

FIG. 5. Vertices resulting from the second term in the action
(3.4) by separating fields modes of types A (dashed line), A
(solid line), and A, (double line). %'e imagine the graphs as
parts of graph for the multiparticle amplitude in Fig. 1. The s
channel goes vertically and the t channel horizontally. Lines
going more to the right carry smaller k

current (AT'a A') are not of type A, i.e., describe
scattering particles. If also the third field is not of type
A, then the resulting term describes particle production
by bremsstrahlung [Fig. 5(a)]:

——[(A+A, )T'a (A+A, ) +(A+A, )'T'a (A+A, )]a [a(A'+A;)+a'(A'+A;)'] .2 (3.1 1)

If the third field is of type A then the corresponding term describes peripheral scattering of particles close to p~. We
introduce [22]

A = — aA A* = — a'A*2 2
+ a ~ + (3.12)

and write the contribution as [Fig. 5(b)]

'g[(A+A, )T a (A+A, )"+(A+A, )'T a (A+A, )](A;+A;") .4

Consider now the case where two fields are of type A. Defining [22]
a*A*=a A, aA =a A",

we have the contribution [Fig. 5(c)]

—[(A i+A)T'aA +(A +Ai)'T'a A ](A++A+')

(3.13)

(3.14)

(3.15)

describing particle production. Typical A carries a large longitudinal momentum component k, which is of the
same order as the one carried by A. The corresponding momentum component carried by A+ is much smaller. The
multi-Regge chain with strongly ordered momentum components k appears by iterating this vertex. Because of the
mass shell condition (3.9) for fields of type A the multi-Regge kinematics (1.2) holds. The definition of A+ takes into
account that the large momentum denominators have to cancel successively against corresponding numerators. Using
this notation we keep in mind that the A+ and A are not independent.

There are more contributions from the second term in (3.4) where the field entering with the derivative a is of typeA:

ig ' [aA T'(A + A, )+a'A' T'(A + A, )*]a '(aA'+a*A'*)

A T'A + A* T'A ' (aA'+a*A'") .
a a (3.16)
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If the k momentum component of the last field is much
smaller than those of the other fields, then the first term
contributes to the production of bremsstrahlung type,
Fig. 5(d), and the second gives a small contribution.
Here ( A + A, ) is to be replaced just by A „because the
corresponding momentum obeys (3.7).

In the other case, if the k component of the last field
in (3.16) is of the same order as the one of A, also the
second field in the curly brackets describes a quasireal
gluon (3.9) [replace ( A + A, ) by A]. The result contrib-
utes to scattering of particles close to p~, with A
describing the interaction with particles closer to p„[Fig.
5(e)]. Then the second term is important and produces
an unpleasant singularity in the multi-Regge limit, where
for the exchanged particles k is much less than the
transverse momentum k. We return to the last case in a
moment and show that the singularity cancels.

Consider now the bremsstrahlung contribution of
(3.16). The large longitudinal momentum in the denomi-
nator of the A

&
propagator cancels, if the adjacent vertex

radiates bremsstrahlung. The corresponding contribu-
tions to particle production are of the same order as the
one by the vertex (3.15) and adding them the latter vertex
turns into the pffective vertex. Clearly only one A

&
prop-

agator is compensated by one bremsstrahlung vertex.
Contributions with more A

&
propagators are suppressed

by powers of large subenergies in the multi-Regge kine-
matics. Therefore, we integrate over 3

&
just by picking

up the bremsstrahlung contributions and including them
into the nearest effective production vertex. In this way

I

we are led to consider the contributions to particle pro-
duction shown in Fig. 6.

The sum of the first two terms (in both cases) has the
same color structure as the third term. In momentum
space the third graph is in both cases proportional to

2

Iql'

The sum of the first two bremsstrahlung terms yields cor-
respondingly the momentum factors

1 ~ ~ 1 1—g (k*A +kA')= —g —A + A*
(p+k)' k

(3.17)

which can be related to the effective bremsstrahlung ver-
tex

—'g(aa'a') '
A r (W, +a*,)+c.c.a* (3.18)

We have used (3.7) for the A, propagator, allowing the

approximation (p+k) =p k+, and the mass-shell con-

dition (3.9) for the momentum k of the produced gluon.
The resulting contribution correspond to replacing the
particle production vertex (3.14) by the following
effective vertex being the sum of expressions (3.14) and

(3.18):

——[[(a A)7 (BA )]a'(A' +A+*)+[(a 'A*)7'(a*~* )]a(~~ +~~+)I (3.19)

There is no contribution from bremsstrahlung to the production of particles belonging with respect to longitudinal
momentum ordering (1.2) not to the adjacent vertex. This would take more than one A, propagator and is suppressed
as discussed above.

This is also the reason why the third term in (3.4) does not contribute to particle production. This term gives no
essential contribution with one or more of the involved fields being of the type A, . Therefore, it was possible to do the
A

&
integral without mentioning about this term.

When in the third term of Eq. (3.4) two fields are of the type A, this results in terms of the form

[AT'(BA )+ A' T'(a*A* )]a: [AT'(a' a'-'a*, )+ A' T'(a a 'A )]

or

[AT'(BA )+A'T'(a*A' )]a: [(a A)r (a a'-'a*, )+(a A*)z'(a a-'a, )] .

(3.20)

q-k
+ u

FIG. 6. Diagrams contributing to the
e8'ective production vertex.

kl k k1 kl
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In order to compensate the denominator in the first case
the particle corresponding to A. + has to have a large k
component compared to the one of A in the second set of
square brackets. Then the propagator ofA+ would have
a large longitudinal part, i.e., the modes are in fact of
type A

&
rather than of type A. Therefore, the first term

in (3.20) gives a negligible contribution. In the second
case the large denominator should be canceled by the mo-
menta of both fields in the second set of square brackets.
But only one of them can have a large k component.

We see that the only non-negligible contribution of the
third term in (3.4) arises in the case if all fields are of type
A (corresponding to elastic scattering) or in the case if
one field is A and the others are of type A (correspond-
ing to the "right end" of a multi-Regge chain) (Fig. 7).
Both contributions are represented by the vertex

—(A' +A")aa*a: [AT'a A'] .
2

(3.21)

Indeed, the integral over A+ with the kinetic term (3.10)
and the vertices (3.13) or (3.15) (omitting A, in those ex-
pressions) and (3.21) reproduce the mentioned contribu-
tions of the third term in (3.4). The vertex (3.21) can be
understood as describing the scattering of produced par-
ticles close in momenta to the right incoming particle
with momentum p~. There are more contributions of
this type, Fig. 5(e), arising in particular from the second
term in (3.4), if one of the fields is A . Such a contribu-
tion is contained in (3.16) as discussed above, if the
second field ( A + A, ) in the curly brackets is of type A.
Another contribution is contained in (3.13): we express
the field of type A as A (3.14) instead ofA+ and arrive
at

and in the second case by replacing A by A+,

4
—[a-(aa*) 'A. ]T'(aa'A-)(A'++A'*)+c c

4 2

(3 25)

There is an additional factor —,
' since now two fields are of

the same type. Indeed, the first two graphs in Fig. 6 are
equivalent, if the solid and dashed lines are not dis-
tinguished.

The fourth term in (3.4) does not involve longitudinal
derivatives and may seem to be unimportant in the con-
sidered asymptotics. Nevertheless, it gives rise to singu-
lar contributions compensating the ones in (3.23) (com-
pare [22]). Indeed, its contribution in the case if one of
the fields is A, is given by

—[(a*a A* )T'A*+ AT'(aa A )](aA —a'A" )
2

(3.26)

and can be represented up to total derivatives as

2
—(a A' )a[AT'(aA —a*A*)]+c.c. (3.27)

placed by a type A one and also if both adjacent vertices
have a type-A field. They result in vertices, which are
readily obtained from the bremsstrahlung part (3.18) of
the effective vertex (3.19).

In the first case by substituting A+ by A via (3.12),

i—g ,'(—a' '-AT'aa'A )a (aA'+a'A")+c. c.

(3.24)

——[a aa" (A' +A" ][AT'a A*]
2

(3.22)
We sum the contributions (3.23), (3.24), and (3.27) and

obtain using (3.9) the scattering vertex for particles close
to p~:

This contribution cancels the one of (3.21) from the first
term in (3.4). Therefore, we are left with the contribution
from (3.16). Omitting A, we rewrite it up to the total
derivatives as

—kg[A a[AT'a (aA+a" A*)]

+-,'(a A' )a[AT'(aA+a'A')]]+c. c. (3.23)

Integrating over A
&

we took into account up to now the
particular contribution (Fig. 6), if in one of the adjacent
vertices there is a types' field. There are corresponding
contributions from the case, if this type-A, field is re-

A a

2
A T' a+a* Aa* + a

+C.C. (3.28)

In Eq. (3.28) we denoted by A the field A restricted
to the real values. We observe, that in the dominating in-
teraction terms, A+ and A+ enter always as the sum.
Therefore, it is consistent to relax the constraint relating
A+ and A* and to consider A+ and A as real and in-
dependent (denoted by A+ and A, respectively). This
has also been used to obtain (3.28).

In the gauge A =0 with the momentum pz of the
right incoming particle as the gauge vector (R gauge) the
current of the scattering particles close to p, has a simple
form (3.13),

j' =i(AT'a A*), (3.29)

whereas the current of scattering particles close to p~ is
obtained from a sum of many contributions as (3.28):

j+ =i( AL T'a+ Al*) . (3.30)

FIG. 7. Contribution from the third term of the action (3.4).
The blob represents the nonlocal vertex involving 8: .

AL represents the transverse components of the gauge
potential in the L gauge, A+ =0, related to A = Az by
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aA, = —a'A*. (3.31)

The result (3.30) was to be expected, because of the
parity symmetry interchanging incoming particles A and
8. The etfective vertex (3.19) is symmetric under this
transformation because of (3.31). Parity symmetry of the
scattering terms determines the form (3.30} of j+ if j'
(3.29) is given.

Let us discuss the argument to derive (3.31) and return
to the gauge field action (3.1) before the integration over
A'+. Any correlation function with a„A inserted is
small O(g) due to the form of integral over A'+. So in
both the R gauge (A =0) and the L gauge (A+ =0) we
have correspondingly ( Az = A )

a„Ag=o(g), a„A;&=o(g) . (3.32)

From the gauge transformation relating A~ and AL we
have the following relation between the transverse corn-
ponents written in complex notation:

aAL =aAg+aa*co'+O(g) . (3.33)

Here co'= —8 AI' =8+'Az+ is the parameter of the
gauge transformation. Together with (3.32) this leads to
(3.31) up to O(g). This relation corresponds to the one
between the polarization vectors (2.4). It suggests to in-
troduce a complex scalar field P' replacing the transverse
components of the gauge potential in describing the
scattering gluons [13]:

A a A a &a+pa A ae —
asgard (3.34)

Sk~g= —2 f d x A nc aa*A'

S, =—f d x[j' A ~+j~A' ],
(3.35)

S = 'g fd x [J'*(a' 'A') —J'(a 'A")]
J'*=3 A ~ T'BA

We have shown that the dominating contributions of
the interaction terms in (3.4) can be represented by the
efFective gluon production vertex (3.18) and by vertices
involving the currents j (3.30) and j+ (3.29} of scatter-
ing gluons close to p z and p~, respectively:

Sg Sk g +Skag +S g +Spg

1S = —— d x A'OA'
ksg

g4 Jaw a~ Ja ae

J' =i [a*yT'a ay*+ay'T'a a'y],

j' =& [a'p*T'a ap+apT'a a*/ ] .

(3.36)

Now the analysis can be generalized to the case with
quarks included. We decompose the quark field g' into
light-cone components (see Appendix A).

(3.37)

which we get by substitution of definitions (3.12) and
(3.14) into (3.10) [22). The appearance of AI in j+ is
essential, because this guarantees symmetry under inter-
changing the incoming particles p„and p~. The symme-
try of the production term holds because of (3.31). Start-
ing the analysis with particles close to pz and working in
I. gauge A+ =0 we obtain the same result.

We stress that the fields appearing in the result (3.35)
are just different modes of one and the same gluon field
A. It is obtained just by rewriting (3.4) and integrating
over modes with large longitudinal momentum com-
ponents (3.7) with approximations keeping the dominant
contributions to high-energy peripheral scattering.

We did not include the vertex (3.25) involving three
particle of type M and its counterpart obtained by inter-
changing indices + and —.These vertices do not con-
tribute to tree amplitudes, and therefore they did not
arise in the graphical approach in Sec. II. But they give
rise to Reggeization of exchanged particles as well as s-
channel intermediate states with virtual scattering parti-
cles. The sum of both contributions to Reggeization is
independent of the parameter pz introduced to separate
A

&
and A. If we do not restrict the virualness of the

scattered particles A between vertices involving A. + then
the latter contribution yields the complete Reggeization.
Under this assumption vertices of the type (3.25) do not
appear in the effective action. We plan to discuss this
point involving the bootstrap relations in a separate pub-
lication.

By introducing P' (3.34) we resolve the constraint re-
lating A = Az and AI and obtain (3.35) with the substi-
tutions

S„„= f—d'—xay'aa*y'*,1

Note that because we consider the fields A + as being in-
dependent ones the coefficient in Sk differs from one

We choose the gauge A ' =0 and obtain, for the fermion-
ic terms of the QCD action,

iver"(a„igr'A„')%=i''+r—+a 0'++ 44 ra 0-+2(4 --t'r 0 )-A' +-g-(4' t'r. 4 +0 r r.4' }A-

(3.38)
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We introduced

qua —qa +B i $ qa (3.39)

and used the notation

=4B,B + „a,=B.B, S,=r.B (3.40)

We assumed also the summation over the fermion color
indices which are suppressed for simplicity of notation.

Now we see that P'+ plays a role analogous to A'+
above. Performing the Gaussian integration over f'+ and
3'+ we are left with A and g . Analogous to (3.5) we
decompose iit into modes corresponding to the kinemat-
ic regions (3.7), (3.9), and (3.6), respectively:

iti —+0—+0—. (3.41)

Integration over 3 i and gi leads to eft'ective vertices of
gluon and fermion production. Analogous to A. + we in-
troduce

a~ =
it+= —B—

4 &it — 0+= —
4 B

it — rp'—

(3.42)

and the analogon of A is g itself.
After the integration over i''+, 3 '+ with (3.35) the fer-

mionic kinetic term becomes

fd'x 44i r B+0i-+-40 r-B--+inst'+$g)

+if $iit'+ (3.43)

2i [(B*g )—u + —(Bg* )u ],
= —2 [(B*q )- —(By* )-

=a* u ++a u, iij+ =a+u+++a+u+
The scattering quarks are now described by the complex-
valued fields g and y*. In the case of Dirac fermions
they are not related to each other by complex conjuga-
tion, but such a relation holds in the case of Majorana
fermions.

Despite the common origin [see Eq. (3.42)], the fields
t/r+, g in Eq. (3.43) are treated as being independent
ones. This again leads to the coefficients in front of terms
involving these fields being di6'erent than the coefficients
which follow from the substitution of Eqs. (3.41) and
(3.42) into (3.38) [22].

It is convenient to decompose the fermion fields with
respect to a basis of Majorana spinors u, (i,j=+,—

)

(see Appendix A):

=2i [(By )u —(B*y* )u ],
=2'[(Bg )

—(B*y* ) ],
=a* u ++a u, g+=a+u+++a+u+

(3.44)

Starting the analysis with particles close to pz and
working in the L gauge A+ =0 we would describe the
scattering fermions instead by f+ with components y+
and y+. Their relation to g and y* is obtained in an
analogous way as we obtained the relation (3.31) between
Az = 2 and Al. Temporarily we write fz for the field
in the R gauge, 3 =0, and PL for the field in the L
gauge, A+ =0. The form of the integral over itt'+ in the
R gauge or the analogon g' in the L gauge leads to the
relation

0R+-+ —.'r —BA'~ —=&(g»

B+eL —+
g r+~AL+

(3.45)

The gauge transformation relating the two descriptions
yields gl =fz +O(g) and this implies

—X+ X—~ +X— X+ (3.46)

IV. RECONSTRUCTION
BY SUPERSYMMETRY RELATIONS

We use the supersymmetry in Yang-Mills theory with a
Majorana fermion in the adjoint representation. The ac-
tion has a form

SvM= f d"x — I'„'g " + g'—(S,b igT,'~ A—')g—

(4.1)

where the spinor itj' obeys the Majorana condition

P'=Cf'" and (T')b, =( i)f'"' . —

Equation (4.1) is invariant under the transformation

5A „' =2iar„g'= 2i itj'r„a—,

5itt'=cr„g'" a,
,' [r„r.l—

(4.2)

but the algebra of transformations (4.2) does not close on

The complex conjugation of Eq. (3.46) leads to the rela-
tions between fields with a bar (f,g').

The modes of type A in the components a+, a+ (also
a+, a + ) describe the exchanged fermions. Originally
they are not independent since there is a relation between
fields with index plus and those with index minus from
(3.42). As we already mentioned above, this constraint is
relaxed [22] and we consider a+, a+ and those fields with
a bar as being independent ones. Only for Majorana par-
ticle we have a=a* and a*=a. Similar to the case of
A+ this turns out to be consistent and correctly accounts
for the independent degrees of freedom.

Instead of repeating in detail the analysis of the in-
teraction terms in the case of fermions included we show
in the next section how supersymmetry can be used to
reconstruct the fermionic terms from the known gluonic
ones. For this we temporarily restrict ourselves to one
Majorana field and change its gauge group representation
to the adjoint one (r'~ T').
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translations without introducing auxiliary fields [18].
We restrict ourselves to the subset of transforrnations

(4.2) by choosing the parameter a in the form (see Appen-
dix A)

(4.3)

Sk, = d x —A' A' +—'y

=fd x ——(B P')C3(BQ'*)

with a+ being a Grassmanian complex number. In this
case the algebra of transformation (4.2) restricted by con-
dition ( .3) closes on the translations (B ) as is required
by supersymmetry [19]. Moreover, this subset of trans-
formations leaves A' invariant and therefore it is ap-
propriate for working in the 8 gauge A ' =0.

Under this subset of transformations (4.2) the trans-
verse gauge fields A ' and the fermion field projection 1t
transform into each other: i.e.,

+ (By' ) (B*y'*)1
(4.8)

d"x j' +j' A+ (4.9)

with the current j' given by

It is invariant under transformations (4.5).
The minimal coupling B+5b, ~B+5&, (ig—l2)A'+Tb,

in Eq. (4.8) leads to the interaction term [compare (3.36)]

5A' =2iay f'
5$' = —2B (y A')y+a .

J' = —i(B B'y)T (By*)+2(By )T (B*y').
(4.4)

(4.10)

Now, applying the transformations (4.5) to the currentj' (j'* ) we obtain its superpartner U" (u' ):
Above, in Sec. III, we have introduced the fields P' and

[Eqs. (3.34) and (3.44)] replacing the transverse com-
ponents A' of the gauge fields and the spinor field P' .
The transformation law of fields P' and y' read

5P'=4ia+y'*, 5P' =4i a+y'

5y' = —2(B P")a+, 5y'*= —2(B P')a+ .

Disregarding contributions O(g) we find that fields A'+
and f'+" [Eqs. (3.2) and (3.39)] also transform into each
other

5A'+ =2iay+f'+,
5$'+ = —2(B A'+ )a .

(4.6)

These fields are integrated out and we have separated the
modes of the remaining fields A and g with respect to
kinematics. For the modes of type A, related to the
scattering particles close to pz, we have the supersym-
metry transformation given above (4.5). For the modes
of type A the transformation follow also from (4.4) by
their definition in terms of A

6j' =2m+8 U'*, 5U'* =—4io.+j'
U'* = —2(BQ" ) T'(B"y* ) .

(4.1 1)

The interaction terms of the scattered particles are ob-
tained by constructing the invariant S, with respect to
the transformations (4.5) and (4.7) and involving the
currents j',U' and fields A +,a+. It is given by the for-
mula

S, = — d x j' +j'* A + +U'*a+ —U' a+*

S, = g fd'—x —'(B B*y)T'(By*)A;*

—
( By )T'( B*y* ) A "

(4.12)

Under the transformations (4.5} and (4.7) the integrand of
(4.12) changes by the total B derivative (we use here that
in our kinematics B a+ is small).

In terms of component fields the action (4.12) takes the
form

A + =
—,
' [A.++A +],

5A+ =2i [a+a++a+a+ ],
5A = —) 0+

aa'-
5a+ = —2(B A+ )a+,
5a* =4a+(BA ) . (4.7)

We repeat that in Eq. (4.7) the field A + are defined by the
transverse part of gluon potential and should not be con-
fused with the corresponding fields in original QCD La-
grangian (3.1}. Similar as in (4.5} the remaining transfor-
mation follow by complex conjugation.

The kinetic term of the modes of type A has the form

—(B'y* )T'(BP')a' +H. c. . (4.13)

Supersyrnrnetry connects also the terms in the effective
action describing production of gluons and fermions. We
have seen that only one combination of the gluon fields
(RA +B'A '

) —A + transfers the interaction between
scattering particles. However, there are ferrnion ex-
changes of two types, a+ and a+, distinguished by the
Aow of helicity. Therefore, the reconstruction of fer-
mionic terms related to particle exchanges and produc-
tion is not straightforward if we start from the leading
gluonic terms. The considered supersymmetry subgroup
produces leading fermionic terms both from leading and
nonleading gluonic ones. There is a simple supersym-
metry relation between the exchanged gluons A+ and the
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5a+ = —4a+(B A+ ), Sa" =4a+(BA ) .
(4.15)

We write the gluonic production vertex as—g (J'P'*+ J'*t))') and we extend the form of the
effective current J' in such a way, that its variation under
(4.15) is a total 8 derivative

exchanged fermions with one helicity only. It is different
from relations (4.7) derived for A+, a+, a+ from their
definitions.

The corresponding transformations leave the kinetic
term of the exchanged fields invariant if only one of the
two fermionic terms is kept [see Eqs. (3.43) and (3.44)]:

Skz = f d x [
—2 A + BB 3 ' i—a +*8*a '*

] . (4.14)

The transformations are

a
5A+ =2ia+a+, 5A = —2ia+ a *

small contributions neglected in course of the derivation
above. The easiest way to reconstruct the missing fer-
mionic terms for particles close to p~ is to repeat the pro-
cedure from the beginning, i.e., concentrating on parti-
cles close to p~ and working in R gauge A+ =0. The re-
sults are analogous with the substitutions of indices+~—and P~P". To obtain the full effective action
with one Majorana fermion we have to add to the gluonic
action (3.36) the fermionic kinetic terms from (4.8) and
(4.21), the fermionic interaction terms from (4.13) and
(4.20) and further fermionic interaction terms S, + and
S + obtained from the latter S, and S by the substi-
tutions +~—,P~P*:

S =Sk, +Sk +S,++S, +S s+S~++S~ . (4.22)

The result (4.22) can be extended easily to the case of
Dirac fermion using definitions (3.44). In this way we ob-
tain the result given in (2.15).

We obtain the multiplet of effective currents

SJ'*=2a+(3 u'),
5U'= —4ia+J'

where

(4.17)

u'= ia ' —T'(B*A + ) .

From Eqs. (4.5) and (4.17) we see that

—g f d x(P'J'* —y'*u')

(4.18)

(4.19)

is invariant.
We write down this invariant explicitly and we add to

it analogous terms corresponding to the other fermion
helicity:

S +S = —g f d x P'" (a*a )r'(aa, )

J'*=— (BA )T'(O'A+ ) ——(8*a+ )T'a" . (4.16)
2

V. SYMMETRIC FORM OF THE EFFECTIVE ACTION

The resulting form of the effective action (4.22) still has
some unpleasant features. There is an inverse derivative

in the kinetic term of the g field and this term is
not symmetric under +~—.On the other hand, y and

y+ are not independent, see (3.46).
The separation of longitudinal and transverse dimen-

sions in the peripheral high-energy scattering should be
reAected by the form of the action. Separating modes ac-
cording to kinematics we have introduced different fields
for exchanged and scattering particles. Each term in
(4.22) is Lorentz and scale symmetric. We would like to
have these symmetries separately in the longitudinal and
transverse subspaces. The gluonic terms (3.35) and (3.36)
obey this symmetry property, except the kinetic term for
P, where it holds only after replacing by 48+8

Trying to assign separate longitudinal and transverse
scale dimensions to all fields, we arrive at an unsatisfacto-
ry conclusion for fermions: The supersymmetry parame-
ter a+ carries dimension —

—,', and this is clearly a longi-
tudinal dimension,

——a T'(Ba )
2 + dim o!+—

1

2

+iy' a T'(BA+ )+H.c. (4.20)
From this we have

0
Analogously the kinetic term for exchanged particles is
obtained from (4.14) by adding the contribution of the
other fermion helicity. It follows directly from (3.43) and
(3.44) that

S„=f d 4x
f
—2 A ' BB*A '

dim P= 0
J

dl Ill~ +—

r

1

2

d ~+ 0 ' d +

0

3
2

0

1

2

dima~ — l

(5.1)

—ia+*8'a" ia+Ba' ]
—. (4.21)

As we have seen the supersymmetry (4.3) and (4.4) al-
lows one to easily reconstruct the scattering and produc-
tion terms involving fermions if we restrict ourselves to
particles close to p„. Fermion exchange over a large ra-
pidity interval is suppressed and of the same order as

This assignment works only for those fermionic terms
reconstructed by the a+ supersymmetry (4.3) and (4.4),
i.e., S, , S . It is asymmetric under +~—.

However, the kinetic terms of type-A fields and the in-
teraction terms describing gluon production are sym-
metric under +~—and P~P". These terms also allow
a symmetric assignment of scaling dimensions:
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0 1
dim~+= ~, dim@+ =

2 2
(5.2)

The gluon fields have dim =dim&. %'e see that also fer-
mion production terms 5 +5 + involving both a + and
g+ are compatible with the assignment dim&. It is possi-
ble to achieve this also for the remaining terms by apply-
ing relation (3.46) connecting y+ and y . It is clearly

not compatible with definite transverse and longitudinal
dimensions of y+. At first glance this procedure seems to
be not unique. There are two ways to rewrite the kinetic
and the scattering terms of y compatible with (5.2).
However, it is reasonable to include from each of these
terms both possible results. The effective action for
gluons and for one Majorana fermion in the adjoint rep-
resentation then takes the form

S„,=f d x . ——(B*p')OBQ"+—y+DBy' + —y+*&B"y"
2 2

Sk~ =fd x[—2A+BB'A' ia—+ Ba' ia—'+'B*a"],

S, = —g f d x —[(B O'P)T'(BP")A+ +(B BP*)T'(B*P)A+]+A+(B y+)T'(By )

+ A (B y )T (B y )
—(Bp *)(B y )T'a —(B p')(B y+)T a* (5.3)

S, = g f—d'x —'[(B B'y')T'(By)A'+(B By)T'(B"y')A' ]+A'(B,y )T'(By )

+ A' (B*y* )T'(B y* ) —(BP')(B y )T'a —(B P'*)(B y* )T'a*

S =g fd x p'(BA )T'(B*A ) —p'*(B A )T'(BA )

——[p'( —a+T'(Ba )+(B*a+)T'a* )+p'*[a+T'(B'a* ) —(Ba+ )T'a ] J

+i [y* T'a* (B'A+ )—y T'a (BA+ )+y+T'a+(B*A' )
—y+T'a+(BA')

Relation (3.46) has to be considered as an additional con-
straint. The symmetry properties in the subspaces hold
for the kinetic term in Eq. (5.3) only after replacing CI by
48+8 . The behavior of the fields under Lorentz trans-
formations in longitudinal and rotations in transverse
subspaces is as follows. P is scalar in both subspaces.
3+ are vector components in longitudinal but scalar in
transverse subspaces. g+ and a+ behave as two-
dimensional spinors in both longitudinal and transverse
subspaces, where the indices + refer to the longitudinal
space and the presence of absence of the sign of complex
conjugation ( e ) indicates the behavior under transverse
rotations.

The new form of the effective action, in particular the
kinetic term in Eq. (5.3), leads us to a new supersymmetry

After removing from (5.3) all terms involving a+ the
remaining expression is invariant under the following
transformation acting on A+, P, P', y+,y+, a+ ..

p~a ~, ha ~ =v'2p+O'A+,
2

~4'=&&2P y+—b,P*=i &2P+y

B'4*, ay = P B'y .
2

' +
2

(5.4)

4+ ——6' =0, a+a +a Z+ ——&a

(5.5)

There is also the analogous supersymmetry 6* under

The transformations of y+ follow from relation (3.46). It
is convenient first to rewrite all the terms with g+ by us-
ing (3.46) into terms involving y+ before checking the in-
variance of the action (5.3) under transformations (5.4).

The supersymmetry algebra closes on transverse
translations:
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which (5.3) is invariant after removing the terms involv-
ing a+. The corresponding transformations laws are ob-
tained from (5.4) by formal complex conjugation.

The new transverse supersymmetry 5 allows one to
reconstruct the terms involving y+, a+ from the pure
gluonic ones. The terms involving y+, a+ are recon-
structed using 6* or simply by complex conjugation.
Compared to the original longitudinal supersymmetry
the transverse supersymmetry refers to the final form of
the effective action.

In the present form the symmetries discussed above are
to be considered merely as relations between interaction
terms. We have to keep in mind the relation (3.46) be-
tween y+ and y and also that the transverse parts of the
kinetic terms violates the separate scaling symmetries.

We can replace the fermionic kinetic terms in (5.3)
which are of second order in time by terms involving just
a first-order time derivative:

sg, =4i fd'x [(a*y',*)(a ay, )+(a"q *)(a,aq' )

+(a'y',*)(aa'y")+(a*y'*)(aa"q")] .

(5.6)

This is just the representation of the original free Majora-
na action in components B*y+ and By+. After this re-
placement the constraint (3.46) can be dropped. y+ and

are now independent. Together with their complex
conjugates they represent the field variables and conju-
gate momenta of a Majorana fermion. The symmetry
properties discussed above do not apply to this form of
the fermion kinetic terms.

VI. THE WEIZSACKER-WILLIAMS-TYPE
RELATIONS

Our derivation of the effective action is based on
separating modes related to scattering and exchanged
particles. Correspondingly we have obtained vertices
describing scattering of particles and effective vertices
describing particle production. It turns out that between
the scattering and production part of the effective action
there are relations which we call Weizsa, cker-Williams-
(WW-) type relations, which to each term in the produc-
tion part attributes in a definite way a term in the scatter-
ing part. These symmetry relations are the traces of the
common origin of fields of type A (P,y+) and of type
A(A+, a+) as certain modes of one and the same gluon
or quark field. They hold both for the cases of Dirac and
Majorana fermions.

Let us start with the term in S~ (2.19) describing the
gluon production from the t-channel gluonic line:

g f d X [y'(aA )T'(a*A ) —y'"(a*A )T'(aA, )] .

(6.1)

Separately, each term in (6.1) corresponds to a definite
helicity produced gluon.

Let us concentrate for definiteness on the term in (6.1)
involving P field. Consider the case that the field A
represents only "soft" modes in the sense that

ate*A 0. (6.2)

Then the integration by part in the considered term of
(6.1) leads to

—g f d X(a*/)T'(aA )A' (6.3)

Now we apply the following substitution rule to the
"soft" field A

=- —ia y*

which leads to the formula

ig f d x (a'p) T'(a ap') A '

(6.4)

(6.5)

Expression (6.5) coincides with the gluonic term in the
scattering part S, (2.17) (we use the fact that the longi-
tudinal momentum component k of A+ is small). The
substitution rule (6.4) implies the "softness" of the field
P* in (6.5). Also, let us note that because the A field is
a real one, the "soft" P* field is pure imaginary.

The analogous procedure can be applied in the case
when the A+ field in the first term of (6.1) is the "soft"
one:

aa*A, 0. (6.6)

The integration by part and use of the substitution rule

leads to

=-ia, y* (6.7)

ig f d x A ' (ay) T'(a, a*y*), (6.8)

+p'*[a t'+(a" a)
—(aa+ )t'a ]] .

We assume that a + and a+ are "soft": i.e.,

8*a+~0 and Ba+ ~0 .

(6.10)

(6.1 1)

Then the integration by parts in (6.10) and use of the sub-
stitution rules

a+ ——2iB*g+, a+ =-2iBg+ (6.12)

i.e., we recover the gluonic term in the scattering part
S, + (2.18), with the P' field being a "soft" one.

The similar considerations performed in the case of the
term in (6.1) involving the P' field lead to the substitution
rules for the "soft" A or A+ fields;

=-ia y,
(6.9)

A+ =- i a+p, —

and to expressions (6.5) and (6.8) involving the "soft" P
field.

The WW substitution rules (6.4), (6.7), and (6.9) can be
understood from the definitions of P (3.24) and A+ (3.12)
and (3.14) in terms of the original gluonic field.

Similar WW-type relations hold between vertices in-
volvirig fermionic fields. Let us consider the gluon pro-
duction from the t-channel fermion line [see (2.19)]:

——f d x [p'[(a*a+ )t'a* ] a+t'(aa )—
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lead to the expression then with the use of the substitution rules

a* =-2iBy, a =-.—2i3*y* (6.15)
—g f d x[(By' )(B'y )t'a +(B'y'*)(By* )t'&* j,

(6.13)

Ba ~0, 0*a* —+0, (6.14)

i.e., we recover [see (3.46)] the two last vertices in S, +
(2.18).

If we assume that in the expressions (6.10) a and a"
are the "soft" fieldS, i.e.,

and relations (3.46) and (3.47) we recover the vertices in
the third line of S, (2.17).

As a final example let us consider the following part of
the fermion production vertices in S (2.19):

i—g f d x jy* t'a (BA+ ) y t'—a. * (B'2+ )j . (6.16)

Res«icting the a, a* fields to the "soft" modes [see
(6.14)] and using the rules (6.15) we obtain from (6.16) the
expression

2g fd x 3' [(By*)t'(B*y*)+(B"y )t'(By )]=—2g fd x 3' [(B y )t'(B*y*)+(B y*)t'(By )], (6.17)

i.e., we recover the second line of S, (2.17).
Now, let us assume that in formula (6.16) the field &+

is a "soft" one [see (6.6)]. Then the substitution rule (6.7)
[see also (6.9)] supplemented by the integration by part
leads to

g f d x[(BQ')(B~y' )t'a +(O'P")(B~y )t'a" j

(6.18)

coinciding with the last line of S,+ (2.18). Also in the
fermionic case the WW substitution rules can be under-
stood from the definitions of y+ and a+ (3.44) and (3.46)
in terms of the original quark field.

VII. DISCUSSION

The effective action (2.15) describes QCD scattering
processes in the multi-Regge regime. It summarizes re-
sults about the leading contribution in this region ob-
tained by analyzing graphs using ideas of unitarity, s-
channel helicity conservation, and the separation of lon-
gitudinal and transverse dimensions. We have derived
the effective action from QCD by separating the modes of
the original gluon and quark fields according to the
multi-Regge kinematics and integrating over modes
which do not correspond to scattering or exchanged par-
ticles in the considered peripheral process. Supersym-
metry has been used to obtain the fermionic terms of the
effective action from the pure gluonic ones. This super-
symmetry is the subgroup of the one of the supersym-
metric Yang-Mills theory, which is associated with the
direction of the momentum of an incoming particle. A
supersymmetry related to the transverse directions trans-
forms the fermionic and gluonic terms of the final form of
this action into each other. The vertices corresponding
to scattering and production of particles are connected to
each other by Weizsacker-Williams type relations.

The resulting action reproduces the leading contribu-
tion in QCD to high-energy peripheral scattering ampli-
tudes in a most economic way, because most of the negli-
gible contributions in this kinematic region are excluded.

Therefore, we have a simple and symmetric structure of
the result. The fields describing the scattered and the ex-
changed gluons and quarks do not have four-dimensional
Lorentz or Dirac indices any more. They are attributed a
definite behavior under scaling and Lorentz or rotation
transformations separately in the longitudinal and trans-
verse subspaces, reAecting the kinematics of the processes
where the action applies. The action is symmetric (with a
modification in the kinetic term of scattering particles)
under scaling and Lorentz transformations separately in
both subspaces.

The applicability of the multi-Regge effective action is,
of course, restricted to the multi-Regge kinematics in the
scattering amplitudes, a condition which has been used in
all steps of the derivation. In this regime the action (2.15)
reproduces the leading contribution correctly. This is be-
cause in the considered asymptotics intermediate states in
all subenergy channels obeying multi-Regge kinematics
dominate. Contributions from pairs of particles in non-
multi-Regge configuration or from loops with particles
far off shell lead to corrections to our result [11].

In the dominating kinematics the longitudinal momen-
ta of the exchanged particles are small compared to their
transverse momenta. This condition is not included ex-
plicitly in the propagators of 2+ and it may be necessary
in some loop integrals to impose it by a cutoff. A
modification of the effective vertices would be desirable,
which suppresses contributions from outside of the
multi-Regge region.

In the s-channel intermediate states the scattering par-
ticles can be virtual as long as their momenta squared are
small compared to the subenergies. One may fix an upper
limit of the virtualness of scattering particles. Then addi-
tional triple vertices involving exchange particles (type
A ) have to be included into the action.

In the approach by Verlinde [16] a scaling argument
leads to neglecting completely the contribution of the
transverse field strength components to the gauge field
action. Different to Verlinde the contributions from the
transverse field strength squared are essential for our re-
sult. The integration over 2'+ produces the interaction
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terms from which we obtain finally the particle produc-
tion vertex. It seems that the approach [16] does not ap-
ply to the inelastic amplitudes.

Verlinde established a remarkable connection of their
effective action to the two-dimensional Wess-Zumino-
Novikov-Witten (WZNW) model. It was shown earlier
[20] that constructing amplitudes obeying just elastic uni-
tarity in s and u channels results in a factorizable S ma-
trix coinciding with the results for o models [21].

The multi-Regge effective action is the first step in a
new approach to high-energy peripheral scattering over-
coming the deficits of both the eikonal and the leading
logarithmic approximations. With this action we would
like to calculate QCD amplitudes including the effects of
multiparticle intermediate states and satisfying the uni-
tarity conditions in all subenergy channels. The
Weizsacker-Williams-type relations support the expecta-
tion that also the t-channel unitarity conditions can be
obeyed in this approach.

The separation of longitudinal and transverse sub-
spaces and of scattering and exchanges field suggests to
apply functional methods for further simplifications. The
exchanged fields ( A+, a+ ) are closely related to reggeons.
One should try to find a tractable representation of the
effective reggeon field theory. Conformal symmetry in
the two-dimensional transverse space is expected to play
an important role.

+ p

, (P' + p-)eR(p')T «(p) Ap

p' +

'~ (P+ + P~)eL, (P')*T eL(P)A'

—"(P'-+P-)«(P') T e (P)A '2 (py y py ) eL, (p') T eL(p) A

+
t

(P- + P' )XR{p')~"XR(p) A",

I

+
t

-';(P+ + p', )x~(p') &"x~{p}A"

~~ ~ "', (p- + p' )x (P')*~ x (p)A; ~(p+ + P+)xi.(p')~" xL, (p}*A"

'gxt p' x (p')t' '„(p)'

+

tqej(p ) a —~ XL {p)~p+

tgv p' Xtt(p')*t aiatt(p)

+'

teeR(p')a*~ X (p) ~p- 'gvV+X»(p) t a a»(p)

TABLE I. The scattering and production vertices.
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tseR(P') a+~ XR(P)~p-

-~(qi A-(qi)) T'(q.A+(q2)) "„'."'

a ~gxt p', X (p')t"a a;(p)-

-~(qtA-(qi))T (q2A+(q~)) "„'

APPENDIX A

Below we summarize our notation and conventions re-
lated to the fermionic sector of the effective action. We
introduce four nilpotent matrices r+ and r, r* according
to the formulas:

r+—=ro+r» r =r +&r1 ~ 2 e — 1 ~ 2

They satisfy the relations

P(q~ (q~i))'a+(q2) "k."'-

~ -(qi) (q~a+(q~))",' '

P'-(q~) '(q2. +(q~)) ",' '

P~(q~ a' (q, ))t*a+(q~)
'

»

+ 4r —r+& + 4rr
II- = 4r+r- ~- = —4r*r

(A3)

which lead to the decomposition of the unit operator in
spinor space:

(1'+) =1'+ ('Y) = )'

From the matrices (Al) we built four projection opera-
tors

P, (qua+(q2)) 'a (q, )",.

pa+(q2)t*(% -(A))*'» ~

0 Q QBBN

—P(V &-"",'")t'a (m)(q2 4, (q2))

a+(q2) t (qi a' (qi) )

P~(q~a(q2)) t'a (q~ )
'

I

—~(Xt k-""'"' )t'a-(qi)(q2&+(q. ))

X=II r' +rr S +II r +II (A4)

Each term on the right-hand side (RHS) of Eq. (A4)
defines the corresponding fermionic subspace on which it

—P(K& (e))(xt&+"'."' )t a+(q2) -P(q»'-(q ))(V ~+" "')t'a;(q )
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H PJ Q J Q J

and being the Majorana one

u;+ =Cu;—T

(A5)

(A6)

For the basic spinors u;. we assume (a) the normalization
conditions

projects. We choose in each of these subspaces one basic
spinor u; (i,j =+ or —) satisfying

The propagators of t-channel fields are

2i5'&oIT[~+(x~' (y)]lo&=v

&olT [a+(x)a"(y)]lo& = &olT [a' (x)as+'(y)]lo &

2i5'
k

&olT[a+" (x)a" (y)]lo&=&olT[a" (x)as+(y)]lo&
Q+Jg+Q+J —1

u y u . =1, j =+,—;
(b) the phase conventions

(A7) b

k

The propagators of s-channel fields are
1 —1Q++ — Tp Q +, u++ —2fu+

Q+ = 2f Q, Q+ — 2f Q++—1
(A8) & oI T [p'(x)y"*(y)]lo& =v

8i5'b

(k +iE)kk'

All other matrix elements between the basic spinors u;
can be calculated with the help of Eqs. (A6) —(A8). With
all these ingredients the arbitrary spinor can be decom-
posed in the basis u;- and this fact leads in particular to
Eq. (3.20).

APPENDIX B

We introduce the notation

d k
V[f (k)]=f e '"' «'f (k) .

(2w)

2i5' k
&ol T[x' (x)x' (y)]lo& = v

(k +iE)kk*
abk

& ol T [g"( )g '(y)] lo &
=&

(k +iE)kk'
etc.

In Table I we present the interaction vertices. The s-

channel momenta flow from the bottom of the page to the

top, whereas the t-channel momenta flow from the right
to the left of the page. The signs + or —denote the cor-
responding particle helicities.
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