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Fermion determinants in static, inhomogeneous magnetic fields
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The renormalized fermionic determinant of @ED in 3 + 1 dimensions, det, , in a static, unidirec-
tional, inhomogeneous magnetic field with finite Hux can be calculated from the massive Euclidean
Schwinger model s determinant dets, h in the same field by integrating dets, h over the fermion's
mass. Since det„„ for general fields is central to @ED, it is desirable to have uonperturbative infor-
mation on this determinant, even for the restricted magnetic fields considered here. To this end we
continue our study of the physically relevant determinant dets, h. It is shown that the contribution
of the massless Schwinger model to dets h is canceled by a contribution from the massive sector of
+ED in 1 + 1 dimensions and that zero modes are suppressed in dets, q. We then calculate det„i,
analytically in the presence of a finite Hux, cylindrical magnetic field. Its behavior for large Hux
and small fermion mass suggests that the zero-energy bound states of the two-dimensional Pauli
Hamiltonian are the controlling factor in the growth of ln dets h. Evidence is presented that dets, h

does not converge to the determinant of the massless Schwinger model in the small mass limit for
finite, nonzero Hux magnetic fields.

PACS number(s): 12.20.Ds, 11.15.Tk

I. INTRODUCTION

Fermion determinants produce an effective measure
for the boson Belds of a Euclidean field theory when
the fermions are integrated out, as shown long ago by
Matthews and Salam [1]. Such determinants in an ex-
ternal boson field, or a random boson field with a cutoK,
are infinite dimensional and need to be defined [2] be-
fore the boson fields can be integrated. Once defined,
their analysis is notoriously dificult, especially if they
possess a symmetry that should be preserved. For exam-
ple, most classical estimates of fermion determinants [3]
invariant under a local U(1) transformation violate this
invariance. The lack of nonperturbative information on
fermion determinants is reflected in the necessity to make
loop expansions or the more extreme quenched (valence)
approximation. As a result physical e8'ects predicted by
the theory may be lost.

Nonperturbative information on the fermion determi-
nant, such as its growth in the complex coupling plane,
is central to an analysis of the nature of the perturbation
series of the associated field theory [4]. Intuition tells
one that Fermi statistics, visible in the alternating signs
of the determinant's loop expansion, ought to slow down
the growth of a perturbation series with order.

There is also the question of stability. Specifically,
in the case of an Abelian gauge field, the measure is
Gaussian, so that if the fermion determinant grows faster
than an inverted Gaussian, it is doubtful that it is inte-
grable with respect to the gauge field's measure.
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Given the sparseness of nonperturbative information
on physically relevant fermion determinants in four di-
mensions we thought it useful to try to find a solvable
example for a broad class of boson fields. An obvious
choice is the fermion determinant of quantum electro-
dynamics in time-independent, unidirectional, inhomoge-
neous magnetic fields. Although of physical interest, this
choice of fields suffers &om the fact that they are a set
of measure zero as far as the functional integral over the
vector potential is concerned. Nevertheless, the fermion
determinant for such magnetic fields remains unsolved
except for the special case of a homogeneous magnetic
field that was dealt with over half a century ago by Eu-
ler, Heisenberg, and Weisskopf [5] and later on again by
Schwinger [6]. A thorough understanding of this prob-
lem would be helpful for a more general understanding of
the physical content of fermion determinants in quantum
electrodynamics. As we will see below, there are some
significant simplifications that recommend this problem
for analysis.

This paper is organized as follows. In Sec. II, we re-
view previous relevant results. Section III justifies our
restricted choice of magnetic fields on which the results
of Sec. II rely. We then go on in Sec. IV to discuss the
suppression of zero modes in the fermion determinant of
the massive Schwinger model. As Sec. II makes clear,
the four-dimensional determinant is obtained by inte-
grating this determinant over the fermion's mass. Sec-
tion IV also illustrates the profound change in the two-
dimensional determinant when the fermions are given a
mass. In Sec. V, we calculate the massive Schwinger
model's determinant for a finite, nonzero flux magnetic
Beld. Section VI contains a discussion of the zero-mass
limit of the massive Schwinger model's determinant, and
Sec. VII summarizes our results.
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II. REVIEW OF PREVIOUS RESULTS

In a previous paper [7] it was shown that the renor-
malized fermion determinant det, „ofquantum electro-

dynamics in four dimensions (QED4) in a smooth, static,
unidirectional magnetic Geld with fast decrease at infin-
ity is related to the Euclidean, massive Schwinger model's
(Euclidean QED2's) determinant dets, h in the same mag-
netic Geld. Specifically,

ln det„„= ~B(k)
~

dzz(1 —z) ln
d'k -, ' k'z(1 —z) + m'

m
+ — dM ln dets(M ),2K 2

(2 1)

where the gauge-invariant det~ is related to dets, h by

ln dets, h = —— ~B(k)~ dz + ln dets(m ).
27r 27r 2 k2z 1 —z +m2 (2 2)

detsch & 1, (2.3)

for m2 ) 0 [2,10,11]. This bound also expresses the
positivity of the one-loop effective action for Euclidean
QEDz. As a consequence of (2.3) we were able to put an
upper bound on the growth of det„„ in QED4 for strong,
unidirectional, inhomogeneous magnetic fields. Perform-
ing the dilation A~ —+ AA~ on the vector potential and
letting A become large we obtained

ln det„„& ln~
~

+O(A ),
A e Vj(/[B// (A e //B/[

24vrz q
m2

where ~~B~~z = J' d2rBz(r) [7].

(2.4)

Since the first term in (2.2) is the contribution to the ef-
fective action from the second-order vacuum polarization
graph, lndet3 may be viewed as the sum of all one-loop
fermion graphs in two dimensions beginning in fourth or-
der. Our designation of this sum by lndet3 follows the
definition of Seiler [2] and Simon [3], with the third-order
graph vanishing by C invariance. Equation (2.1) states
that the sum of the corresponding graphs in QED4 is ob-
tained by integrating lndet3 over the fermion mass m.
The first term in (2.1) is the contribution to the effective
action of QED4 from the on-shell renormalized second-
order vacuum polarization graph. The function B is the
Fourier transform of the magnetic field, which may be as-
sumed to point along the z axis, in which case V~~ is the
volume of the zt box. In both (2.1) and (2.2) the determi-
nants are defined by Schwinger's proper time definition
[6]. Note that the charge e will always occur in the com-
bination eB in position space, which has the invariant
dimension L . Note also that in Euclidean QED2 po-
tentials associated with unidirectional magnetic fields are
a set of measure one.

The lesson of (2.1) is that the massive Schwinger model
[8] is more than a model in view of its direct bearing on
physics in four dimensions. Unlike the determinant of the
massless Schwinger model [9], dets, h in (2.2) is not known
explicitly. Nevertheless there are some important results.
One of these is an expression of the paramagnetism of
fermions in an external magnetic field as summarized by
the "diamagnetic bound":

There are other results for dets, h implicit in the liter-
ature. For example, if A„ falls off sufBciently rapidly so
that Jd r~A„~~ ( oo for all q ) 2, then one can relate
dets, i, (e) to the zeros of the determinant, considered as
a function of a complex coupling e [12]. It is known [13]
that for m g 0 these zeros occur in quartets e, —e, e*,
and —e*, and therefore dets, h cannot vanish for real e
for these potentials [14]. We will defer the discussion of
the result of Haba [15] for det„„until Sec. III.

In view of the direct connection between QED4 and
QED2 in the case of unidirectional magnetic fields it was
thought worthwhile to obtain more specific information
of dets, h that would enable one to make use of (2.1). In
a second paper [16] it was shown that the exact calcu-
lation of dets, h reduces to a problem in nonrelativistic,
supersymmetric quantum mechanics. That is to say,

P(r) = —— d r' ln ~r —r'~B(r').2' (2.6)

The antisymmetric tensor e„ is normalized to ei2 ——1.
Again, the starting point for the derivation of (2.5) was
the proper time definition of dets, h, which respects gauge
invariance and allows one to select the Lorentz gauge.
Our representation of dets, h makes a sharp separation
between the contribution from the massless Schwinger
model, the first term in (2.5), and its massive counter-
part. We have not integrated the first term in (2.5) by
parts as is usually done. For nonzero flux fields, A~ falls
off like 1/r, and therefore an integration by parts is in-
valid in this case.

Within the Lorentz gauge there is still the restricted
gauge freedom of P —+ P+ c, where c is a constant. Since
dets, h is gauge invariant, the term proportional to c in

ln dets, h = — d'rrtia'y2'
e

+2m dATr([(H+ +m )
0

-(H +m')-']y), (2.5)

where the supersymmetric operator pair Hg = (p—
AA) p AB are obtained from the two-dimensional Pauli
Hainiltonian in (3.3) below. The auxiliary potential P is
related to the vector potential by A„= e„„8„$and to
the magnetic field by B = —8 P or
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(2.5) must vanish, in which case

e2C e
= 2m' dATr[(H++m') ' —(H +m') '],

0

(2.7)

since 0$—= B and 4 = I d rB. DifFerentiating (2.7)
with respect to e gives the index theorem on a two-
dimensional Euclidean manifold [17]:

FIG. 1. The logarithmically divergent contribution to the
vacuum energy in QEDz.

=mTr[(H +m) —(H +m) ]2'
(2.8)

rapid decrease. That is, let A = A„+ hg so that A
is a polynomial bounded C function, meaning that for
each o. = (m, n) there is an K(o.) and a C(o.) with

where n~ denote the number of positive and negative chi-
rality zero-energy bound states of H~, and b+(0) are the
zero-energy phase shifts for scattering by the Hamiltoni-
ans H~ in a suitable angular-momentum basis l. Thus,
the index theorem in QEDz follows from gauge invari-
ance.

Now suppose (2.5) is written as

2

ln dets. h = — d'rgb'P
27r

e

+2 dA Tr([(P (0) —P (0)]P)
0

+nonzero modes, (2.9)

III. CHOICE OF FIELDS

The fermion determinant is part of a functional inte-
gral whose measure, dp(A), is that of the gauge-fixed,
free Maxwell field. As dp, (A) may be realized on 8', the
space of tempered distributions, we seem to be stuck with
rough potentials that are hard to analyze. A way out is to
realize that there is a logarithmic ultraviolet divergence
in QEDz due to the vacuum energy graph shown in Fig. 1
that has to be regularized and subtracted out. One way
to regularize [19] is to smooth A„by convoluting it with
an ultraviolet cutoK function h~ E 8, the functions of

where P+ (0) are the zero-mode spectral measures asso-(&)

ciated with H~. Noting that H+ —H B and assum-
ing B sufIiciently weak, we calculated the second term
in (2.9) in first Born approximation and showed that it
canceled the massless Schwinger model term. We con-
jectured that this was true in general, and we will show
that it is in Sec. IV.

Finally, we wish to retract a claim in [16]. By the
Aharonov-Casher theorem [18], n+ (n ) are given by
[~e4~/2vr], depending on whether eC' & 0 (eC' ( 0), where
[z;] stands for the nearest integer less than z: and [0] = 0.
Thus, if ]e@]/2' & 1 there are zero-energy bound states,
and it was stated that when these are included in the
second term of (2.9) the logarithmic growth of P and the
slow, algebraic fall ofF of the bound-state wave functions
for large r would cause dets, h to vanish. This is false. In
fact, zero modes are suppressed in dets, h as we will see
in Sec. IV.

0 0
A~(z:, y) ( C(1 + 2." + y') ~.

The regularized &ee-photon propagator is

dp(A)A„(z)A (y) = D„„(x—y), (3.2)

whose Fourier transform D+„(q) is proportional to

~hA(q)~, where hA is the Fourier transform of h~. One
possibility is to choose h~ = Co with h~(q) = 1 for

q ( A and h~(q) = 0 for q & 2A . Note that the
measure dp(A) is not regularized. Thus, without loss of
generality we may assume that our potentials are smooth
and polynomial bounded. Hereafter we will drop the su-
perscript A and denote these potentials simply as A„.

Now in order that the fermion determinant exist it
seems necessary to require the magnetic fields derived
&om the potentials to have finite flux. The reason for
this restriction is connected with the degeneracy of the
ground state associated with the two-dimensional Pauli
Hamiltonian

H = (p —A) —0B&0. .

Specifically, Avron and Seiler [20] have considered the
class of polynomial, infinite-flux magnetic fields

B(r) = ) A„(r —C„) "", (3.4)

where (A ) and {C ) are arbitrary real numbers and
(k ) and 1V are non-negative integers. They have shown
that the ground state of H is infinitely degenerate and
that the manifold of zero-energy bound-state wave func-
tions is parametrized by a point in R ~ " + ~, irre-
spective of the translational invariance of the magnetic
field. In the constant field case, k „= 0, one has
point spectrum, and the vector space is a plane whose
points specify the center of rotation of Landau orbits,
corresponding to the known degeneracy ~eB~L, L„/2m,
with I I„~ oo. This degeneracy persists for all ex-
cited states in the constant field case, and we suspect
that the excited states for fields with N ) 0 are at least
as degenerate as R ~ "+ ~. Although we will show
in Sec. IV that zero modes are suppressed in our repre-
sentation (2.5) of dets, h, it cannot make sense out of the
volumelike divergences associated with the degeneracy of
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the excited modes. Nor are we aware of any definition of
determinant that can. Accordingly, we will confine our
attention here to finite-flux fields. In our view, a deter-
minant of an infinite-flux field should be considered as
the limit, if it exists, of a determinant calculated from a
field confined to local planar regions.

Restriction to finite flux is also consistent with the ad-
ditional need to regulate volume divergences before tak-
ing the thermodynamic limit of the Euclidean Green's
functions. Such divergences appear in the vacuum energy
graphs, including the one in Fig. 1, when the determinant
is integrated with respect to dp(A). A volume cutofF may
be introduced via the determinant, assumed previously
calculated for a generic class of fields, by replacing B(r)
with g(r)B(r), where g is a suitable volume cutofF such
as g 6 Cz or g = y~, the characteristic function of a
bounded region A C R .

At this point we mention the result of Haba [15],
who studied det, „ in the field I'"~„(x) = G~„+P'„(x),
where G~„ is constant, and E„' is suKciently smooth and
bounded. It was concluded that with the introduction of
a space-time volume cutofF A on the otherwise infinite
flux field E„ that

ln det„„= (G —
z ~G*G~) ln(1 + G )

—G d xbG, E',

where 6 is bounded in G. This saturates our upper bound
(2.4) for the special case I"' = 0 and Gi2 ——B Haba.
then goes on to use this result to obtain evidence sug-
gesting the instability (triviality) of QED4. In view of
the potential importance of this result and of our fore-
going remarks concerning infinite-flux fields, it would be
worthwhile to repeat the calculation with E& confined to
a finite region A C R &om the beginning and repeating
Baba's estimates with A held fixed.

As a consequence of the need to regularize and the
finite-flux condition we may confine our attention to
smooth, polynomial bounded potentials that, in the
Lorentz gauge, have the asymptotic form

where 4 is the flux associated with B and r && a, the
range of B. Our long-term goal is to study dets, g under
the scaling B + AB, A + oo as well as the determinant's
mass dependence. This latter point, as we now know, is
especially relevant to determining lndet„„ in QED4 for
unidirectional, static, inhomogeneous magnetic fields.

We know of no previous calculation of a finite-flux de-
terminant associated with massive fermions in two or
more dimensions. In Sec. V, we will calculate such a
determinant analytically for a magnetic field confined to
a thin cylindrical shell with radius a:

potential it has the virtue that the b(r)/r-type singularity
of a magnetic flux string is absent and that dets, h exists
for this field. It is an instructive example, especially as
we believe it gives an insight to the matters raised above.

IV. SUPPRESSION OF ZERO MODES IN dets h

A. Conventions

Consider a Dirac fermion in a static, unidirectional
magnetic field directed along the z axis. Its Hamiltonian
in the xy plane is

H=p p (p —eA)+p m, (4.1)

with the p matrices p = 0, p" = —io, A: = 1, 2. It
has the structure

)t' m I,
(If —m) ' (4.2)

where L is a linear difFerential operator, and Lt is the
Hermitian conjugate of L. The positive- and negative-
energy eigenfunctions of H,

HQ@ p(r) = E@~ ), (r), (4.3)

are normalized to

(4.4)

in the energy continuum, where A is a degeneracy param-
eter. As a consequence of (4.2) the eigenvalues satisfy
E &m. Since

H = (p —eA) —eBo' + m, (4.5)

we have

LLt = (p —eA) p eB, (4.6)

H+u i(r) = tvu i(r),

H v i(r) = tvv i(r),
(4.7)

where / is a degeneracy parameter and vu = E —m .
Their normalization in the energy continuum, m ) 0, is

so that the supersymmetric operator pair H~ in Sec. III
is given by H+ ——LL t, H = Lt L. The eigenfunctions of
H+ and H will be denoted by u ~ and v ~, respectively:

4 h(r —a)
27l a (3.7)

Although B is not derivable from a polynomial bounded

Where possible we adopt the notation and conventions of
Jaroszewicz [21j whose analysis of the chiral anomaly associ-
ated with the Hamiltonian (4.1) in a solenoidal magnetic field
is relevant to the work presented here.
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d'ru*, (r)u i (r) = h(u) —u)')bi( . (4.8)

Since the continuum extends down to E = +m or m = 0
we expect the states on the edge of the continuum to

show up as unbounded resonances [22]. When le@I/27r )
1, bound states will also appear at the bottom of the
continuum [18], and care must be taken to include these
in the completeness relations for Q@ g and u (, 22

B- Suppression of zero modes

Referring back to (2.5) consider

die dete, e/de = —f d rd8 d+ 2m f d rd(r)(r~(He +m ) —(EI + m ) (r). (4.9)

Now consider the large mass limit of

= m 2 dte ' —Br +Ot
e= —B(r) + O

I

(1)
27r m') '

where we used the heat kernel asymptotic expansion [16]

(rle ' + lr) = [1 6 teB(r) + O(t )].
1

4vrt

Combiiung (4.7) and (4.10) we get

m (rl(H+ + m ) —(H + m ) lr) = m dte (rle + —e lr)
0

(4.10)

(4.11)

m2
lim r

~2mO H+ + m2

m2 OO m2
, ).[Iu-, i(r) I' —Iu-.((r) I'1H + m m~moo 0 Ql+ m

eB(r)
2'

d~ ):[lu-,i(r) I' —lu-, ((r) I']
0 l

rdP+ m —dP m r (4.i2)

where P+(u)) —P (u)) is the difference of spectral mea-
sures associated with H~ and where H~ = f zodP~(u)).

Equation (4.12) has the following physical interpreta-
tion. The charge density induced in the vacuum by the
background magnetic field is so that

(4.i5)

)7(E r) = 2m) .[Iu&' — 2,&(r)l I«2 — 2,&(r)l ]

(j'(r)) = ——f d&).(~@e,e(r)l' —(@-e,e(r)l'),

(4.18)

0'(r)) = ——
o gu)+m'

x u ~r —v ~r (4.16)

which is determined by the spectral asymmetry density
Comparing (4.16) with (4.12) we see that the limit in
(4.12) is equivalent to

rl(E, r) = —discEtr(rl(E H) (E + H) lr)2'
e2B r

lim Uo(r)) =— (4.i7)

E,W r —E,& (4.14)

where disc@h(E)—:h(E+ is) —h(E —ie). Because of the
structure of H in (4.2), )7 may also be expressed in terms
of the eigenfunctions of H~ in (4.7) [21,23] as

The natural length scale here is the range of the mag-
netic field, and so (4.17) states that the vacuum change
density induced by a magnetic field whose range is
large compared to the fermion's Compton wavelength is

eB(r)/4m, in agree—inent with a remark by Jaroszewicz
[2i].

Now consider (4.9) again in the form
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w
, l

(rldP+(~) —dP (~-)lr).
u) + m2)

OO m2
8 tertete e/ae = —f rPer)r& 0+ 2f rPer)'te) dre t ) (le rte)I le r(e)l )

d2rPB /+2 d rett(r)
l

1—
7r 0

(4.18)

Froin the last line of (4.12) we finally obtain

Bln dets, h/Be = —— d rgB+ 2 d rg(eB/2m) —2 d rP (rldP+(iv) —dP (u))lr)
1r p tU+m

= —2Tr
) H++ m2

H
H +m2) (4.19)

which shows explicitly that zero modes are suppressed in
dets, h. It also shows how substantially mass has altered
the ferinionic determinant of QED2. the contribution of
the massless Schwinger model to dets, h has been canceled
by a contribution &om the inassive sector of QED2.

C. Gauge invariance of (4.19)

If we revert back to the definitions (2.5) or (4.9) of
dets h, then the invariance of dets, h under the restricted
gauge transformation P -+ P+ c results in the index the-
orem (2.8). Recall that the massless Schwinger model's
contribution to dets, h was critical to establishing this re-
sult. Now, in (4.19), we see that the massless Schwinger
model's contribution has been canceled by a contribution
&om the massive sector of dets, h that contains the zero
modes of H~. Invariance of (4.19) under P ~ P + c now
requires that

Sttt i = —[u iVuttt (
—(Vu i)uttt i

—2iu', Au i —(u m v)]. (4.22)

To make further progress we will specialize to the case
of radial symmetry so that the degeneracy parameter l is
identified with angular momentum. We would then like
to interchange the space integral with the sum over par-
tial waves in (4.20) in order to convert the space integral
to an integral over a circle at infinity. Jaroszewicz has al-
ready discussed this interchange in another context [21],
and we repeat his reasoning here. Since H+ —H B,
and B has finite range, a, the difFerence between the wave
functions u ~ and v ~, for fixed m, decreases with in-
creasing l due to the rising centrifugal barrier that ex-
cludes them from the region where B(r) P 0. The en-
ergy required for the wave function to penetrate the re-
gion r ( a is of the order of u) ) l2/a2, suggesting that
the partial-wave sum in (4.20) is efFectively cut ofF at
ill ~iva. Accepting this reasoning, we get

(4.20)
Tr

l ),H++ m2
H

H +m2)

In the remainder of this section we will recall the known
result that the integrand in (4.20) can be expressed as
the divergence of a current [21,23] and then go on to
show explicitly that (4.20) is true in the case of radial
symmetry.

DifFerentiating (4.7) with respect to u), denoted here
by an overdot, one easily obtains [21]

lu-, i(r)l' —lv-, i(r)l' = & S-,i(r) «r ~ ) 0 (4.»)
where

du) ) lim S i (R) ~ dl, (4.23)
O m+ m2 -R~~ S'R

where dl = KRd8 in the r, e plane. Since the potential
A may be assumed to be a pure gauge field at infinity
tangential to S, the A-dependent terms in (4.22) may
be dropped. Indeed our potentials (3.5) approach vortex
fields that manifestly satisfy this assumption. Using the
asymptotic form of u

vrl vr
u i(r, 0) - 2 '~ n'u) '~ r ')".e ' cos ~iur ————+ b'P(u))

r))a ur 4
(4.24)

and similarly for v i, where bP(u)) and b'&" (u)) are the scattering phase shifts, one gets [21]

lim S,i(R) dl = —) [h&" (u)) —h&" (u))] for u) ) 0,R~ oo g1R
(4.25)

where the overdot continues to denote difFerentiation with respect to u). The factor e *is instead of e'is in (4.24) is
for later notational convenience. Because of the supersymmetry of the operator pair H~ we have, &om (4.7),
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L H+u ~(r) = H L u ~(r) = vuL u~ ~(r), (4.26)

which indicates that Lt u ~ oc v ~ and hence that

SP(~) = S,",(~) mod ~ for w & 0, (4.27)

in agreement with Jaroszewicz [21]. In deriving (4.27) we used

,et'8 . i 0Lt = e'
~

——ieA + ——+eAe
~

qOr r 80 )
, e( B i 0 eC I+ — +

~))~ (Or r 00 27lr )
(4.2S)

where A = (A„,Ae). The condition for the invariance of (4.19) under the restricted gauge transformation P -+ P+ c
is now reduced to

) [hP(w) —b,"(m)] = lim ) [bP(m) —b,"(m)]
I,=—L

lim [b"L, (2v) —81,+, (m)] = 0 for w & 0.L+oo
(4.29)

This is physically reasonable since the wave equations for
u ~ and v ~ become scale invariant outside the range of
B, where the potentials V~ de6ned by

(4.30)

have a 1/r behavior and to where u~ ~ and v ~ are
mainly con6ned due to the enormous centrifugal barrier
building up as ~l~ ~ oo. Hence, we do indeed expect
limL, b~~~ (ur) = 0.

V. dets h IN A CYLINDRICAL
MAGNETIC FIELD

I

Since dets, q is invariant under P ~ P + c we may let
c = (4/2~)lna and use the potential

4 r
P(r) = ——ln — 8(r —a),

27t a (5.2)

rl' $8 $ = —jd' PB

in which case the contribution of the massless Schwinger
model is eliminated straightaway:

A. The Green's functions

In this section we will use the representation (4.9) of
dets, h, as it is simpler than (2.5) and more instructive
than (4.19). For the magnetic field in (3.7) we have, for
the auxiliary potential P given by (2.6),

y(r) = —— d'r ln ~r —r'~B(r')
27t

= 0.

A= c Jh

8(r —a)e
27rr

The associated vector potential is

(5.3)

T

lnr, r)a,2'
(5.1)

C(r)-
(5.4)

4——lna, r (a.2'
Referring to (4.9) we see that the Green's functions G~ ~

defined by

(r, 0~(k —H~) '~r', 9') = ) ( ~

(k2 H )
—1

~

I) il(e e')— —

l= —oo

27r ) Gg )(k;r, r')e
L= —oo

(5.5)

are central to the calculation of dets, h. The radial wave functions of H+ ~ and H t, denoted by ug2 f(r) and vtg2 f(r),
respectively, satisfy
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d2 1 d [l + e4(r)]
drz r dr r2

eC'(r) l
~

ug r(r) = k ur, ~ )(r),r j
(5.6)

d'
dr2

1 d [l + e@(r)] eC'(r) )+ 2 + vIa r r = vA, 2 ~ r
T dT r r

g~, , (k; r, r') = V'rr'G+ r(k; r, r'), (5.7)

where

These equations have linearly independent solutions
H&+(kr) for r ( a and H&+@(kr) for r ) a, where H+

and H„denote the Hankel functions H„and H„, re-(X) (2)

spectively. The dimensionless constant e4/2n has been
denoted simply by 4.

The calculation is sixnplified by introducing the Green s
functions

n = m(k—a[Jr (ka) H&+@ &
(ka) —J~ g (ka) H&+c, (ka)],

4

P: 7l'(ka[ Jr g (ka)Hr+ @(ka) J( (ka)Hr @ t (ka)]

(5.15)

A = vr(ka[—H&++@(ka)H& &(ka) —H& (ka)H&+@ &(ka)],4

B = 7r(ka[H—r+(ka)H&+@ &(ka) —H&+ &(ka)Hr+@(ka)].4

and

0+,i(k;r, r') = (r~(k' —&+,~) '~r'), (5.8)
Finally, the Jost functions are

&+ = W(f+ 4')

[l+ C( )l'- —.
' +'( )R~)= — 2+dr2 r r (5.9)

The outgoing-wave Green's functions g&+& (( = 6 = +1)
are constructed from [24]

P(k, r&)f+(k, r)) (5.10)

where P and f+ are regular and irregular solutions, re-
spectively, of

'Rt r@g = k gt, (5.11)

( )
k I'I ~rJ)(kr), r ( a,
k

—
I l~r[nH&+ @(k )r~ PH& @(kr)], r & a,

(5.12)

for ( = + are the associated Jost functions, and
r&, r& denote the lesser and larger values of r, r', respec-
tively. The indices l and ( have been omitted on the
right-hand side of (5.10) to reduce notational clutter.

Regular solutions of (5.11) are

k ! I I pr
—W [H—r+@(kr), Hr+@ (kr)]

pk~/2 —
I&I

7r
(5.16)

B. Completeness

The proof of the completeness of the bound and scat-
tering wave functions associated with 'R~

~ will follow the
general procedure outlined by Newton [24], taking into
account that 'Ry r contains a 1/r -type potential.

Consider the integral

where W is the Wronskian, and P is given in (5.15).
At this point P+ &

is fully determined by (5.10), (5.12),
(5.13), (5.15), and (5.16). We could now continue g++

&

into the upper half of the k plane by letting k
me's, 8 ~ vr/2 with m & 0, thereby making contact
with the Green's functions (r~(H~ + m ) ]r) in (4.9).
We will do this later. But first we want to demonstrate
that when the Qux is sufficiently large for fixed l, Q++

&

does indeed contain a zero-energy bound state. This will
be done by deriving a completeness relation.

and the irregular, outgoing wave solutions are

y kr[AH)+(kr) + BH( (kr)], r ( a,
~krHr++@(kr), r ) a.

(5.1S)

The constants n, P, A, B are determined by the joining
conditions at r = a obtained from (5.11) and (5.9):

I(r) = dkk dr'h, (r') g+& (k; r, r')
g, l

dkk "dr'h(') ~( '"')f'("'")
c 0 &+(k)

, P(k, r) f+ (k, r')
~+(k)

=Ij+I2, (5.17)

P(k, a—) = P(k, a+),

P'(k, a+) —qV(k, a —) = (4$(k, a+)/a, —

and similarly for f+. These give

(5.14)
where h(r) is square integrable, and C is the contour
in Fig. 2. The contribution of Iqz to Iq &om the large
semicircle I' is evaluated by using the asymptotic forms
of P, f+, and J+ in the upper k plane. From (5.15) and
(5.16),
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lane
r

Iir i —dk dr'h(r') exp[i(kr —2vrl —4m)]
r 0

x cos(kr ——vrl —-vr)1 1
2 4

FIG. 2. The contour of integration C in the k plane for the
integral in (5.17).

r
——h(r) dk dr'e'"("

2 p p

- 2ivrh(r). (5.2o)

g+ — yak / —
I 1[J( &(ka)H~+ @(ka)

—Ji (ka) Hi+ ~ ~ (ka) ]

2i k1/2 —
I
l

(
—im4/2

fk J

—+oo
(5.18)

P(k, r) - Q2/mk " ' 'cos(kr —4zl —4z.),
ski

—+oo

(5.19)

f+(k, r) g2/z exp(i[kr —2vr(l + Ck) —4vr]),
/k/ —+oo

and hence, for iR~ —+ oo,

Fron (5.12), , -', l3), and (5.15) one gets, in the upper k
plane,

r+p
I2z —i dk

x cos(kr —-vrl —-z.)1 1
2 4

r+p,
*h(.) f dk—f-

dr'h(r') exp[i(kr' —2z l —4vr)]

ik(r' —r)

- -iz.h(r). (5.21)

Because of the analytic properties of H+(ka) and J((ka)
in the upper half of the k plane, g+(k) has no zeros for
Imk ) 0. For example, on the positive imaginary k axis
we have, from (5.18),

The contribution of I2z to I2 &om the contour I" Inay be
de6ned by replacing the upper limit of the r' integration
in (5.17) by r + p, p & 0 and letting p -+ oo later [24].
Then for ~R~ m oo,

Jj (e' / ka) = e ' + [Ii t(ka)Ki+@(ka) + I((ka)Ki+@ )k(ka)], (5.22)

where K„and Ii are modified Bessel functions. Since K„(x), Ii(x) are positive for x & 0, g+(e' ka) is manifestly
&ee of zeros for k & 0. Therefore,

dkk dr'h(r') g~+, (k; r, r') = 0.
C 0

(5.23)

Combining (5.17) with (5.20), (5.21), and (5.23) we get

Z
~ r+p,

h(r) = ——
p

'h(')
~

+ ~ldkk
' + ' +

) J+ (k)
I

reduce (5.24) to

r+p
h(r) = —,fP(ke', r) = P(k, r),

f (k
in

)
im/2 —im(1+4}f (k )

(k im) si(m/2) —imlll —iw4g (k)

(5.25)

Equation (5.24) may be simplified by the following rela-
tions, valid for positive k:

dr'h(r') f dkkgkrt(k; r, r'). (5.24)

(5.29)

oo k2
dr'h(r') dk P(k, r)P(k, r')

+

dr'h(r') f dkkg(+, (k;rr'),
where

Q (k) = W(f, P)
4'~ 1/2-I~I

f (k, r) = ~krHi+@(kr), r & a,

(5.26)

(5.27)

and where a is given by (5.15). For real k, j'+(k)
(k). Equations (5.25), (5.26) and the result, valid for

real k,

2k
Im[g (k) f+(k, r)] = rt)(k, r), r &—a,

lim dkkg(+((k; r; r') = i~pi(r)gi(r'), —
egp

(5.3o)

The integral around the semicircle p will contribute only
if g&+i develops a second-order pole at k = 0. A tedious

7

calculation confirms that this happens for ( = +, l &
0, l + 4 & 1 and for ( = —1, l & 0, l + I' & —1. This
result is in accord with a remark by Jaroszewicz [21],
who stated this would happen for 4 g integer; our result
holds for all admissible values of 4. The residue of the
double pole is the zero-energy bound state gi of 'R~ i.

for ((l + 4) & 1, gl & 0, and where(5.28'
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(5.31)

The bound states are normalized:

dr@,'(r) = 1.
0

Combining (5.30) with (5.29) and letting p, ~ oo gives the completeness relation

(5.32)

I'
dk p(k, r)p(k, r') + gl(r)Qi(r') = b'(r —r').

7r p+ +
(5.33)

We have gone through this calculation to show that g+ l does indeed contain a bound state for sufficiently large
t

Qux and how it manifests itself. Later, when we consider the small mass limit of dets, h, one should keep in mind that
this is being controlled by the bound states, since the m -+ 0 limit is approaching the second-order pole of g+ l along

)

the positive imaginary A: axis.

C. Calculation of dets~h

The outgoing-wave Green's function g++ l(k, r, r') in (5.10) may be continued to k = im, m ) 0. According to the
definition of dets, & in (4.9) we will only need the difFerence of g++ l and g+ l, which simplifies the calculation. Because
of (5.2) we may confine our attention to r = r' ) a. Then from (5.10), (5.12), (5.13), (5.16), and (5.26),

g++, (kr, r) —g+, (k; r, r) = iver J' (k) g (k) (5.34)

which is related to the 8 matrix for the lth partial wave by

&—(k) —' e 2*'bg

&+(k)

In (5.34) the Jost ratios can be rearranged to give

g(ka) Ji+@,(ka) —Jl(ka) Ji+@ ~(ka)—2 +
—1.

Jl g(ka)Hi+@(ka) —Jl(ka)Hl+@ &(ka)

We now let k -+ me'& l'2l, m ) 0, in (5.34), (5.36), and (5.8), using [25]

J„(arne' l ) = e' ~ I„(ma),

H+(arne' l ) = —e ' " K„(ma),
7t Z

(5.35)

(5.36)

(5.37)

to obtain

Il+ i Il+ C
—Il Ii+@+1 K,+e(mr),

Il+1Kl+C + ILKl+4+1 )
(5.38)

& I(&+, + ') 'I ) —( I(&-. + ') 'I ) =-
i—1 i+4 + l l+4 1—

where all modified Bessel functions in the brackets have argument ma. If the two terms in (5.38) are combined by a
common denominator then a remarkable simplification occurs to give

—1

(rl('8 l + m') 'Ir) —(rI('8 l + m') 'Ir) = 24r ma„ ln
I

I™
I

—4'
ma ( l+C, ma p

' Kl'+~(mr) r)a
K,2 ~(ma)'
Il (mr)

, I2(ma) '

(5.39)
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where we have put on record the result for r & a. As a check on our results we verified that

~2 dp p ~+)+m2 1 p p Q )+m2 1 p
0 l= —oo

(5.40)

for m & 0, in accordance with (2.8). This was done by interchanging the integral and sum, which is allowed since
the series in (5.40) is uniformly convergent for r 0, and then defining gP as limL, ~ P &. The integrals of
the modified Bessel functions are known [26]. Again, the reader is reminded that 4 denotes e4/2vr, where 4 is the
flux, and that this symbol is active &om (5.6) onward.

Finally, coznbining (4.9), (5.2), (5.5), (5.7), and (5.39), gives

—1
8 ln dets, g Ki+c, (mar) d ( Ii (ma)= —4(ma) O drr lnr ma ln

~t94 K&+@(ma) dma (Ki+@(ma) )
(5.41)

The term in the curly brackets is positive for all 4. Figure 3 displays the numerical calculation of the right-hand side
of (5.41) for the cases ma = 1 and 10 2 for 0 ( 4 ( 999.5. The plots were generated for half-integral values of 4.
The data in both cases are consistent with a logarithmic growth of 8 ln dets, i, /OC with 4 given by —in@+const,
where the constant is about 0.3 for ma = 1 and —2.5 for ma = 10, consistent with the "diamagnetic bound" in
Eq. (2.3).

The integral in (5.41) can be calculated explicitly for integer 4. Assume this is the case, and let 4 = N. Since
the sum in (5.41) is uniformly convergent for r & 1, we may let l ~ l —N and interchange sum and integral. Since
K i = K~ and I i = I~, we need only consider l & 0. Then Rom [27] one can derive the result, valid for l = 0, 1, . . . ,

ai = drr lnrK& (mar)/K& (ma)
1

1 d (Ki~i
l~

2dma ( Ki
l ( 1&Kp+2 -( )i ~K„2(.) «')K;"&; ' (5.42)

where the modi6ed Bessel functions on the right-hand side have argument ma. This gives

0 ln dets~h

OC
= —2(ma) ap ma

d
ln ~f I~II —N

ma (Kp)
ma

dfAQ

- —1

EKpf
OO

—2(ma) ) a~ ma
l=1 ma ( Ki )

ma ln~ ~+N
dma ( Ki )

+ ma„ ln~
~

—N
dma (Ki)

mrx ln~ ~+N
d (I&+~ l

dma I Ki
(5.43)

The remainder of this section will be con6ned to an analysis of the asymptotic behavior of dets, h for large Qux.
The case of small fermi'. mass is also of interest as this limit will be controlled by the zero-energy bound states as
noted in Sec. V B. In addition, we conjecture that the low mass end of the integral in (2.1) will control the large fiux
growth of lndet, „.Hence we are led to consider the limit N )) 1 )) ma of dets, h.

D. dets h for N )) 1 )) ma

The calculation of the above limit requires the large-l behavior of a& in (5.42). Letting z = ma and using

2l
K)+g ———K) + K)x (5.44)

we get

l ~(K( i 't~ ~(Ki 2

dx E K~ p
x2 ( Ki p q K& ) 2 Ki2

(5.45)

From [28] one finds, for l » 1 » x,
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and hence

(5.46)
4' —+Ol —

l
x

l
+

288 48 32
+——x + —x

12 4 ) l

for N » 1 »
I

5.43 tends to —1 orso that the first term in

'-'*'= —* 1+-+l1--- l-„+( -4 )-+Ki (x) 2l

(5.47)

so that

l281

(15
Ii(x) = (2vrl) 1+0

l

—
l

(5.53)

5.43 . Combiningd the fourth term inNow consider e

+ol —,
l

.
4/2 q

ls )
Combining (5.48) with

(5.48)
for l &) 1 &) z with (5.46) one finds

t'1~
z—ln

l

'+" = 2l + N + O
l

—l,&1)dx g K(
(5.54)

x—ln

c ude thatvalid for, x & 0 we may conclu

(5.49)
which together with (5.48) gives

(Il+N ~) a( x—lnl
t=N+1

1 ).
8

I,=N+1

d ( I~~~
lim ) ai x—ln

l
+

N —+oo

= 0, (5.50)
(5.55)

1 ( l ( N, use (5.53) and K&' jKi ( 0 for
l x ) 0 to conclude, for N » 1,)

d fifth, and last terms '
s in 5.43)inw chi h case the secon

(5.43) o 6 d th, foConsidering the Brst term in
x((1)

—N l —x )K,'

z,dx ( Ki
(5.56)

x—ln
l

d r'I~ l
dx pe)

Therefore, for x (( 1

N+oo

(Ii+~ l = Bnite . (5.57)

ln — + Q ln —,5.51 ir term in (5.43).er the remaining t ir
bl & %+ 1 the thir term mFor the range

and

x a = —— ln — +0 ln (5.52)

Ii).=—). i+~ x—ln
l

N+1 l=1

x jt&1From (5.46) for N )) 1 )& x,

(5.58)

l

= x—'+ l+ N+ 0x—ln
IId (Ki+~)

& l+ N+ 0
I N+ l) (5.59)

rQL

-6
iQ d f Ix

&l iNbi=x a2 x-x—ln (5.60)

x & 0. Equation (5.59) togethersince I&'/Ii & 0 for l, z &

1 =finite.5.48 nsures that lim~~ P~+i ——

For the range 1

—10

200 400 600 800 1000

= I~. We Gnd, for x (( 1,where we used I ~
—— ~. e

= ——lnx+ const,1 (5.61)

a c the ri ht-hand side ofal calculation o t e n
—2Eq.. (5 41) for half-integral 1 values of 4 wi m

1 —
l
+ O([x lnxj ) .b (5.62)
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The terms in (5.60) for 3 & l & N and z « 1 behave as

x2 21 —3 4ar = i(l —2) —— + O(z ),8 (l —l)s(l —2)s (5.63)

d (I~ ii Nz2 z 3N2l —Ns —4N —3l N+ 8Nl —5N+-
dz ( Kz ) 2(N —l + l)(l —1) 8 (l —1)2(N —l + l)2(l —2)(N —l + 2)

+O(z ), (5.64)

so that

) bi =
2 ln N + const . (5.65)

I,=3
Combining the results obtained above on the sums in
(5.43) together with (5.61) and (5.65) give

I

while the zero flux Geld
B

B(r) = —[~(r —a) —b(r —b)],
gives

1

ln dets, h = (eB)— dzz(1 —z)

(6.3)

~ » dets. h = —ln + const .
(ma j (5.66)

The —ln N growth is consistent with the data in Fig. 3.
Recall that 4 denotes e4'/27r, the two-dimensional chiral
anomaly, and that [e4/2ir] is the number of zero-energy
bound states of the two-dimensional Pauli Hamiltonian
(3.3). Assuming a smooth variation of dets, h with 4, we
get, for ma && 1 &( e4/2',
ln dets, i, = —(no. bound states)

(no. bound states)
x ln + const . 5.67

ma )

x dqq
[J.(qa) —Jo(qb))'
z(1 —z)q2 + m2 (6 4)

ln dets, h = ln(amia) + finite at m = 0, ie4'i » 1 .
~p 2K

which converges to the massless Schwinger model's de-
terminant in the limit m = 0:

d'q IB(q)l'ln deis~h = ——
2vr (2z )

' q'
= —(eB) ln(a/b) for a & b & 0 . (6.5)

Going beyond perturbation theory we have from (5.67)
for the finite-flux field (3.7)

We suspect that (5.67) holds more generally than for the
finite-flux magnetic field in (3.6). This result agrees with intuition, that is

(6.6)

VI. ZERO-MASS LIMIT OF dets h

det(H + m2)
ln

det(p2 + m2)
(no zero modes ofH)

ln dets, h = —— ]B(q)] dz
2ir 2' o z 1 —z q2+m2

(6.1)
The finite-flux field (3.7) gives

iud«s h =
i I

dzIo
(2ir) o (Qz(l —z))

alml' (gz(i —z))
(eCi'

ln(admi) + finite,
~o E2ir)

(6.2)

Consider either of the representations (2.5) or (4.19)
for dets, h. Does the m = 0 limit of dets, h exist? If
it does, is it continuous in the sense that the massless
Schwinger model's determinant is regained? We do not
have any definite answers to these questions, but we sus-
pect that they probably depend on whether the magnetic
Gelds have zero or nonzero flux as we will now explain.

Already at the level of second-order perturbation the-
ory one runs into trouble for fields with 4 g 0. The
determinant to order e2 is

x ln(im]R) + finite, (6.7)

1
K(A) = (6.8)

where K is considered as an operator on two-component
square-integrable functions. The determinant det„„ex-
cludes the linearly divergent graph TrK but retains the
graph TrK, which is defined in some gauge-invariant
way. Assuming that the magnetic fields have zero flux
and in particular that f d riA„]~ & oo for all q
Seiler was able to show that K 6 C [the space of op-
erators for which Tr(KtK) i2 & oo] for all n & 2 and
that the spectrum of K consists only of the origin. This
latter result is an expression of the triviality of the mass-
less Schwinger model and implies that aH single-loop
"photon-photon" scattering graphs of order e and higher

where H is the Pauli Hamiltonian (3.3), and R is some
natural length scale, such as the range of B. The massless
Schwinger model's determinant is not regained.

Finally, Seiler [12] defined the massless Schwinger
model's determinant, det[1 —e(1/ P) P], by a renor-
malized determinant. This work was done by making a
formal similarity transformation and defining the deter-
minant as det„(1 —eK) with
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vanish [29]. These results allowed Seiler to obtain the
well-known result for the massless Schwinger model's de-
terminant:

2

ln det„„(l —eK) = —— d rA

where A„ is in the Lorentz gauge.
In the nonzero flux case A„ falls off as I/r, and K(A)

ceases to be even a compact operator: the eigenvalues of
K fill an open disc and K g C„ for any n ) 1. Con-
sequently, it is no longer possible to define the massless
Schwinger model's determinant in terms of a renormal-
ized determinant whose zeros reflect the eigenvalues of
K(A). The lesson here is that the transition &om a
zero-flux magnetic field to one with nonzero flux is not
a smooth one and that the zero-mass limit of dets, h will
be flux sensitive.

VII. NET RESULT

Fermionic determinants are at the heart of fermionic
field theories. In the case of QED the determinant in
3+1 dimensions in a static, undirected, finite (includ-
ing zero) flux magnetic field can be calculated &om the
determinant of the massive Euclidean Schwinger model,
dets, h, in the same magnetic field by integrating over
the fermion's mass. Therefore, the massive Schwinger
model is physically relevant. The calculation of dets, h

reduces to a problem in nonrelativistic supersymmetric
quantum mechanics, and the gauge invariance of dets, h is
closely linked to the index theorem on a two-dimensional
Euclidean manifold. The inclusion of mass qualitatively
changes the determinant in 1+1 dimensions to the ex-
tent that the massless Schwinger model's contribution
to dets, h is canceled by a contribution Rom the mas-
sive sector. Evidence was given that the zero-mass limit
of dets, g is not continuous in the sense that the mass-
less Schwinger model's determinant is not regained for
nonzero flux magnetic fields.

It is believed that the first calculation of dets, h for
a finite-flux magnetic field is given in Sec. V. The be-
havior of the determinant for large flux and small mass
suggests that the zero-energy bound states of the two-
dimensional Pauli Hamiltonian are the controlling factor
in the growth of ln dets, h. If this is the case then the im-
plication of this fact on the still unknown growth of the
renormalized determinant of QED4 in the same magnetic
field, which is determined by (2.1), remains to be seen.
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