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One-loop corrections to the instanton transition
in the two-dimensional Abelian Higgs model
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We present an evaluation of the Quctuation determinant which appears as a prefactor in the
instanton transition rate for the two-dimensional Abelian Higgs model. The corrections are found
to change the rate at most by a factor of 2, for 0.4 ( MH/Miv ( 2.0.
PACS number(s): 11.15.Kc, 11.27.+d

I. INTRODUCTION

The Abelian Higgs model in 1+1dimensions has found
considerable attention recently since on the one hand it
shares certain features with the electroweak theory and
on the other hand it is simple enough to serve as a theo-
retical and numerical laboratory.

In the context of the baryon number violation the high-
temperature sphaleron transition has been studied [1]—
[6], for which exact classical solutions and an exact ex-
pression of the sphaleron determinant [2]—[4] are known,
thus providing a complete one-loop semiclassical transi-
tion rate which can be studied numerically on the lattice,
e.g. , by measuring the fluctuations of the Chem-Simons
number.

Another prominent feature of the model is the exis-
tence of instanton solutions [7] which give rise again to
fluctuations in the topological charge of the vacuum and
thereby to baryon number violation. It has also been
used [8] to study the possibility of baryon number viola-
tion in high-energy scattering processes.

If the parameters of the model are chosen appropri-
ately, the instantons are sufficiently rare and the system
can be treated as a dilute gas of instantons with Chern-
Simons charge q = +1. In this approximation the transi-
tion rate, or equivalently the density of instantons in the
Euclidean plane, is given by [9]

det'(M) one loop= exp(2S, & ), (1.2)

the second equation relating it to the one-loop effective
action. The operators JM are the fluctuation operators
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I' = ' D exp[—S(P,~)
—S,i(P,~)]2'

to one-loop accuracy. Here S(g,i) is the iiistanton action.
The coefFicient 'V represents the effect of quantum fluc-
tuations around the instanton configuration and arises
f'rom the Gaussian approximation to the functional in-
tegral. This is the object whose computation we will
consider here. It is given in general form by

obtained by taking the second functional derivative of the
action at the instanton and vacuum background field con-
figurations. The prime on the determinant implies omit-
ting the two translation zero modes. The first prefactor
S(P,~)/27r takes into account the integration of the trans-
lation mode collective coordinates. Finally, the counter-
term action S,t in the exponent will absorb the ultraviolet
divergences of B. One may also include a corresponding
determinant for fermions, which for massless fermions is
even known analytically [19] (see below). However, in lat-
tice simulations the instanton rate and therefore fermion
number violation can be measured by studying fluctu-
ations of the Chem-Simons number without having to
include the fermions explicitly.

For MJr/M~ P 1 even the classical instanton profiles
are known only numerically, so an exact evaluation of the
effective action has to be performed numerically. Such
computations have been performed recently for the fluc-
tuation determinant of the electroweak sphaleron [10]—
[12]. In the first of these [10) the heat kernel definition of
the determinant was used, and the heat kernel itself was
computed &om the eigenvalue spectrum of the fluctua-
tion operator, using a partial wave decomposition. This
method was also used in Ref. [12]. Another method for
such computations has been proposed recently [13];it has
been applied to the computation of the fluctuation deter-
minant of the electroweak sphaleron [11]and, for the case
considered here, in Ref. [14] on which the present work
is based.

This paper is organized as follows. In the next sec-
tion we outline the basic relations of the Abelian Higgs
model. The fIuctuation operator is derived in Sec. III, its
partial wave reduction in Sec. IV. The method of compu-
tation is presented in Sec. V. In Sec. VI we consider the
renormalization of the effective action and the removal of
zero modes. The results are presented and discussed in
Sec. VII.

II. BASIC RELATIONS
The Abelian Higgs model in 1+1 dimensioris is defined

by the Lagrange density (written in the Euclidean form
relevant here)

~ = 4(I"P-)'+ 2IDP&l'+ 4
(I&l' —v') + ~t .

(2 1)
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Here

F~v = BpAv —t9~Ag )

D„=0„—igA„,
7t f A f

2f —t) @~ D~%~ +i) @„D„@„- —(i) - (') . - —(i) - (~)

i=1 2=1

DL(R) +v (~v + tgAI )

The particle spectrum consists of Higgs bosons of mass
m~ ——2%v, vector bosons of mass m~ ——g v, and left-
right-handed massless fermions of charge g. The anomaly
of the gauge-invariant fermionic current

1 (dA(r) 5
'

fdf(r) ) '
+r

rm2w ( dr ) ( dr
I

[A(r) + 1] + (f (r) —1) . (2.11)

S,) = harv dr
0

[A(r) + 1]

For the case MH ——M~ an exact solution to the vari-
ational equation is known [16], for which the classical ac-
tion takes the value S,~

——harv . We will consider here the
general case, however, for which the classical equations
of motion

A f 7l f
(') - —(~) (~)Jv = ).@I. &v@1. +).@R &v@R (2.2)

= 0, (2.12)

is given by

gO„J„=2nf —z„„F„4' (2.3)
wf (r) l

A(r) ™wf( )
( &'

(Or r &r
(2.13)

The integral over the divergence of the current which
measures the baryon number violation is given by

LF = d xB„J„ (2.4)

= 2~f
l

— " *'~~I"~~ l—:2"xg .(g
q4~

(2.5)

(2.6)

Here q denotes the Chem-Simons term in two dimen-
sions (see, e.g. , [15]) and baryon number violation is
therefore related to Euclidean gauge field configurations
with nonvanishing topological charge q. These are the
instanton solutions which mediate tunneling transitions
changing the topological charge by q units. We will as-
sume here that the instanton transitions are described
suKciently well by a dilute gas of instantons with Chern-
Simons number q = +1, a situation for which the rate
formula given in the introduction is supposed to hold.

A structure which exhibits such a topological charge
and satisfies the Euclidean equations of motion is given
by the Nielsen-Olesen vortex [7]. The spherically sym-
metric ansatz for this solution is given by

have to be solved numerically.
Imposing the boundary conditions on the profile func-

tions

A(r) Cr, f (r) - C'r, as r m 0,

A(") ~ —1 f(r) -+1,
(2.14)

the Chem-Simons number is 1 and the action is finite.
Since we will consider Huctuations around these solu-

tions later on, a good numerical accuracy for the profile
functions f (r) and A(r) is required. We have found that
the method used previously by Bais and Primack [17] in
order to obtain precise profiles for the 't Hooft —Polyakov
monopole is very suitable also in this context. The values
for the classical action, which determine also the trans-
lation mode prefactor, are given in Table I. They agree
almost perfectly with the results of Jacobs and Rebbi
[18].

The classical action in units of av is plotted in Fig.
1 for 0.4 & M~/Mw & 2. The plot suggests a power
law behavior (MII/Mw)~ where 0.40 & p & 0.43; our
data and those of Ref. [18] are precise enough to rule
out an exact power dependence. While the best fit is
obtained with p 0.41, a suggestive number in this range

(2.7)

P-+ e

A~ M A~ —B~lp/g

@I.(R) ~ &+' @L,(R) ~

to obtain the instanton fields in the singular gauge

(2.8)

A'„'(x) = " "[A(r) + 1],
gr'(x) =vf(r) .

(2 9)

(2.10)

With this ansatz the Euclidean action takes the form

In order to have a purely real Higgs field one performs
a gauge transformation

Me/Mw
0.40
0.60
0.80
1.00
1.25
1.50
1.75
2.00

S)
0.696196
0.813053
0.912305
1.000000
1.097914
1.186013
1.266416
1.340550

Sf„m
eff

-0.37853
-0.38459
-0.39051
-0.39616
-0.40277
-0.40886
-0.41445
-0.41956

Sone loop
eft
0.315
0.233
0.102
-0.025
-0.156
-0.276
-0.379
-0.461

TABLE I. Classical and one-loop actions for various val-
ues of MH/Mw. The fernuonic effective action is given for
a left- plus right-handed fermion. S,&' ' is the one-loop
bosonic action computed here.
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1.5—

1.0—

where vP; denotes the fluctuating fields and g;i the "clas-
sical" background field configuration; here these will be
the instanton and the vacuum configurations. If the fields
are expanded around the background configuration as
vP; = g + P, and if the Lagrange density is expanded
accordingly, then the Huctuation operator is related to
the second-order Lagrange density via

0.5—
(3.2)

0.0
0.0 0.5 1.0

I

1.5 2.0 2.5
In terms of the Huctuation operators M on the instan-

ton and M on the vacuum backgrounds, the effective
action is defined as

FIG. 1. The classical action. We present the action in
(dimensionless) units 7rv . The full circles are the numerical
results, the curve displays a possible asymptotic dependence
(MH/Mw) ~, where p is Euler's constant. For our specific model we expand as

(3.3)

is p = 1 —p, where p is Euler's constant. This could be
an asymptotic dependence for large M~/M~, it is also
displayed in Fig. 1.

Though we are not interested here in the efFect of
fermionic Quctuations, we could not resist using our
profiles to calculate the fermion determinant for mass-
less fermions. This determinant is known exactly [i9];
the corresponding effective action, per (left- plus right-
handed) fermion and after removing the fermionic zero
modes, is given by

A„=A„'+ a„,
4=4'+v .

(3.4)

(3.5)

In order to eliminate the gauge degrees of &eedom we
introduce, as in Ref. [8], the background gauge function

~(A) = a„A„+—((y') y —y'y*), (3.6)

which leads in the Feynman background gauge to the
gauge-fixing Lagrange density

gferm
eff d xo!0 0! ) (2.i5)

II
~iGiF =

i

-'~'(A)'i
)

where, for the instanton, Zg= 2(~i ui ) ~~(V'~s ~ + 4' ~i O' V' ~PC'

n(r) = dr A(r)
0 P

(2.i6) 2

&'~~&') ——
8

(&')'(V —
V
')' (3.7)

The results are given in Table I and plotted, along with
the bosonic e8'ective action, in Fig. 4. The associated Faddeev-Popov Lagrangian becomes

III. THE FLUCTUATION OPERATOR

The Huctuation operator is defined in general form as

&Fp = rl*[ cl'+ g' (—p') —]il . (3.8)

b2S

~@,*(*)~@,( ') ~ =~ ' (3.i)
In terms of the real components p = pi + iy2 and

(rjq + iq2)/~2 the second-order Lagrange density
now becomes (omitting the superscript from P' and A'„')

(~+~GF+~FP) =ogx2 ( o +g 0 )+~+pi — —cl +g A&+A(3$ —v p&

+~ — ~'+ g'A„'+ g'O'—+&(e' ') ~—
+ yq(gA~B~)yq + pq( gA„Bi,)p2 + o„(2g—A„Q)pi + &i (2gclp4')&p2



798 J. BAACKE AND T. DAIBER

Specifying now the fluctuating fields (Pz, P2, P3 (j54 Q5)
as (aq, a2, yq, p2, gq2) the nonvanishing components of M
are

~» = —&'+ g'4', ~22 = —~'+ g'4',
Mgs ——2g AgP, Mg4 ——2gBgg )

M23 ——2g A2$, M24 ——2g82$ )

M33 ———r]]' + g'A„' + A(3/2 —v'),
A%34 ———gA„t9„,
JW44 ———(9 + g A„+g P + A($2 —v2),
M43 ——gA„O„,
M55 ———o] +g P

It is understood that the contribution of the Faddeev-
Popov operator M55 enters with a negative sign and a
factor 2 into the definition of the effective action. The
fluctuation operators for the instanton and vacuum back-
ground are now obtained by substituting the correspond-
ing classical fields. The vacuum fluctuation operator be-
comes a diagonal matrix of Klein-Gordon operators with
masses (Mw, Mw, Mw, MH, Mw). It is convenient to
introduce a potential V via

(3.10)

The potential V will be specified below after partial wave
d.ecomposition.

IV. PARTIAL WAVE DECOMPOSITION

The fluctuation operator M can be decomposed into
partial waves and its determinant decomposes accord-
ingly:

M=M +V, (4.2)

the free operators M become diagonal matrices with
elements

p d
2

1d n,'+ +M, (4.3)

where (n;) = (n —1, n + 1, n, n, n) and (M;)
(Mw, Mw, Mw, MH, Mw). The potential V' takes the
elements

V~~ = mw (f —1), V~2 ——0,
A+1

V]3 V 2mWf 74 = V 2mWf

23 — i3~

V24 ———Vi4

Vn ( ) H (f2 1) 2 (f2 1)r2 +2
A+1

V34 ———2 Ar2

(A+ 1)' 3
V44 —— + —m~ (f —1)

V55 = mw (f —1), V;5 ——0 .

&."( ) = —,Ib-( ) + -( )j,1

1
+Z(r) = —lb-(r) —c-(r)]
Ils" (r) = h„(r),
E4"(r) = ih„(r),
&5"(r) = g-(r) .

Writing the partial fluctuation operators, omitting the
index n in the following, as

lndet M = ) lndet M (4.1)

We introduce the following partial wave decomposition
for fields:

Choosing the dimensionless variable M~r one realizes
that the fluctuation operator depends only on the ratio
MH/Mw up to an overall factor Mw which cancels in
the ratio with the free operator.

+oo). b-(")
I I +ic-(r)

I

cos p) e' ~ ( —sing'] e' ~

&) v 2gr ( cos& ) +2gr'

) +27r
'

+~ ang) h„(r)
n= —oo 2gr

'

+oo in'e
n» = ) . g-(r)

27r

V. COMPUTATION OF THE
FLUCTUATION DETERMINANT

d x Trg(x, x, v) = )
a

(5.2)

The method for computing the fluctuation determinant
used here is based on the use of the Euclidean Green
function of the fluctuation operator. This Green function
is defined by

(M + v )g(x, z', v) = lh(x —x') (5.1)
and similarly for the operator M . It contains the infor-
mation on the eigenvalues A of the fluctuation operator
via

After inserting these expressions into the Lagrange
density and using the reality conditions for the fields one
finds that the following combinations are real relative to
each other and make the fluctuation operators symmet-
I ic:

If we define the function E(v) via

Ii(v) = jd*x Tr]g(T, Z, v) —g'(T, T, v)],

we have

(5.3)
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A 1 (p2 + E2)($0 2 + p2)
(~»+ ")(~2 + A2)

F(v) = ) F„(v),
n= —oo

where

(5.5)

(5 4)

For e ~ 0 this is just the logarithm of the ratio of Quc-
tuation determinants, i.e., the one-loop efFective action,
regularized with a Pauli-Villars cutoff. The regulariza-
tion can be removed, the integral can be taken to in-
finity, after subtracting the one-loop counterterm action
(see below). Before taking the limit e ~ 0 the two zero
eigenvalues have to be removed by subtracting their con-
tribution inc . Of course e has the dimension of energy.
We used here the scale M~ throughout, i.e., by making
the radial variable dimensionless. So 8 ~ now contains a
term —ln M~, the numerical prefactor P ~, and there-
fore the rate, are computed in units of M~.

After these more formal considerations we have to
present a practical way of computing I'(v). This is done
by using the partial wave decomposition to write

the partial wave Green functions being defined by

(M„+ v2)G„(r, r', v) = 1—h(r —r') . (5.7)

For M the Green function is simply a diagonal matrix
with elements

G;;(r, r', v) = I, (rc;r.&)K,. (v;r&), (5 8)

f, + = I3„,(v.;r)[b, +. h, (r)], (5.11)

where r = gM; + v2. For the Green function of the
operator M the matrix elements similarly become

G-V(r &' v) =f; (&&)f, +(r)) (5.9)

where the functions f, +fo.rm a fundamental system of
solutions of (5.7), regular as r ~ 0 for the minus sign and
as r ~ oo for the plus sign. The correct normalization is
obtained by imposing the boundary conditions

f, (r) = h, I„(r.;r),
f, +(r) =b; K„,(v.,r), . (5.10)

as r ~ oo. Actually we have solved numerically the
differential equations for the functions 6, defined by

P„( )= rf drr Tr]A„(r, r, ) —Gr„'(r, r, r)], (5.6)
where B, are the appropriate Bessel functions. This way
one keeps track of the free contribution oc b; and

Tr (G(r, r, v) —G (r, r, v)) = [h', (r) + h,'(+r) + h,. (r)h, +(r)]I., (K,r)K„, (K,r), (5.12)

to be inserted into (5.5). The partial wave contributions
behave as n for large n. The summation implied by
Eq. (5.5) has been performed up to maximally n = 25,
the asymptotic tail was appended by Gtting the last five
terms with an expression a = c3n + c4n + c5n
and adding the sum over the a &om n+ 1 to oo. The
convergence was monitored by applying this procedure
already in each step of the n summation taking n = n.
The convergence was found to be excellent up to values
of v of the order 5. It has to be said, though, that there
is considerable cancellation between the negative n = 0
contribution and the higher terms. Indeed the v inte-
gration over the n = 0 term alone would be divergent
even after renormalization. This seems to be an inher-
ent feature for functional determinants for topologically
nontrivial configurations, it is related to the fact that
the centrifugal barriers of the operator M„at r = 0 are
difFerent &om those of M . This feature also renders im-
possible a direct application of a theorem on functional
determinants as it was used for the faster and more ele-
gant method of Ref. [20]. The deformation of the cen-
trifugal barriers is not related to our using the singular
gauge for the classical instanton field. In fact it can be
shown by direct calculation that the Buctation equations
do not change under the gauge transformation (2.8).

Fortunately, the asymptotic behavior of F(v), which
is as v after renormalization, sets already in when this
function has dropped to values of order 10 and there
the cancellation is not yet delicate.

There is another problem we have to address here
which is related to the coupling of Gelds with differ-
ent masses in the system of gauge, Higgs, and would-
be Goldstone fields. While normally the solutions of the
coupled system satisfy vacuum boundary conditions at
r ~ oo, i.e., the potential decreases suKciently fast, the
cross terms V;4 can cause the Higgs Geld to change the
asymptotic behavior of the gauge and Goldstone compo-
nents. The solution regular at r = 0 behaves normally as
exp[K;r]. If the physical Higgs coinponent is inultiplied
by V,4 one obtains a behavior exp[(K~ —Mgr)r]. This
expression enters the right-hand sides of the equations for
the Goldstone and gauge fields which themselves behave
as exp(rior). So, if M~ ) 2Mgr, these fields change
their asymptotic behavior. We find that the radial inte-
gral of the trace of the Green function ceases to exist. We
think that this is not a shortcoming of the method but
a systematical property of the Huctuation determinant.
Indeed for M~ ) 2M~ the Higgs boson can decay into
pairs of gauge particles and also the singularity structure
of perturbative graphs changes qualitatively. This sub-
ject merits further consideration; here we just restrict our
computation to Higgs boson masses smaller than 2M~.
The gauge fields cannot, on the other hand, decay into
Higgs particles, since their coupling joins a physical Higgs
and a would-be Goldstone mode; indeed our coupled sys-
tem has no problems of principle for small Higgs boson
masses.
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VI. RENORMALIZATION AND ZERO MODES

Sct = -~fD 8 x —v (6.1)

where in unregularized form

d2k 1

(2') k + M
d'I

(2 'I.
In the Pauli-Villars regularization chosen here we rewrite
the divergent momentum integrals via

d2A: f 1 1
(27r)2 (k2+ M2 g2+ M2+ A2)

a'I
2 PAP

(2~) 2 (I-„2 + M2 + v2) 2

A

2~ o M2+ v2 (6.3)

so that the divergent terms can be rewritten directly as a
contribution to a counterterm F,&(v) in the integral over
v. We find

The Abelian Higgs model is superrenormalizable; all
divergences can be removed by a mass counterterm for
the Higgs field and a counterterm for the vacuum loops.
Expanding around P = v and using the corresponding
Feynman rules we find divergent tadpole diagrams of
the form displayed in Fig. 2, where the internal lines
represent the various Higgs, vector, and Faddeev-Popov
fields. The various couplings can be read oK &om the
second-order Lagrangian (3.9). For the vertices of the
second graph we ffnd —3th/2 for the physical Higgs bo-
son of mass MIr, —i(g + A)/2 for the would-be Gold-
stone mode of mass M~, ig g~„/2 for the gauge field
and ig —/2 for the Faddeev-Popov fields. For the first
graph we find the same vertex factors multiplied by
2v. As a consequence, in summing up the contributions
&om both graphs the external line factors combine as
(P —v)2+ 2v(g —v) = ($2 —v2). The contributions from
the gauge field and Faddeev-Popov loops cancel as they
should. The tadpole graphs with external gauge field
lines (not presented in Fig. 1) cancel against second-order
graphs as usual in scalar /ED. The counterterm action
takes the form

OO 3M2 M' +M'

(6.4)

If F, t( v) is subtracted, F„„(v)= F(v) —F, t( v) behaves
as v as u —+ oo and the Pauli-Villars cutofI', i.e., the
upper limit of integration, can be sent to oo.

Instead of subtracting the tadpole contributions &om
F(v) this subtraction can be performed already in the
partial waves. The tadpole terms can be easily recognized
in the potential given at the end of Sec. IV as the diagonal
terms proportional to (f —1). Denoting these terms by
V;; their contribution to the first-order Green function
becomes

C„,, (r, r', r) = f dr"r"O;;(r, r", r)V;; (r")

x G„,,(r", r', v) (6.5)

(no summation over i). Using some identities for Bessel
functions it can be shown that after taking the trace, in-
tegrating over r, and summing up the partial waves one
obtains F,t(v). In the actual computation we have re-
moved the tadpole contributions directly in the partial
waves. As an illustration we show, however, in Fig. 3
the function E(v) before the subtraction of the tadpole
and Faddeev-Popov contributions, both of these con-
tributions separately, and the final E""(v). It follows
&om perturbation theory that the former behave as v
asymptotically, while the latter behaves as v . The nu-
merical integration was performed up to the region where
the asymptotic behavior sets in. The remaining integral
was performed as jdvv- with a coefficient determined
by the last point. The contribution of the integral from
v to oo is of the order 0.05 and the error introduced
by the extrapolation is certainly one order of magnitude
smaller than this value.

One notes in Fig. 3 that E(v) behaves for small v as
2/v2, a behavior which is due to the translation zero
modes and makes the subtraction of inc necessary when

103

102

10'

coo

4 —v y0-1 coo

FIG. 2. The divergent tadpole graphs. The vertex factors
and internal line masses are given in the text. We do not
display the analoguos graphs with external classical gauge
field legs since they cancel against second-order contributions.

FIG. 3. The integrand E(v) for Mm = Mw Empty di-

amonds, F(v) before tadpole and Faddeev-Popov subtrac-
tion; empty circles, F,t (v); empty squares, the Faddeev-Popov
term; full circles, F„„(v) The dotted line c. orresponds to the
behavior 2/v due to the zero modes. The dashed line shows

the extrapolated asymptotic v behavior.
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the lower limit of the integration is taken to 0. In
practice, the zero mode pole appears slightly shifted to
v = Ao 0.02 as can be seen in Fig. 3 &om the departure
of the expected behavior at values v & 0.1. So a term
ln(e2 —Ae2) has to be subtracted instead. The integrand
was, for v & 1, decomposed into a pole term and a finite
contribution and the former one was integrated analyti-
cally. Ao can be fixed to at least three significant digits
and the finite term turns out to show a smooth behavior
oc v; we think that this procedure introduces an error of
S @ below 0.01. So including the estimate for the error
in the asymptotic extrapolation and another 0.05 (i.e.,
—IOFO) for errors in the numerical integration we think
that we have determined 8 g to within an error of 0.07.

VII. DISCUSSION AND CONCLUSION

The results of our computation of the one-loop e8ective
action

1.0

0.5—
Seff

0.0

—0.5-

—1.0
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 4. The one-loop effective action. The vertical lines
are the numerical results for the bosonic effective action
S,& ', the length of the lines indicate the error; the empty
squares are the effective action S & for massless fermions
given by Eq. (2.15). The curves are spline fits.

S,tr = —hm
~

dvvF„„(v) + lne (7.1)
rs-+0

are shown in Fig. 4. The Quctuation prefactor 17 i~2 (in-
cluding the counterterm action) is given by exp( —S;ff ).
Because of the subtraction of the zero-mode contribution
ines it has dimension (length) 2. Since we have used in
our computation the dimensionless variable M~r, the
units for the rate are M~2 (the action and therefore the
zero-mode prefactor being dimensionless). As mentioned
in the previous section we estimate the error of our nu-
merical result for S g to be of the order of 0.07 units.

In contrast to an analoguos computation of the Buctu-
ation prefactor for the sphaleron transition in the elec-
troweak theory the effects of the quantum Buctuations
on the transition rate remain quite small here, less than
a factor of 2. This could have been expected on the
grounds that the number of Huctuating fields is small; ef-
fectively, in view of the cancellation between gauge field
and Faddeev-Popov degrees of &eedom, we have just the

physical and the would-be Goldstone part of the Higgs
field. Furthermore the dimension of space is reduced &om
three to two. Nevertheless we think that this expectation
had to be checked by a direct computation.

One cannot compare the classical and quantum action
without specifying the dimensionless vacuum expectation
value v = M~/g . If v I, the classical action has a
value of order vr. This has to be considered as an absolute
lower limit if one wants to justify the dilute instanton gas
approximation. The fact that the one-loop correction is
then 1 order of magnitude smaller supports the use of
the semiclassical approximation. It would be interesting
to compare it to lattice simulations.
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