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The generators of the Poincare symmetry of scalar electrodynamics are quantized in the functional
Schrodinger representation. We show that the factor ordering which corresponds to (minimal)
Dirac quantization preserves the Poincare algebra, but (minimal) reduced quantization does not.
In the latter, there is a van Hove anomaly in the boost-boost commutator, which we evaluate
explicitly to lowest order in a heat kernel expansion using (-function regularization. We illuminate
the crucial role played by the gauge orbit volume element in the analysis. Our results demonstrate
that preservation of extra symmetries at the quantum level is sometimes a useful criterion to select
between inequivalent, but nevertheless self-consistent, quantization schemes.

PACS number(s): 11.30.Cp, 03.70.+k, 11.15.—q

I. INTRODUCTION

There has been a long standing debate in the liter-
ature concerning the Dirac versus reduced quantization
of gauge theories [1—6]. In Dirac quantization, one con-
structs quantum operators on the full space of fields prior
to reducing to the physical degrees of &eedom. The gauge
constraints are then realized as operator constraints on
physical states. Reduced quantization, on the other
hand, as the name suggests, constructs quantum oper-
ators for physical observables only. Dirac quantization is
simpler in the sense that the full space of fields is usu-
ally endowed with a flat configuration space metric. It
has the disadvantage, however, of including supposedly
unphysical information into the quantization scheme. It
is well known that these two approaches to quantization
generally lead to distinct quantum systems [1—6], and
that the difference can be understood as a factor order-
ing ambiguity involving the volume element on the gauge
orbits [6]. Now it can happen that both approaches are
self-consistent, and so even though the respective Hamil-
tonians may yield diferent spectra, there is no internal
criterion with which to select the correct factor ordering.
This has been illustrated by Kuchar" [3] using a finite-
dimensional model, which we will refer to as the helix
model.

The purpose of the present paper is to examine in
detail the quantization of a field-theoretic version of
Kuchar"'s helix model, namely scalar electrodynamics in
flat spacetime. An important distinction between the
two models in the present context is that scalar electro-
dynamics contains a symmetry not present in the helix
model: Poincare covariance. Our principal contribution
is to show that Poincare covariance at the quantum level
is sensitive to this factor ordering ambiguity, and provides

a suitable internal criterion: minimal Dirac quantization
passes, whereas minimal reduced quantization fails.

The paper is organized as follows. In Sec. II we review
both the Lagrangian and Hamiltonian analyses of scalar
electrodynamics, chiefly to introduce notation. This is
followed in the next section by a discussion of the clas-
sical Poincare symmetry: we write down the classical
Poincare charges on the full phase space, and verify that
these generate the Poincare algebra, up to "ofF-shell"
pieces which vanish on the constraint surface. Then in
Sec. IV we quantize the Poincare generators in the func-
tional Schrodinger representation and show that mini-
mal Dirac quantization preserves the Poincare symmetry
when acting on physical states. This involves showing
that all potential van Hove anomalies [7—9] vanish, and
that the o8'-shell pieces mentioned above annihilate phys-
ical states when quantized. In Sec. V we turn to mini-
mal reduced quantization, and demonstrate that it does
not preserve the Poincare symmetry: there exists a van
Hove anomaly in, for example, the boost-boost commu-
tator. This calculation involves (-function regularization
(via heat kernel techniques) [10,11] of (the log of) the
gauge orbit volume element. Finally, in Sec. VI we com-
pare both Dirac and reduced quantizations (acting on the
same physical state space) to clarify why minimal Dirac
quantization succeeds, while minimal reduced does not.
It is clear that the volume element on the gauge orbits
plays an important role.

II. SCALAR ELECTRODYNAMICS

The Lagrangian density for scalar electrodynamics in
flat spacetime is

This term is defined later.
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& = 2(D~W)(D"V ) —U —4F~-F"

where we use spacetime signature (+ ———), and the in-
dices p, v run Rom 0 to 3. rp:= (+ ig is a complex
scalar field and U is a potential, for example, a mass or
self-interaction term, which depends only on [p~. The co-
variant derivative is D„:=8„+ieA„,with corresponding
electromagnetic field strength E„:=O„A„—B„A„.

Fixing an inertial frame, and using DeWitt's con-
densed notation, the Lagrangian L(t):= f dsxC(t, x)
can be cast into the form

(h" 0 0)
G»(Q):= 0 1 0 $(x —y)

0 01) (4)

the spatial index i = 1, 2, 3), as well as the continuum
n:= x E R . Repeated indices imply summation and/or
integration, as appropriate. The overdot on the veloc-
ities Q indicates time derivative, but the time argu-
ment has been suppressed. The timelike part of the
vector potential plays the role of a Lagrange multiplier:

—eAp(x). The kinetic energy term in the La-
grangian induces a Hat metric on M, with components

~(» Q Q) = 2G»(Q) [Q" —& &."(Q)j

x[Q —& 4p(Q)j —V(Q) (2)

in the Cartesian coordinates Q . The potential term in
L is

In the above, the configuration of the system at time
instant t is represented by a point in the configuration
space, M, with global coordinates

V(Q): d zP(F;, ) + -'(c),( —eA, q)2

+ ', (0;q-+ eA;()'+ U) .

Q~:= (A;(x), ((x), i)(x)), (3)

where the index A runs over discrete values (including

Gauge transformations on M are generated by the
"gauge vector fields" P = P+c)/BQ, whose components
in the Cartesian coordinates are

Pp (Q) =
~

——0 .b(x —y), —q(x)b(x —y), ((x)8(x —y) ~

A

e

The gauge vector fields are linearly independent (except
on the subspace ( = i) = 0), and their Lie bracket algebra

bL
lip(„) = . = ((x) — Ao(x) r)(x),

h((x)

bL
II„(„)= . = r)(x) + eAp(x)((x),

bg(x)

(io)

where h/hA;(x), etc. , denotes functional derivative.
The Iagrange multipliers A enforce the Gauss law

constraints

C (Q, P):= p (Q)PJs
1= -c);ri&,. („) —r)(x)rl~(„) + ((x)II„(„)= 0,e

(12)

is, of course, Abelian.
The phase space I = T*M. A straightforward Hamil-

tonian analysis (see, e.g. , [12j) yields the canonical Hamil-
tonian

H(A, Q, P) = 2G (Q)P~P~+ V(Q) + A C (Q, P),
(g)

in which G denotes the matrix inverse of G~~. The
momenta P~, conjugate to Q+, are (in uncondensed no-
tation)

bL
ll~,. („) = . = A;(x) —c) .Ap(x) = Fp, (x), (9)

8A; (x)

which defines a constraint surface I'~ C I'. It turns out
that the P are Killing vectors and that the potential V is
constant along the gauge orbits in M, conditions which,
together with (7), are sufhcient to guarantee that I'c is
invariant under time evolution.

III. CLASSICAL POINCARE SYMMETRY

Integrating the Lagrangian density 8 in (1) over space-
time gives the action, whose functional derivative with
respect to the spacetiine metric (evaluated at the flat
metric q~ ) yields the symmetric and conserved energy-
momentum tensor

P".= d xT ",

f qs (,z, ~ )00
(14)

As we shall see shortly, as dynamical variables on I' these
constants of the motion canonically generate transforma-
tions on the classical states which realize the Poincare
algebra, at least when acting on the constraint surface
I c'~

We find, in terms of the phase space variables,

r" = —,'(rl„' + ll,'+ ll„') + v(A, , g, ~),

T""= (D("p)(D )y) —F "Fp" —q" 2,
where indices in parentheses denotes symmetrization.
Together with the Poincare group of isometrics, this then
leads to the conserved Poincare charges
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T ' = II—g, F;.~ —II((B;(—eA;g)
—II„(t9;q + eA;(),

where V(A;, (, rI) is the integrand in (5). Thus the gen-
erator of time translation

'Pp ——C2(2G ') + Cp(V)

in condensed notation, where

C, (S):=S '"' '(Q)Pdt, . Pg

denotes the homogeneous classical dynamical variable on
I' associated with a symmetric contravariant valence 8
tensor field S on M [cf. (8)].

After an integration by parts the spatial translation
generators turn out to be

y" = /d' }—rrz, azX, —rr, d, d —rr„az„—.wzC. }
=:Ci("X),

where we read ofF the vector field components

"X (Q) = ( —t9 «A;(x), —c} «$(x), —c} «rI(x))

—e d'zAA, z," . 2O

Here p:= 2,'is included in the integration. Similarly, the
spatial rotation generators

g": = -'[kmn] J'

d3x A;mn x —II&,.0 A.; —II&0

—Il„c}g —eA„C ) —II& A

=:Ci("Y),

where [kmn] is the completely antisymmetric symbol in
three dimensions, with [123]=1,and

"Y (Q) = [kmn]( —z o}~ A;(x) —h; A„(x), z8~ ((—x)) z0~ g(—x))
—e d zkmnz A~ s (22)

Finally, the boost generators

K":=Q "=—C2( — K) —Cp("V) + t'P",

where the boost tensors

(S;, 00)
"K (Q) = 0 1 0 -(z" +y")b(x —y), (24)

0 01j
and the boost potentials

"X' = 2G~~ (C},„G)—
dzdy x —yBabx —y =0 (26)

surface I'~. Next, the boost tensors "K have Geld inde-
pendent components in the Cartesian coordinates [see
(24)], and so are, in fact, covariantly constant [cf. (4)].s
Finally, the spatial translation and rotation vectors "X
and Y, while not Killing, are nevertheless divergence-
&ee:

"V(Q) = f d zz V(A;, $, g),

which are analogous to the potential V(Q) in the Hamil-
tonian.

For future reference we record here some proper-
ties of the various tensors associated with the Poincare
charges. First, the I ie derivative with respect to P of
every valence zero, one, and two tensor that occurs in
'PP, 'P", Q", K" vanishes. 2 This is sufficient (but not nec-
essary) to guarantee that the Poincare charges are classi-
cal observables, that is, gauge invariant on the constraint

C.(S),C, (T)) = C, , (—~S, T]), (27)

where (S,Tj is the Schouten concomitant [14]of S and T.
A straightforward but lengthy calculation (see footnote
2) yields

since 8 h(z —y) is antisymmetric; similarly for Y. As
we shall see later, these results considerably simplify the
Dirac quantization of the Poincare algebra.

But first we must work out the algebra at the classi-
cal level. In terms of our previous notation the Poisson
brackets can be expressed as

P'z, 7"}= 0 —z f d zEz'C»,

, 7 z}= »I zPz —»IzzÃ" —z J d zjzzP"z —z F"z)C»,

(28)

For the explicit calculation refer to [13].

This implies they are Killing, and in involution, which,
modulo terms that vanish on 1 &, is necessary for the Poincare
algebra to close.
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iIP'+ rl
PJP rIPPJ

+e d z(z~z F —z"z F" +z z F" —z"z F )C~. (30)

Since C~ = 0 defines the constraint surface, we see that
we have explicitly verified the classical Poincare alge-
bra for scalar electrodynamics; we are not aware of any
similar calculation in the literature. Notice that since

F ~(z) = —II~.(,), the "off-shell pieces, " which are lin-
ear combinations of the constraints, are linear and/or
quadratic in the momenta, and these must be dealt with
accordingly when we do the Dirac quantization.

IV. DIRAC QUANTIZATION OF THE POINCARE SYMMETRY

%e now proceed with Dirac quantization of the Poincare charges, and subsequent verification of the Poincare
symmetry at the quantum level. The phase space I' = T*M, and, since M comes equipped with a (Rat) metric G,
it is natural to choose Schrodinger picture quantization with state space T consisting of all smooth complex-valued
functions on M, and Hilbert space 'Rg;, '.——I (M, E), the subset of those which are square integrable with respect to
the volume form E associated with G. The quantization map is not unique: here we shall choose the simplest one:

c.(v) = v ~ Q.(v) = v, (31)
Ci(X) = X P~ m Qi(X) = —th(X 5'~+ 2(%AX )), (32)

C2(K) = K P~P~ m Q2(K)
= ( ih) (K —V'gV'~+ (V'~K )V~)
= (—ih) V'~K V'~, (33)

Cs(T) = T P&PBPC' + Q3(T) = (—16) (T VAVBVC +- (V2AT )VHVC —4(VQVBVCT )j, (34)

where, as before, V' is the Levi-Civita connection on M.
This will be called "minimal" quantization in that given
the leading term (highest order in derivatives) the addi-
tional complementary terms are the minimum ones nec-
essary to make the operator self-adjoint.

In the spirit of Dirac [16] we now account for the con-
straints by quantizing them —on the same footing as any
other observable linear in the momenta: C = Qi(P ).
The physical state space, diphy C T, is then defined
as the collection of states diphy annihilated by the con-
straint operators:

Of course one may add various additional terms to the
right-hand side of (33) or (34) and still preserve self-
adjointness. However, as it pertain. s to (34), this ambiguity is
irrelevant to our result, and a specific choice is made just for
notational definiteness: The only place a cubic operator ap-
pears is in (46) [and also (57)], but there the right-hand side
is defined by the left-hand side, so if we change our definition
of Q3 the "van Hove term" simply changes accordingly —the
invariant result is that the left-hand side annihilates physi-
cal states, as we shall see (in order that the Poincare algebra
close). However, this ambiguity is of great interest in (33):
alone, the self-adjoint requirement fixes the quadratic opera-
tor only up to the addition of a real scalar "potential" term
(which should be linear and homogeneous in the classical ob-
servable). Minimal quantization (both Dirac and reduced)
sets this term to zero, by fiat, but when acting in the phys-
ical Hilbert space the minimal Dirac operator actually looks
like the minimal reduced operator, except with a certain ad-
ditional potential term which depends on the gauge orbit vol-
ume element (see, e.g. , [15]). The point here is to demonstrate
that the Poincare algebra is sensitive to this difference. Also,
notice that the notion of minimality is more natural in Dirac
quantization where the (full) configuration space, unlike the
reduced configuration space, is Hat in our example, and so the
usual curvature terms, at least, are absent (see, e.g. , [15]).

+n@phys —0 ~o' ~ @phys ~ +phys (35)

Zy E=OVn-, (36)

i.e. , in which the P are divergence-free. This restriction
is natural in the sense that (35) then implies P
0 Vo;) i.e.

& «Fppy consists of gauge-invariant complex-
valued functions on M.

F'iu thermore, given such a basis one is &ee to transform
to any other basis whose elements are all divergence-&ee,
i.e., taken from the set

&:= (u = v 4 I&. s = o ~ 4-v = o) .

In our case the Lagrangian provides a natural basis of
which are Killing, and so certainly satisfy (36). Fur-

As emphasized by Kuchar" [2], the choice of basis for
the gauge vectors P is arbitrary at the classical level, but
that this breaks down at the quantum level, at least if one
demands that the constraint operators be self-adjoint.
The trouble lies in the complementary divergence term
in (32), but can be eliminated by restricting to a pre-
ferred basis which is "compatible" with the Hilbert space
structure:
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1
[Qo(U), Qg(p)] = Qo( —[[U, p]]) . (38)

But —[[U, p]] = l:„Uvanishes since the potentials are con-
stant along the gauge orbits. For a vector Z, representing
any of the spatial translation or rotation vectors "X or
Y, we find

thermore, it can be shown that constraint operators con-
structed from elements of g will be consistent (first class)
iff P~f &

—0, or, equivalently, f~& ——Pp f for some scalar

f In. our case the structure functions f~& vanish [see (7)],
and so this condition is trivially satisfied.

The Poincare charges 'P, 'P", g", K" contain pieces
zero-, first-, and second-order in the momenta, and are
quantized accordingly using the minimal quantization
scheme. In order for the resulting quantum Poincare
charges to be observables they must commute with the
constraint operators Qq(p) (at least on X~h„,) for all

p C g. Let us check if this is so.
Let the scalar U represent any of the Hamiltonian or

boost potentials V or V; we have

Thus, the quantum Poincare charges are observables.
The next question to ask is whether or not they real-

ize the Poincare algebra when acting on physical states.
There are two considerations: van Hove anomalies, and
whether or not the minimal quantization of the off-shell
pieces in (28)—(30) produces operators which annihilate
physical states. We discuss these in turn.

Since the work of Groenewold [8] and van Hove [7]
it has been known that no map from classical to quan-
tum observables exists which preserves the entire Pois-
son algebra. For the minimal quantization map given
in (31)—(34) van Hove anomalies appear first in the
quadratic-linear commutator: refer to (41), which applies
for generic E, and p replaced by a generic vector field,
Z. But the only vector fields occurring in the Poincare
charges are the spatial translation and rotation vectors
"X and "Y', which are both divergence-free [see (26)],
and so this particular van Hove anoxnaly is not present.

For the generic quadratic-quadratic commutator,

[Q2(K), Q2(I)] = Q3( [[K)Lj) + 5'Q&(Z), (46)

1
[Qg(Z), Qg(p, )] = Qg( —[[Z, pj),

with

—,„[Q2(K) Q~(p)] = Q2( —[[K p]]) + &'Qo(~) (4o)

W = 2'%7A[K VB(V' p,)] . (41)

The h2Qo(W) term is a van Hove anomaly (discussed
more fully below), which in this case vanishes precisely
because of the restriction (37). Furthermore,

where —[[Z, p][ = l &Z. Using the fact that l:y Z = 0 in
our case it is easy to show that l:~Z 6 g, so the right-
hand side of (39) annihilates 4'~hr, . Finally, letting K
stand for either the inverse metric G or any of the
boost tensors "K, we have

Z = V'BV'C(K-I] —V' A

ABD KABI CD~ +. (g KAB)(g ICD)
1 g [KAB(g LCD) KAD(P LCB)]

—(KwL). (47)

For our example, the van Hove term 52Qq(Z) vanishes
because the Ricci tensor RAB is zero (M is flat) and
the inverse metric and. boost tensors are all covariantly
constant. Thus the Poincare algebra is &ee of van Hove
anomalies under minimal Dirac quantization.

We now come to the quantization of the off-shell pieces
in (28)—(30), of which there are essentially only two types.
The first type has the form

—tK, pj = l:„K= p, Zy K —2@ g)g gP, (42) —e d ~F'~C~ =:Cg p~ (48)
where p denotes a symmetrized tensor product. The
first term on the right-hand side vanishes, and the Carte-
sian components of the vector fields @ are
K V'Bp . Quantizing the remaining term yields an
operator proportional to

&B + &A4 "0 &B . (43)

The first term annihilates 4'phy„and the second is equiv-
alent to

where (with p:= z) the scalars

p~ = —eE"(z) (49)

But since the electromagnetic field strength is gauge in-
variant, we certainly have P~p~ = 0, so p~P~ C g, in
which case Qq(p~&P~)@~h~, = 0.

The second type has the form

(& &)0 +4'0 =[4' 0 ]+0 4 (44)
—e d zF ~C~ =:C2 ~(ag (50)

Now the second term on the right-hand side of this ex-
pression annihilates 4 phy and, furthermore, the com-
mutator vanishes:

where the vector field components

= (eb'h(z —x), 0, 0) .

(l'-y Q ) =(Ep K) VBy, +K (Cp V'p, )B=O.
(45) See, e.g. , [9] for a more precise statement.
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The quantization of this second type of term is exactly
analogous to the discussion following (42), except the Lie
derivative corresponding to (45) is

(~~.4")"= —jd'* d'w («(~ —y) ~„&,"(q),
bA~ y

(52)

which vanishes since P (Q) has no dependence on the
field Az(y) (and note that Q~ has no field dependence
at all). Thus the off-shell pieces do not affect the Poincare
algebra at the quantum level.

In conclusion we see that the minimal Dirac quantiza-
tion of the classical Poincare charges realizes the Poincare
algebra when acting on diphy We now turn to reduced
quantization.

V'. REDUCED QUANTIZATIDN DF THE
POINCA RE SYMMETRY

volution with each other: ][ k, k]] = 0. Also it can be
shown that the projected spatial rotation and boost vec-
tors are Killing with respect to the metric g on m, and
so necessarily are (Levi-Civita) divergence-free.

We now quantize the reduced Poincare charges, and at-
tempt to verify the Poincare symmetry at the quantum
level. In analogy with the Dirac quantization considered
earlier, we choose the Schrodinger picture quantization
with Hilbert space 'R„g .= I (m, e), where e is the vol-
ume form associated with the metric g on m. As was the
case with Dirac quantization, the choice of quantization
map is not unique —especially now that the configuration
space is not flat (see [12], and references therein).

But in order to compare Dirac and reduced quanti-
zation on an "equal footing, " we again choose minimal
quantization [the reduced space analogue of (31)—(34)],
which is also in keeping with tradition in the Dirac ver-
sus reduced quantization debate in the literature [1—6].
In particular, for a physical variable quadratic in the mo-
menta,

Classical reduction is readily achieved by choosing the
complete set of gauge invariant functions:

c2(k) = k "p ps ~ q2(k):= (—ih) V' k Vs
= (—ih)2(B k Bs+ k (B ln(u)Bs), (56)

q = (B;(x),p(x)), (53)

b —B
0 lp (54)

The other tensors involved in the Poincare charges can
similarly be projected onto m, and the resulting reduced
Poincare charges on p will obviously realize the Poincare
algebra classically [cf. (28)—(30) with C&

——0], a fact
which can be verified by direct calculation. For the pur-
pose of our discussion it is sufBcient to know only the
projected boost tensors:

where B;(x):= A;(x) + (1/e)B 0(x) and y(x)
p(x) exp[i'(x)], as coordinates on the reduced config-
uration space m. Since the constraints are linear in
the momenta, the reduced phase space p = T'm, with
canonical coordinates (q, p ). An observable C, (S) on
I' maps to the corresponding physical variable c,(s):=
s "" '(q)p, p~ on p, where the tensor s on m is the
(physical) projection of S.

In particular, the projected inverse metric

= ][k, lt] BgB Bg

+2s{(Bs][k,ljs' ) + (B 1 )urn)][k, t]]
' )B,Bg

+(k B (Bg(v")) + u Bs(v") —(k ++ t) jBg, (57)

where V' is the Levi-Civita connection on m, 0 is the
(functional) derivative with respect to q, and
gdetg b is the measure on m in the coordinates q

Now, as noted above, the classical Poincare charges
realize the Poincare algebra, and this will automatically
extend to the quantum level provided there are no van
Hove anomalies. The 6rst place such an anomaly might
arise, with quadratic-linear commutators [see (41) with
V ~ V, etc.], it does not, since the projected trans-
lation and rotation vectors are divergence-free, as men-
tioned earlier. This leaves a potential anomaly only with
quadratic-quadratic commutators [cf. (47)]. However, in-
stead of dealing with covariant derivatives, and the Ricci
tensor of the curved space, m, we calculate directly in
terms of cu:

1(,.q), [q2(k) q2(&)]

(55)

We remark that these are Killing tensors, and are in in-

for generic k and l, where the "vectors"

u' = B.k'+ (B.in~)k',
v = B l + (B, ln(u)l'" .

Here we used the physical Poincare charges to generate the
algebra at the classical level; in fact, it can be shown that
one can equally well use the Noether Poincare charges, which
differ from the physical ones by terms which vanish on shell.
Furthermore, the minimal Dirac quantization of both sets of
charges are identical when acting on physical states.

If k and l represent any of either the inverse metric or
boost tensors then (k, I]]

" = 0, as noted earlier —a fact

Note that even if K is covariantly constant on M, its phys-
ical projection k on m need not be.
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that must be true for the Poincare algebra to close. Thus,
for the quantum commutator to vanish, as it should, we
require all components of the terms in curly brackets in
the last line of (57), which we will denote as (~, to be
zero.

For instance, the (quadratic-quadratic part of) the
boost-boost commutator corresponds to taking k = k,
I = I(:, and we find, using (55), that only the d = p(vr)
component of ( is potentially nonvanishing:

b3 ln~(' ~ = f d'»d'yy m"6(» —y)
h p(«) h p(y) b p(w)

b ln~ h2in(u

bp(y) hp(y)bp(w)

detg = Det h,~
—)9; (9~

Q2 p2

1 )' 1= Det —,
~

——,o)'+ p'
~

p ( e ) (61)

where Det denotes functional determinant, and 0
0;0;. The last equality follows by decomposing the eigen-
vectors of the operator b,~

—- . into their transverse and
longitudinal parts, and examining the eigenvalues. Hence

(in uncondensed notation).
In order to evaluate h in~ we first observe that [see

(54)]

1 1 ( 1 5 1 1 ( 1bin~= ——blnDet —
~

——(9 +p
~

= ——bTrln —
~

——2(9 +p
2 p' (, e' )

= ——h Tr ln ———b Tr ln
~

——(9 + p ~

=: hI + bII,1 1 1 f' 1
p2 2 ( e2 )

(62)

where we have assumed that the functional trace Tr sat-
isfies the usual cyclicity property, and that bTr lnA =
TrA bA for any operator A.

The erst term is straightforward to evaluate:

into a singular piece

e s/2 ( e ~x —
y~EC (y, »0) »= ( ) e»p

~

— —e» ~, (68)4'~ 4r

bI= d xbpx

1
bII =— d z dr r'hD K(x, x, r)ds I'(s) () s=0

(64)

Here the positive de6nite operator

but the second term is more difBcult. Following Hawk-
ing s discussion [10]on (,'-function regularization we write t9 1

A(x, y) r) + —(x —g )8~i A(«) y) r)
O'T 'T

= —
i

——(9 + p (x) i
A(x, y, r),( 1

) (69)

with initial condition A(x, x, 0) = 1. We now expand

which satisfies (66) with p = 0 and initial condition
Ko (x, y, 0) = b(x —y), and a regular piece, A(x, y, r).
The latter contains the p dependence of K, and satisfies

1 2D:= ——0 +p +e,
Q 2 (65)

A(«, y, r) = ) G~(«, y)r
7I,=O

(70)

where e ) 0 is a regulating "mass" parameter. Its asso-
ciated heat kernel K(x, y, r) satisfies

and 6nd that the coeKcients a satisfy the recursion re-
lation

0
K(x, y, r) + DK(x, y, r) = 0,87 (66) na„+ (x' —y*)c);a„+

~

——,(9 +- p (x) ~
a„ i ——0,

)
with initial condition K(x, y, 0) = h(x —y). D [and bD
in (64)] act on the first argument of K. In our case bD
is simply 2pbp.

As in, e.g. , [11] we factorize

n=12 . . (71)

with ao(x, y) = l. In the coincidence limit we obtain

K(x, y, r) =:Ko(x, y, r) A(», y, r) (67) ai(x, «) = —p'(x),

~.(«, «) = —
~
—,~. +p («)

~
p («),

1 / 1

2 g Se )

(72)

We are being somewhat cavalier about regularization, sim-
ply because it is difBcult to do much better, but we believe
that our 6nal conclusions still carry sufBcient weight to be of
interest, as we shall argue.

in agreement with similar work in [17].
Substituting these results into (64) yields an expression

valid for Re(s) ) 2, which when analytically continued
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to 8 = 0 gives

|IIII = d xbp x — c„p x a„x,x
n=0

(74)

where the coeKcients

e s/& I'(n —2)
4~ ~n —1/2 (75)

—(m e+ n) (76)

Now although a„(x,x) effectively goes like 1/n! [see
(71)], the series in (74) nevertheless diverges as e —

& 0,
and must therefore be treated as a formal expansion in
powers of e. (And note also that powers of e are associ-
ated with derivatives of p. )

Finally, working out the higher order variations of I
and II, and using these results in (60), yields

in Pzg„,) is identical in form with minimal reduced quan-
tization, except with 0 ln~ in place of t9 incr, a differ-
ence which corresponds to retaining only the first term
hl in (62), for example. [Compare (78) with (63).]

This means, for instance, that the quadratic-quadratic
commutator in minimal Dirac quantization has the same
form as (57), but when applied to the boost-boost com-
mutator is easily seen to yield ( = 0, i.e., no anomaly,
as expected kom the results of Sec. IV. We remark that,
although the term bl in (63) contains h(o), and so is not
regulated, it is common to both the Dirac and reduced
approaches, and the (independent) results of Sec. IV sup-
port the proposition that this term does not cause a
problem with the Poincare algebra. Rather, it is the
additional term bII present in reduced quantization —in
particular, those pieces involving derivatives of p, which
begin to appear with the n = 2 term in (74)—that causes
a van Hove anomaly.

In fact, we observe that exp( —II) is nothing but the
volume element, gdetp p, on the gauge orbits, where
the metric

(plus higher order terms). It is instructive to note that
if h inn/hp oc p", the term in braces vanishes iff A; = —1,
a situation which corresponds precisely to term I of inn
[see (63)]. Term II, on the other hand, contributes a
polynomial with higher powers of p (and also derivatives
of p): the leading order (in both e and e) contribution is

—(u)"8 —m 8 -)p (w),(12')' e
(77)

which does not vanish for generic p. Also note that higher
order terms in the expansion (74) do not contain this
combination of e and e, so no cancellation of this piece is
possible.

Thus, the boost-boost commutator (and hence the
Poincare algebra as a whole) fails to be realized at the
quantum level using minimal reduced quantization.

VI. DISCUSSIDN

b' inure' b(o)
hp(x) p(x)

(78)

In fact, the analogous statement applies for the entire set
of Poincare charges: minimal Dirac quantization (acting

We have thus shown that minimal Dirac quantization
acting in %phys preserves the Poincare symmetry of scalar
electrodynamics, but that minimal reduced does not. To
better understand how this comes about it is instructive
to determine what the Dirac-quantized Poincare charges
look like acting on physical states, so they can be com-
pared on the same footing with their reduced counter-
parts.

For instance, direct calculation using (4), (33), and
(53) shows that the kinetic energy operator Qz(zG ),
acting in X~~„„is equivalent to qz(zg ) [see (56)], ex-
cept with 0 inn replaced by an object we call, similarly,
0 inn', whose only nonvanishing component is

p p ..= G~~P @p
——

~

8+—p —(x)
~

b(x —y) . (79)

Now it must be emphasized that, in general, the min-
imal Dirac and minimal reduced. quantization schemes
are not equivalent [1—6]: If one transforms to a com-
mon Hilbert space, the inequivalence manifests itself in
the quadratic operators as a difference in factor order-
ing involving precisely the above volume element on the
gauge orbits [6]. Minimal Dirac quantization corresponds
to a certain "nonminimal" reduced quantization. Fur-
thermore, for a given model it can happen that both the
Dirac and reduced factor orderings are self-consistent-
the relevant example here being Kuchar"'s helix model [3]
(which is a finite dimensional analogue of scalar electro-
dynamics). So even though the Hamiltonians might have
different spectra, which could, in principle, be measured,
there may be no internal physical criterion with which to
select the correct factor ordering, as happens in the helix
model [3].

The significant point here is that scalar electrodynam-
ics has an additional symmetry, the Poincare symme-
try, and, at the quantum level, this symmetry is sensi-
tive to this difference in factor ordering (or presence of
gdetp p), suggesting, in fact, that minimal Dirac quan-
tization is correct, and minimal reduced is not (at least in
this case). In other words, in response to [2], for instance,
one cannot always impose the "principle of minimal cou-
pling" in reduced quantization.

This result also supports previous work [18,15] suggest-
ing a preference for minimal Dirac over minimal reduced
because of the natural similarity of the former with sev-
eral curved-space quantization schemes proposed in the

This additional term bII should not be confused with the
additional potential term mentioned in footnote 4.

For example, the respective Hamiltonians have difFerent
spectra, in general.
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literature.
Thus, demanding the preservation of a sufFiciently non-

trivial classical symmetry at the quantum level may serve
as a useful internal physical criterion with which to se-
lect amongst inequivalent factor orderings, as we have
demonstrated here. It might be interesting to generalize:
to find a large (or the largest) class of symmetries pre-
served under minimal Dirac quantization, as well as its
corresponding "nonminimal" reduced quantization, but
not necessarily preserved by the minimal reduced quan-
tization, and thus, perhaps, more clearly illuminate the
role the gauge orbit volume element plays in this matter.
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