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The generators of the Poincaré symmetry of scalar electrodynamics are quantized in the functional

Schrédinger representation.

We show that the factor ordering which corresponds to (minimal)

Dirac quantization preserves the Poincaré algebra, but (minimal) reduced quantization does not.
In the latter, there is a van Hove anomaly in the boost-boost commutator, which we evaluate
explicitly to lowest order in a heat kernel expansion using {-function regularization. We illuminate
the crucial role played by the gauge orbit volume element in the analysis. Our results demonstrate
that preservation of extra symmetries at the quantum level is sometimes a useful criterion to select
between inequivalent, but nevertheless self-consistent, quantization schemes.

PACS number(s): 11.30.Cp, 03.70.+k, 11.15.—q

I. INTRODUCTION

There has been a long standing debate in the liter-
ature concerning the Dirac versus reduced quantization
of gauge theories [1-6]. In Dirac quantization, one con-
structs quantum operators on the full space of fields prior
to reducing to the physical degrees of freedom. The gauge
constraints are then realized as operator constraints on
physical states. Reduced quantization, on the other
hand, as the name suggests, constructs quantum oper-
ators for physical observables only. Dirac quantization is
simpler in the sense that the full space of fields is usu-
ally endowed with a flat configuration space metric. It
has the disadvantage, however, of including supposedly
unphysical information into the quantization scheme. It
is well known that these two approaches to quantization
generally lead to distinct quantum systems [1-6], and
that the difference can be understood as a factor order-
ing ambiguity involving the volume element on the gauge
orbits [6]. Now it can happen that both approaches are
self-consistent, and so even though the respective Hamil-
tonians may yield different spectra, there is no internal
criterion with which to select the correct factor ordering.
This has been illustrated by Kucha¥ [3] using a finite-
dimensional model, which we will refer to as the helix
model.

The purpose of the present paper is to examine in
detail the quantization of a field-theoretic version of
Kucha¥’s helix model, namely scalar electrodynamics in
flat spacetime. An important distinction between the
two models in the present context is that scalar electro-
dynamics contains a symmetry not present in the helix
model: Poincaré covariance. Qur principal contribution
is to show that Poincaré covariance at the quantum level
is sensitive to this factor ordering ambiguity, and provides
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a suitable internal criterion: minimal® Dirac quantization
passes, whereas minimal reduced quantization fails.

The paper is organized as follows. In Sec. II we review
both the Lagrangian and Hamiltonian analyses of scalar
electrodynamics, chiefly to introduce notation. This is
followed in the next section by a discussion of the clas-
sical Poincaré symmetry: we write down the classical
Poincaré charges on the full phase space, and verify that
these generate the Poincaré algebra, up to “off-shell”
pieces which vanish on the constraint surface. Then in
Sec. IV we quantize the Poincaré generators in the func-
tional Schréodinger representation and show that mini-
mal Dirac quantization preserves the Poincaré symmetry
when acting on physical states. This involves showing
that all potential van Hove anomalies [7-9] vanish, and
that the off-shell pieces mentioned above annihilate phys-
ical states when quantized. In Sec. V we turn to mini-
mal reduced quantization, and demonstrate that it does
not preserve the Poincaré symmetry: there exists a van
Hove anomaly in, for example, the boost-boost commu-
tator. This calculation involves (-function regularization
(via heat kernel techniques) [10,11] of (the log of) the
gauge orbit volume element. Finally, in Sec. VI we com-
pare both Dirac and reduced quantizations (acting on the
same physical state space) to clarify why minimal Dirac
quantization succeeds, while minimal reduced does not.
It is clear that the volume element on the gauge orbits
plays an important role.

II. SCALAR ELECTRODYNAMICS

The Lagrangian density for scalar electrodynamics in
flat spacetime is

!This term is defined later.
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L = 3(Dup)(Dro) = U — 3 Fu F* ey

where we use spacetime signature (+ — ——), and the in-
dices p,v run from 0 to 3. ¢ := £ + in is a complex
scalar field and U is a potential, for example, a mass or
self-interaction term, which depends only on |¢|. The co-
variant derivative is D, := 8, +1ieA,, with corresponding
electromagnetic field strength F,,, := 8,4, — 8, 4,.

Fixing an inertial frame, and using DeWitt’s con-
densed notation, the Lagrangian L(t) := [d3z L(t,x)
can be cast into the form

L(X\Q,Q) = 1G.4B(Q)[Q* — X*¢2(Q)]
x[QF — M$E(Q)]-V(Q), ()

In the above, the configuration of the system at time
instant t is represented by a point in the configuration
space, M, with global coordinates

QA = (Ai(x)vf(x)v n(x)) , (3)

where the index A runs over discrete values (including
J

the spatial index ¢ = 1,2,3), as well as the continuum
o := x € R3. Repeated indices imply summation and/or
integration, as appropriate. The overdot on the veloc-
ities @4 indicates time derivative, but the time argu-
ment has been suppressed. The timelike part of the
vector potential plays the role of a Lagrange multiplier:

A® := —eAp(x). The kinetic energy term in the La-
grangian induces a flat metric on M, with components
59 00
Gap(@:={ 0 10 )sx-y) (4)
0 01

in the Cartesian coordinates Q4. The potential term in
L is
V(Q: = [ (i) + 0 - ein)?
+3(Bin+eAif)* + U} . (5)

Gauge transformations on M are generated by the
“gauge vector fields” ¢ = $p28/0Q4, whose components
in the Cartesian coordinates are

44(@) = (~10.5(x = 3), ~n(x)8(x =), EI5x ~¥)) ©)

The gauge vector fields are linearly independent (except
on the subspace £ = 17 = 0), and their Lie bracket algebra

[¢a7 d)ﬁ] = f;3¢7 =0 (7)

is, of course, Abelian.

The phase space I' = T*M. A straightforward Hamil-
tonian analysis (see, e.g., [12]) yields the canonical Hamil-
tonian

H(A\,Q,P) = 1G*B(Q)PaPp + V(Q) + X\*C(Q, P) ,
(8)
in which GAZ denotes the matrix inverse of G45. The

momenta P4, conjugate to @4, are (in uncondensed no-
tation)

Moo = 4 g = 400 = Orialo) = Fo) . (9)
Mo = ;sg% = £(x) — eAo(x)n(x) | (10)
I, = 3% = (%) + eAo(X)E(x) , (1)

where §/8A;(x), etc., denotes functional derivative.
The Lagrange multipliers A* enforce the Gauss law
constraints

Ca(Q, P) := $£(Q)Ps
1
= ;'a:c‘HAi(x) - n(x)ni(x) + £(x)Hn(x) =0,
(12)

[

which defines a constraint surface I'c C T'. It turns out
that the ¢, are Killing vectors and that the potential V is
constant along the gauge orbits in M, conditions which,
together with (7), are sufficient to guarantee that I'c is
invariant under time evolution.

III. CLASSICAL POINCARE SYMMETRY

Integrating the Lagrangian density £ in (1) over space-
time gives the action, whose functional derivative with
respect to the spacetime metric (evaluated at the flat
metric 7,,) yields the symmetric and conserved energy-
momentum tensor

T = (D%p)(D)g) — FPF,” =L, (13)

where indices in parentheses denotes symmetrization.
Together with the Poincaré group of isometries, this then
leads to the conserved Poincaré charges

pr = / BT (14)
T = / B (@ T — TR . (15)

As we shall see shortly, as dynamical variables on I' these
constants of the motion canonically generate transforma-
tions on the classical states which realize the Poincaré
algebra, at least when acting on the constraint surface
Tec.

We find, in terms of the phase space variables,

T% = (I3, + I07 + I12) + V(A;,€,m) , (16)
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T% = M4, F;j — I(8;¢ — eAin)
—I0,(8in + eAf) , (17)

where V(A;,€,n) is the integrand in (5). Thus the gen-
erator of time translation

Po=C2(3G71) +Co(V) (18)
in condensed notation, where

cs(‘s) = SA(MA.(Q)PAx <Py

denotes the homogeneous classical dynamical variable on
T’ associated with a symmetric contravariant valence s
tensor field S on M [cf. (8)].

After an integration by parts the spatial translation
generators turn out to be

- / Bz { Ty, 0 As — T84 — 1, 84m — eAxCa}
=:0(%X), (19)

J

where we read off the vector field components

kXA(Q) = ( - a:n" A,'(X), '—az:"f(x)! *3;-'-"7("))
—e [ @:A@)¢3(@) (20)

Here y := z is included in the integration. Similarly, the
spatial rotation generators

Tk

ikmn)g™"
- / Palkmn]{z™ (~ILa,8, A; — et

—I1,,0,n — eA,Cy) — 114, An}
G (kYY) , (21)

where [kmn] is the completely antisymmetric symbol in
three dimensions, with [123]=1, and

ky4AQ) = [kmn]( — 2™ 0zn Ai(x) — 67" Ap(x), —2™0pn &(x), —2™Opnn(x))
—e/dsz[kmn]z"‘Aﬂ(z)qu(Q) . (22)

Finally, the boost generators

Kk = J% = —C,(A*K) — Co(*V) +tP*,  (23)
where the boost tensors
8i; 00
*K4B(Q) = g (1) (1’ 1@ +yM)8(x-y), (29

and the boost potentials
V@ = [ @Vt (25)

which are analogous to the potential V(Q) in the Hamil-
tonian.

For future reference we record here some proper-
ties of the various tensors associated with the Poincaré
charges. First, the Lie derivative with respect to ¢, of
every valence zero, one, and two tensor that occurs in
PO, Pk, J* K* vanishes.? This is sufficient (but not nec-
essary) to guarantee that the Poincaré charges are classi-
cal observables, that is, gauge invariant on the const;raintl

{(P*, P} =0-c¢ / d3zF*C, |

{THY, PP} = n*PPH — pPPY — e/dsz(z“F"p — ZVF#P)

2For the explicit calculation refer to [13].

AR}

surface I'c. Next, the boost tensors *K have field inde-
pendent components in the Cartesian coordinates [see
(24)], and so are, in fact, covariantly constant [cf. (4)].3
Finally, the spatial translation and rotation vectors *X

and *Y, while not Killing, are nevertheless divergence-
free:

V.- *X = —1G4p(Li, G)*B

= /dsm dPyd(x — y)3ud(x—y) =0 (26)

since 8,6(z — y) is antisymmetric; similarly for *Y. As
we shall see later, these results considerably simplify the
Dirac quantization of the Poincaré algebra.

But first we must work out the algebra at the classi-
cal level. In terms of our previous notation the Poisson
brackets can be expressed as

{Cs(5),Ce(T)} = Core—r (=[S, T]) , (27)

where [, T] is the Schouten concomitant [14] of S and T
A straightforward but lengthy calculation (see footnote
2) yields

(28)
(29)
3This implies they are Killing, and in involution, which,

modulo terms that vanish on I'¢, is necessary for the Poincaré
algebra to close.
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{TH, TP7Y = gho JvP — qvo Jhe 4 qvp JHe _ pie Jvo
+ e/d3z(z“z"F"p — ZV27F#P 4 2V 2PFH — 2H2PFY9)C, . (30)

[

Since C,, =~ 0 defines the constraint surface, we see that
we have explicitly verified the classical Poincaré alge-
bra for scalar electrodynamics; we are not aware of any

F%(z) = —I14,(s), the “off-shell pieces,” which are lin-
ear combinations of the constraints, are linear and/or
quadratic in the momenta, and these must be dealt with

similar calculation in the literature. Notice that since accordingly when we do the Dirac quantization.

IV. DIRAC QUANTIZATION OF THE POINCARE SYMMETRY

We now proceed with Dirac quantization of the Poincaré charges, and subsequent verification of the Poincaré
symmetry at the quantum level. The phase space I' = T*M, and, since M comes equipped with a (flat) metric G,
it is natural to choose Schréodinger picture quantization with state space F consisting of all smooth complex-valued
functions on M, and Hilbert space Ha;r := L?(M, E), the subset of those which are square integrable with respect to
the volume form E associated with G. The quantization map is not unique: here we shall choose the simplest one:

Co(V)=V s Q(V) =V,

Ci(X) = XAPs — Q1(X) = —ih{XAV 4 + 1(VaX*)},

C2(K) = KAPP,Pp — Q,(K)
= (—ih) {KABV Vg + (V4 K4B)V 3}
= (—ih)2V K48V ,

(31)
(32)

(33)

C3(T) = T*PCPyPgPc — Q3(T) = (—ih)*{TAB°V 4 V5V + 3(VATABC)VEVe — L(VAVEVTAEO)},  (34)

where, as before, V is the Levi-Civita connection on M.
This will be called “minimal” quantization in that given
the leading term (highest order in derivatives) the addi-
tional complementary terms are the minimum ones nec-
essary to make the operator self-adjoint.*

*Of course one may add various additional terms to the
right-hand side of (33) or (34) and still preserve self-
adjointness. However, as it pertains to (34), this ambiguity is
irrelevant to our result, and a specific choice is made just for
notational definiteness: The only place a cubic operator ap-
pears is in (46) [and also (57)], but there the right-hand side
is defined by the left-hand side, so if we change our definition
of Qs the “van Hove term” simply changes accordingly—the
invariant result is that the left-hand side annihilates physi-
cal states, as we shall see (in order that the Poincaré algebra
close). However, this ambiguity is of great interest in (33):
alone, the self-adjoint requirement fixes the quadratic opera-
tor only up to the addition of a real scalar “potential” term
(which should be linear and homogeneous in the classical ob-
servable). Minimal quantization (both Dirac and reduced)
sets this term to zero, by fiat, but when acting in the phys-
ical Hilbert space the minimal Dirac operator actually looks
like the minimal reduced operator, except with a certain ad-
ditional potential term which depends on the gauge orbit vol-
ume element (see, e.g., [15]). The point here is to demonstrate
that the Poincaré algebra is sensitive to this difference. Also,
notice that the notion of minimality is more natural in Dirac
quantization where the (full) configuration space, unlike the
reduced configuration space, is flat in our example, and so the
usual curvature terms, at least, are absent (see, e.g., [15]).

[

In the spirit of Dirac [16] we now account for the con-
straints by quantizing them—on the same footing as any
other observable linear in the momenta: C, = Q1(dq).
The physical state space, Fphys C F, is then defined
as the collection of states Wy annihilated by the con-
straint operators:

éa‘llphys =0Va & ‘I'phys (S ]:phys . (35)

As emphasized by Kuchaf [2], the choice of basis for
the gauge vectors ¢, is arbitrary at the classical level, but
that this breaks down at the quantum level, at least if one
demands that the constraint operators be self-adjoint.
The trouble lies in the complementary divergence term
in (32), but can be eliminated by restricting to a pre-
ferred basis which is “compatible” with the Hilbert space
structure:

Ls,E=0Va, (36)

i.e., in which the ¢, are divergence-free. This restriction
is natural in the sense that (35) then implies ¢o¥phys =
0 Va; i.e., Fpnys consists of gauge-invariant complex-
valued functions on M.

Furthermore, given such a basis one is free to transform
to any other basis whose elements are all divergence-free,
i.e., taken from the set

Gi={n=p"¢a|V -p=0& gou™ =0} . 37)

In our case the Lagrangian provides a natural basis of
¢ which are Killing, and so certainly satisfy (36). Fur-
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thermore, it can be shown that constraint operators con-
structed from elements of G will be consistent (first class)
iff ¢, fo3 = 0, or, equivalently, f7; = s f for some scalar
f. In our case the structure functions f; vanish [see (7)],
and so this condition is trivially satisfied. :

The Poincaré charges P°, Pk, 7%, K¥ contain pieces
zero-, first-, and second-order in the momenta, and are
quantized accordingly using the minimal quantization
scheme. In order for the resulting quantum Poincaré
charges to be observables they must commute with the
constraint operators Q;(u) (at least on Fppys) for all
1 € G. Let us check if this is so. :

Let the scalar U represent any of the Hamiltonian or
boost potentials V or ¥V; we have

7190(V), Q1)) = Qo(~ [T, ) (38)

But —[U, u] = L,U vanishes since the potentials are con-
stant along the gauge orbits. For a vector Z, representing
any of the spatial translation or rotation vectors *X or
kY, we find

1
7191(2), ()] = Qu(=[Z,4]) , (39)
where —[Z,u] = £,Z. Using the fact that L4 Z = 0 in
our case it is easy to show that £,Z € G, so the right-
hand side of (39) annihilates Wpys. Finally, letting K
stand for either the inverse metric G~! or any of the
boost tensors *K, we have

glﬁ[Qz(K), Qi (p)] = Qa(—[K, pl) + B*Qo(W) , (40)

W = 3VA[KAPVR(V - p)] . (41)

The A%2Qy(W) term is a van Hove anomaly (discussed
more fully below), which in this case vanishes precisely
because of the restriction (37). Furthermore,

—[K,p] = LK = p°Ly K — 20 ®@s 6™,  (42)

where ®s denotes a symmetrized tensor product. The
first term on the right-hand side vanishes, and the Carte-
sian components of the vector fields ¥* are ¥4 =
KABVgu®. Quantizing the remaining term yields an
operator proportional to

VY448V + V 4¢29°BV 5 . (43)

The first term annihilates ¥phys, and the second is equiv-
alent to

(V . ¢a)'¢'a + ¢a'¢'a = [¢aa d)a] + 1/’a¢a . (44)

Now the second term on the right-hand side of this ex-
pression annihilates Wphys, and, furthermore, the com-
mutator vanishes:

(Lo ™) = (Lo K)APVpu™ + KAP(Ly, Vp*)p = 0.
(45)

Thus, the quantum Poincaré charges are observables.

The next question to ask is whether or not they real-
ize the Poincaré algebra when acting on physical states.
There are two considerations: van Hove anomalies, and
whether or not the minimal quantization of the off-shell
pieces in (28)—(30) produces operators which annihilate
physical states. We discuss these in turn.

Since the work of Groenewold [8] and van Hove [7]
it has been known that no map from classical to quan-
tum observables exists which preserves the entire Pois-
son algebra.> For the minimal quantization map given
in (31)-(34) van Hove anomalies appear first in the
quadratic-linear commutator: refer to (41), which applies
for generic K, and p replaced by a generic vector field,
Z. But the only vector fields occurring in the Poincaré
charges are the spatial translation and rotation vectors
kX and *Y, which are both divergence-free [see (26)],
and so this particular van Hove anomaly is not present.

For the generic quadratic-quadratic commutator,

%[Qz(K),QZ(L)] = Q3(—[K,L]) + h*Q1(Z) , (46)
with

ZD — %VBVC[K, L]]BCD _ VBABD ,

ABD — KABLCDRAC + (VCKAB)(VALCD)
—%Vc[KAB(VALCD) _ KAD (VALCB)]
—(KeL). (47)

For our example, the van Hove term %2Q;(Z) vanishes
because the Ricci tensor R4p is zero (M is flat) and
the inverse metric and boost tensors are all covariantly
constant. Thus the Poincaré algebra is free of van Hove
anomalies under minimal Dirac quantization.

We now come to the quantization of the off-shell pieces

in (28)—(30), of which there are essentially only two types.
The first type has the form

—e/d3zF"fc., =:Ci (o) , (48)

where (with v := z) the scalars
W= —eFY(z) . (49)
But since the electromagnetic field strength is gauge in-
variant, we certainly have ¢,uY = 0, so u7¢, € G, in

which case Q1 (1Y¢)¥pnys = 0.
The second type has the form

—e/d"’z FOC, =:Co(¢" ®s ¢) » (50)

where the vector field components

P74 = (65;:6(2 —x),0,0) . (51)

®See, e.g., [9] for a more precise statement.
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The quantization of this second type of term is exactly
analogous to the discussion following (42), except the Lie
derivative corresponding to (45) is

_ / Bz d3y{e5(z )5 A‘s(y)}cﬁ“(Q)
(52)

(‘C¢'7¢7)A =

which vanishes since ¢¢ (Q) has no dependence on the
field A;(y) (and note that 174 has no field dependence
at all). Thus the off-shell pieces do not affect the Poincaré
algebra at the quantum level.

In conclusion we see that the minimal Dirac quantiza-
tion of the classical Poincaré charges realizes the Poincaré
algebra when acting on Fppys.> We now turn to reduced
quantization.

V. REDUCED QUANTIZATION OF THE
POINCARE SYMMETRY

Classical reduction is readily achieved by choosing the
complete set of gauge invariant functions:

¢ = (Bi(x), p(x)) , (83)

where B;(x) A;(x) + (1/€)0,:0(x) and @(x) =:
p(x) exp[i6(x)], as coordinates on the reduced config-
uration space m. Since the constraints are linear in
the momenta, the reduced phase space v = T*m, with
canonical coordinates (¢%,p;). An observable C,(S) on
I" maps to the corresponding physical variable c,(s) :=
$%1'% (q)pq, - * Pa, ON ¥, Where the tensor s on m is the
(physical) projection of S.
In particular, the projected inverse metric

9°%(q) = ( % = O

The other tensors involved in the Poincaré charges can
similarly be projected onto m, and the resulting reduced
Poincaré charges on « will obviously realize the Poincaré
algebra classically [cf. (28)—(30) with Cy = 0], a fact
which can be verified by direct calculation. For the pur-
pose of our discussion it is sufficient to know only the
projected boost tensors:

0

. ) d(x—y).

(55)

e’ﬂ’(X) O

(1’) Sx—y). (54)

mi.ab — 6111:m_a 7—(?8
k (q)—( 0

We remark that these are Killing tensors, and are in in-

SHere we used the physical Poincaré charges to generate the
algebra at the classical level; in fact, it can be shown that
one can equally well use the Noether Poincaré charges, which
differ from the physical ones by terms which vanish on shell.
Furthermore, the minimal Dirac quantization of both sets of
charges are identical when acting on physical states.

volution with each other: [™k,”k] = 0. Also it can be
shown that the projected spatial rotation and boost vec-
tors are Killing with respect to the metric g on m, and
so necessarily are (Levi-Civita) divergence-free.

We now quantize the reduced Poincaré charges, and at-
tempt to verify the Poincaré symmetry at the quantum
level. In analogy with the Dirac quantization considered
earlier, we choose the Schrodinger picture quantization
with Hilbert space H;eq := L?(m,e), where e is the vol-
ume form associated with the metric g on m. As was the
case with Dirac quantization, the choice of quantization
map is not unique—especially now that the configuration
space is not flat (see [12], and references therein).

But in order to compare Dirac and reduced quanti-
zation on an “equal footing,” we again choose minimal
quantization [the reduced space analogue of (31)—(34)],
which is also in keeping with tradition in the Dirac ver-
sus reduced quantization debate in the literature [1-6].
In particular, for a physical variable quadratic in the mo-
menta,

ca(k) = k®p,pp — q2(k) := (—ih)zﬁak“bﬁb
= (—1h) 2 {8,k + k°°(8, Inw)Bp} , (56)

where V is the Levi-Civita connection on m, O, is the
(functional) derivative with respect to ¢%, and w =
v/detggp is the measure on m in the coordinates g°.

Now, as noted above, the classical Poincaré charges
realize the Poincaré algebra, and this will automatically
extend to the quantum level provided there are no van
Hove anomalies. The first place such an anomaly might
arise, with quadratic-linear commutators [see (41) with
vV~ V, etc.], it does not, since the projected trans-
lation and rotation vectors are divergence-free, as men-
tioned earlier. This leaves a potential anomaly only with
quadratic-quadratic commutators [cf. (47)]. However, in-
stead of dealing with covariant derivatives,’ and the Ricci
tensor of the curved space, m, we calculate directly in
terms of w:

ﬁ [92(k), 2(1)]

= [k, 1]*°?858.04
+2{(8s[[K, 1]%°?) + (8p Inw) [k, 1]**?}8.84
+{k8, (8 (v?)) + ubBy(v?) — (k & )}8a,  (57)

for generic k and I, where the “vectors”

u® = 8,k + (8a1n w)k“b , (58)
4 = 8.1°¢ + (8. Inw)l*® . (59)

If k£ and ! represent any of either the inverse metric or
boost tensors then [k,1]*? = 0, as noted earlier—a fact

"Note that even if K is covariantly constant on M, its phys-
ical projection k on m need not be.
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that must be true for the Poincaré algebra to close. Thus,
for the quantum commutator to vanish, as it should, we
require all components of the terms in curly brackets in
the last line of (57), which we will denote as (9, to be
Zero.

For instance, the (quadratic-quadratic part of) the
boost-boost commutator corresponds to taking k = ™k,
!l = "k, and we find, using (55), that only the d = p(w)
component of { is potentially nonvanishing:

S lnw
W) — | Brd3yymuwms(x —
¢ = [ dyyrunte ) e
S§lnw 8lhnw
+ [ dPyymw —(m
/ Y 5o(y) 5p(y)3p(w) (m & n)

dlnw

2 e2

1

where we have assumed that the functional trace Tr sat-
isfies the usual cyclicity property, and that § Tr In 4 =
TrA~15A for any operator A.

The first term is straightforward to evaluate:®

M:/ﬁm@%%%},

but the second term is more difficult. Following Hawk-
ing’s discussion [10] on ¢{-function regularization we write

d 1 3 *° 8
Il = 75 [I‘(s) /d :l:/o dr T JDK(x,x,'r)]

(63)

8=0
(64)
Here the positive definite operator
1
D := —6—282+p2+6, (65)

where € > 0 is a regulating “mass” parameter. Its asso-
ciated heat kernel K (x,y, 7) satisfies

7]

a—K(x,y,T) + DK(x,y,7)=0, (66)

-
with initial condition K(x,y,0) = é(x —y). D [and 6D
in (64)] act on the first argument of K. In our case §D
is simply 2p dp.
As in, e.g., [11] we factorize

K(x,y,7) =: Ko(x,y,7)A(x,y,T) (67)

8We are being somewhat cavalier about regularization, sim-
ply because it is difficult to do much better, but we believe
that our final conclusions still carry sufficient weight to be of
interest, as we shall argue.

——;—6 In Det [l_’l— (—laz + p?

1 1 1, 2 .

787

(in uncondensed notation).
In order to evaluate 6 Inw we first observe that [see

(54)]

detgab = Det [61']' — 8L6]]

te2p?

1 1
= Det [F (—'6—282 + pZ)] 5

where Det denotes functional determinant, and 8% :=
0;0;. The last equality follows by decomposing the eigen-
vectors of the operator d;; — - - - into their transverse and
longitudinal parts, and examining the eigenvalues. Hence

)] -t [?12 (_elzaz“z)}

(61)

(62)

[
into a singular piece

3/2 2 _ 2
) exp (_ﬂi;_}fl_ - 67') , (68)

which satisfies (66) with p? = 0 and initial condition
Ko(x,y,0) = 6(x — y), and a regular piece, A(x,y, 7).
The latter contains the p dependence of K, and satisfies

e
Ko(x»y,T) = (E

8 1, ing
B;A(x,y,T) + ;(:c —y")0,A(x,y,T)

__ (-eiza: + p2(x)) Ay, T),  (69)

with initial condition A(x,x,0) = 1. We now expand

A(X, Y T) = Z an(x’ y)Tn 3 (70)

and find that the coefficients a,, satisfy the recursion re-
lation

S 1
na, + (' — y*)0zian + (—;65 + pz(x)) an_1 =0,

n=1,2,..., (71)

with ao(x,y) = 1. In the coincidence limit we obtain
a1(x, %) = —p*(x) , (72)

1

walx) = 3 (-3l +0'0) P, (7

in agreement with similar work in [17].
Substituting these results into (64) yields an expression

valid for Re(s) > 1, which when analytically continued
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to s = 0 gives

811 = /d3:c 5p(x) {

where the coefficients

o — (4ﬂ)3/2 1"6(17: :/2) ) (75)

Now although a,(x,x) effectively goes like 1/n! [see
(71)], the series in (74) nevertheless diverges as ¢ — 0,
and must therefore be treated as a formal expansion in
powers of €. (And note also that powers of e are associ-
ated with derivatives of p.)

Finally, working out the higher order variations of 1
and II, and using these results in (60), yields

2c; o [dlnw dlnw) ,
S s (:45)1)

—(m & n) (76)

chp x)an(x x)} (74)

CP(W)

(plus higher order terms). It is instructive to note that
if § Inw/8p x p*, the term in braces vanishes iff k = —1,
a situation which corresponds precisely to term I of Inw
[see (63)]. Term II, on the other hand, contributes a
polynomial with higher powers of p (and also derivatives
of p): the leading order (in both € and e) contribution is

p(w) _ n _ 3

C (1271_)2 ( a‘w'" a‘w")p (W) ’ (77)
which does not vanish for generic p. Also note that higher
order terms in the expansion (74) do not contain this
combination of e and ¢, so no cancellation of this piece is
possible.

Thus, the boost-boost commutator (and hence the
Poincaré algebra as a whole) fails to be realized at the

quantum level using minimal reduced quantization.

VI. DISCUSSION

‘We have thus shown that minimal Dirac quantization
acting in Fpys preserves the Poincaré symmetry of scalar
electrodynamics, but that minimal reduced does not. To
better understand how this comes about it is instructive
to determine what the Dirac-quantized Poincaré charges
look like acting on physical states, so they can be com-
pared on the same footing with their reduced counter-
parts.

For instance, direct calculation using (4), (33), and
(53) shows that the kinetic energy operator Q;(3G~1),
acting in Fppys, is equivalent to gz2(3g7") [see (56)] ex-
cept with 9, Inw replaced by an object we call, similarly,
8q Inw’, whose only nonvanishing component is

dlnuw’ §£()_)
op(x) — p(x)

In fact, the analogous statement applies for the entire set
of Poincaré charges: minimal Dirac quantization (acting

(78)

in Fphys) is identical in form with minimal reduced quan-
tization, except with 8, lnw’ in place of 8, Inw, a differ-
ence which corresponds to retaining only the first term
01 in (62), for example. [Compare (78) with (63).]

This means, for instance, that the quadratic-quadratic
commutator in minimal Dirac quantization has the same
form as (57), but when applied to the boost-boost com-
mutator is easily seen to yield ( = 0, i.e., no anomaly,
as expected from the results of Sec. IV. We remark that,
although the term 41 in (63) contains 6(0), and so is not
regulated, it is common to both the Dirac and reduced
approaches, and the (independent) results of Sec. IV sup-
port the proposition that this term does not cause a
problem with the Poincaré algebra. Rather, it is the
additional term JII present in reduced quantization—in
particular, those pieces involving derivatives of p, which
begin to appear with the n = 2 term in (74)—that causes
a van Hove anomaly.®

In fact, we observe that exp(—II) is nothing but the
volume element, /dety,3, on the gauge orbits, where
the metric

Yoo 1= Ganddf = (=502 + () ) Bx—y) . (1)

Now it must be emphasized that, in general, the min-
imal Dirac and minimal reduced quantization schemes
are not equivalent!® [1-6]: If one transforms to a com-
mon Hilbert space, the inequivalence manifests itself in
the quadratic operators as a difference in factor order-
ing involving precisely the above volume element on the
gauge orbits [6]. Minimal Dirac quantization corresponds
to a certain “nonminimal” reduced quantization. Fur-
thermore, for a given model it can happen that both the
Dirac and reduced factor orderings are self-consistent—
the relevant example here being Kuchai’s helix model [3]
(which is a finite dimensional analogue of scalar electro-
dynamics). So even though the Hamiltonians might have
different spectra, which could, in principle, be measured,
there may be no internal physical criterion with which to
select the correct factor ordering, as happens in the helix
model [3].

The significant point here is that scalar electrodynam-
ics has an additional symmetry, the Poincaré symme-
try, and, at the quantum level, this symmetry is sensi-
tive to this difference in factor ordering (or presence of
v/detyag), suggesting, in fact, that minimal Dirac quan-
tization is correct, and minimal reduced is not (at least in
this case). In other words, in response to [2], for instance,
one cannot always impose the “principle of minimal cou-
pling” in reduced quantization.

This result also supports previous work [18,15] suggest-
ing a preference for minimal Dirac over minimal reduced
because of the natural similarity of the former with sev-
eral curved-space quantization schemes proposed in the

9This additional term 6II should not be confused with the
additional potential term mentioned in footnote 4.

%For example, the respective Hamiltonians have different
spectra, in general.
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literature.

Thus, demanding the preservation of a sufficiently non-
trivial classical symmetry at the quantum level may serve
as a useful internal physical criterion with which to se-
lect amongst inequivalent factor orderings, as we have
demonstrated here. It might be interesting to generalize:
to find a large (or the largest) class of symmetries pre-
served under minimal Dirac quantization, as well as its
corresponding “nonminimal” reduced quantization, but
not necessarily preserved by the minimal reduced quan-
tization, and thus, perhaps, more clearly illuminate the
role the gauge orbit volume element plays in this matter.
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