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Thermal P function in Yang-Mills theory
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Previous calculations of the thermal P function in a hot Yang-Mills gas at the one-loop level
have exposed problems with the gauge dependence and with the sign, which is opposite to what one
would expect for asymptotic freedom. We show that the inclusion of higher-loop effects through a
static Braaten-Pisarski resummation is necessary to consistently obtain the leading term, but alters
the results only quantitatively. The sign, in particular, remains the same. We also explore, by a
crude parametrization, the effects a (nonperturbative) magnetic mass may have on these results.
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X. INTRODUCTION

The behavior of the efFective coupling constant n, =
g2/4vr in @CD at high temperature or density has been
discussed for a long time, starting with the renormal-
ization group equation (RGE) arguments of Collins and
Perry [1] that a, decreases logarithmically at high den-
sity as a result of asymptotic &eedom. The idea of @CD
as a gas of weakly interacting quarks and gluons at high
T originates &om this observation. It was later ques-
tioned if it is correct to use the same decreasing n, as the
renormalized coupling constant when computing general
n-point functions with nonzero external momenta, as the
simple scaling assumptions used in [1] do not hold when
the external momenta introduce extra dimensionful pa-
rameters. The zero-temperature RGE can only be ex-
pected to be useful when the typical momenta involved
scale with the temperature [2,3]. Also, the argument in
[1] assumes that there are no in&ared problems, which
are now known to exist [4]. Therefore several groups
have explicitly calculated the T dependence of the three-
point function in @CD at high T and used a renormaliza-
tion group equation, with the temperature and external
momentum r as scale parameters [5], in order to derive
the running of n, with (T, rc) [6—15]. There is no reason
to expect that the coupling, defined in this way, should
be asymptotically small at high T and fixed momentum,
since this limit rather probes the long-distance behavior.
Even if o;, was found to decrease logarithmically at high
T, it would not be enough to justify an ideal gas approx-
imation of /CD since the typical expansion parameters
a,T/K and ga, T/rc still grow at high T.

Various problems and ambiguities arose when calculat-
ing the thermal P function. It was recognized soon that
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the dependence of a, (T, K) on T depends strongly on
which vertex is chosen to renormalize o,„the other ver-
tices being determined by Ward identities [6,8,9,11,12].
This prescription dependence exists also at T = 0 when
the momentum-space subtraction is used [16]. There was
also some ambiguity in the results which depended on
whether the imaginary time formalism (ITF) or a real
time formalism was used [11,12], but this is now better
understood [13]. &nthermore, for a given vertex, the
P function depends on the momentum prescription and
difFers, for example, when the collinear and symmetric
points are used, both at zero external energy. Another
problem arose in that the result is also gauge-fixing de-
pendent [9], which puts into serious question the useful-
ness of such an approach. It is, in fact, not at all surpris-
ing that the P function shows a gauge dependence when
computed using the standard effective action [9] since it
is not gauge invariant ofF shell. Landsman therefore pro-
posed [10] to use the Vilkovisky-DeWitt efFective action
[17—19] to calculate an explicitly gauge-independent P
function, though it would still depend on the external mo-
mentum prescription. Also, a Wilson-loop approach has
been used to compute a gauge-invariant quark-antiquark
potential Rom which an efFective coupling was defined
[20]. Such a definition is not directly related to the cou-
pling considered here.

In this paper we follow the prescription of [10] and use
the Vilkovisky-DeWitt efFective action to calculate the
three-gluon vertex at the static and spatially symmetric
point at momentum r and temperature v for an SU (N)
Yang-Mills gas. This approach has recently been used in
[14,15] where the one-loop P function was calculated and
the scaling in v and ~ was analyzed. The choice of the
static renormalization point can be partially motivated
by the fact that in the ITF it is only the zero Matsubara
&equency modes that are soft and need resummation (see
Sec. III). It also eliminates the problem of choosing be-
tween analytic continuations (retarded and/or advanced
or time- and/or anti-time-ordered) which have difFerent
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soft contributions [21].
Since the P function here is linearly related to the two-

point function by a Ward identity, one might naively ex-
pect that it would have a high-temperature dependence
of the form w /r . However, at the static point, there is
a cancellation and it is found that, at one loop [10,14],

(gg g 2 17l

dV. 8' 2 16

The leading linear contribution does not come &om the
hard part of the loop integral, responsible for a w2/e2

term, but &om soft loop momenta. Therefore, in the
spirit of the Braaten-Pisarski resummation scheme [23], it
is not consistent to stop the calculation at one-loop order
for soft internal momenta, but the resummed propagator
and vertices must be used to get the complete leading
contribution. The main purpose of this paper is to per-
form the resummed one-loop calculation and analyze the
new result. We do not include any fermion contribution
since it is subleading at high T.

II. PERTURBATIVE EXPANSION
OF THE P FUNCTION

The RGE with the temperature and momentum (v, K)
as parameters was first derived in [5] using the fact that

I

the renormalized n-point functions are formally indepen-
dent of the renormalization condition. We would like to
relate this RGE to a direct calculation of the derivative
of the three-gluon function. Let us first fix the nota-
tion and work in the Landau gauge in this section —it
can be shown that results in this gauge, using the back-
ground field method, coincide with those results of the
Vilkovisky-DeWitt efFective action [19]. The inverse of
the full propagator is

(—iA )„„=b (g„„P —P„P„)—8 II„„(P),

II„„(P)= A„„II (P) + B„„II (P),

P„P
AP, v —gP, v BPv P2

The four-velocity of the heat bath is given by U~
(1,0, 0, 0). The Ward identities in the Vilkovisky-DeWitt
effective action are particularly simple because of the oR'-

shell gauge invariance, and the spatial part of the three-
gluon vertex, for static and symmetric external momenta,
can be related to the transverse part of the polarization
tensor through

r;, , (~, ~) = gf (g;, (p —q)g + g~(q —~);+ go;(~ —g), ) I
q+, '

I
+ . .),

II~(r, ~) l
K )

where P„= (po ——O, p), p = ~p~2, etc. , p = q2 = r2 = Ir2, and the ellipsis stands for terms orthogonal to p;, qz, and
When po ——0 we have 2II+ = —Q,. II;; using the Minkowski metric. The wave function and coupling constant

renormalizations (A„~ Zs A&„, g ~ Zs gn) are performed at (w, Ir) so that

[-'& '(~ K)lv = (~up' —p'p~) I"=-*
I' i', (~, &) = gR(~, ~)f ([g;; (p —q)i, + cycl] + (4)

We now define an efFective coupling constant g(T, ~) at
another temperature T by

I'; i, (T, +)Zs~ (T., w) = g(T, Ic)f ([g;, (p —q)1, + cycl]
+" ) (5)

where Zs (T, v) = Zs (T)/Zs (r) is the rescaling of
the field which is required in order to keep the normaliza-
tion of the two-point function. In this way g(7, e) mea-
sures the nonlinearity of the theory. It is now straight-
forward to derive

similarly), we need only the expression for II+(T, r) in
the vicinity of the renormalization point, and we then
use this in fixing the initial condition for the RGE. If the
renormalization point is chosen appropriately, we could
expect reliable results in some regime around (w, K) &om
a one-loop computation of II+(T, e).

We know that the leading hard thermal loops are non-
local, and if we want to include them through some re-
summation, we also need nonlocal counterterms. There-
fore we write the action as

dg(~, K) g dII+(T, K)

d7 2K2 dT (6)
8 = —4tr(E ) + 2A„( P)vr""A„(P)—

using the renorinalization condition in Eq. (4). Similarly,
we find

P ( )
l l i

( I l)

For a perturbative calculation of )9 ()g„can be treated

2A„( P)vr""A„(P—)—
and associate the first sr~" with the "bare" propagator
and consider the other one as a counterterm. Then we
impose on the transverse and longitudinal parts of m&v

the one-loop hard thermal loop form:
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z. (po, p) =g (7., K)
po& po Jo+J
p ) 2p po —p

(po, p) = g (~, ~) —+
~

1 ——
~

Io l
ID+Ix —ln

2p I 0 I
It is enough to introduce the momentum dependence in

from hard thermal loops in order to resum the lead-
ing g v contribution. The efFective propagator, defined
by

(—iD' ')„„=b (g„P —P„P )

—~'(&~-~ (po p) + &~-~'(po p)) (1o)

has an explicit 7 dependence which leads to a 7—

dependent UV divergence already at the one-loop level,
since the iD„'„contains contributions 6I.'om an infinite
sum of higher order diagrams. This w dependence dis-
appears when all diagrams to a given order are included
[24], and thus the problexn can be pushed to arbitrarily
high order by performing the renormalization to higher
order. In our approach we only have to assume that
this had been carried out at some w when renormaliz-
ing II+(v, e). After taking the T derivative and the limit
T ~ 7, everything is finite. We also note that vertices
have hard thermal loop corrections, and so they should
be treated in a similar manner by adding and subtracting
the efFective vertices in Eq. (8), but we do not need thexn
in the approximation we are using (see Sec. III).

Let us now analyze the perturbative calculation of P
using the renormalized Lagrangian in Eq. (8). The high-
temperature expansion of II (T, e) is an expan. sion in

g T /+ and g T/e. The g T2/e2 only comes &om the
hard thermal loops, and for each such diagram there is
a corresponding counterterm g v /tc with the opposite
sign generated by the last term in Eq. (8). This is so
because the counterterm is chosen to be exactly the hard
thermal loop contribution. The P function is finally
computed as the derivative of II+(T, r) with respect to
T at T = w. If a diagram contains two or more hard
thermal loops, the leading g T /e and g2+ /K terms
factor out in such a way that after taking the deriva-
tive and T ~ 7 they cancel. It then follows that in the
perturbative expansion of dg(v, tc)/dr at most one hard
thermal loop contributes in each diagram, and it is in fact
an expansion in g v/K only. The cancellations are iden-
tical to what was found for the P model in [25] except
that here we must use momentum-dependent counter-
terms since the hard thermal loops are nonlocal. Also,
the usual way of simply using improved propagators to
do loop calculations, without the RGE, does indeed re-
sum the leading powers of g2+2/e . The difference is here
that g itself is not a fixed zero-temperature parameter,
but is defined through the solution to the RGE. Therefore
the expansion is really in powers of g (r, ~)7/r. and its.
value depends on the solution of the temperature renor-
malization group equation. The possibility of performing
a perturbative expansion at high ~ for fixed r depends on

whether this combination increases or decreases at large
7.

Before doing any actual computation of the resummed

P function, it is interesting to discuss what kind of new
terms one can expect and what their consequences would
be. Let us therefore write

—=/3.''+/3. +P. =a -l "+ x
—+"d& o I, r s~ (

d~ r. E

(11)

assuming a high-~ expansion (w )) r). The contribu-
tion &om hard thermal loops is denoted by P+ since it
is generated by a longitudinal mass (see Sec. III). In the
expansion of P in Eq. (1), there is no contribution &om
any hard thermal loop and we expect that the use of
resummed propagators will supply the c~ term of rela-
tive order gw/e. The inclusion of P+ &oxn a transverse
"magnetic mass" of order g 7, as discussed below, would
generate the c2 term. We assume that the initial con-
dition is given at a temperature wo &) x, while we still
have g (7o K)7o (( r. , so that we can do a consistent per-
turbation expansion in g vo/K. As w increases, the so-
lution to the RGE determines whether g (w, K)7/z stays
small enough for the perturbative expansion to remain
valid. With the positive sign in Eq. (1) for the bare
one-loop P function, the coupling constant diverges at
some w, implying that the expansion breaks down. If
the sign had been negative, the solution would go like

g(T, K) (r/e) ~, implying that g7 /K increases and
has to be resummed, while g2&/e goes to a constant and
can be treated perturbatively if it is not too large. In the
present case, the bare one-loop calculation gives a diver-
gent o;„but resummation of gw/e terms may change this.
In particular, in Eq. (11), if cx is negative at large g7/K,
it dominates over the constant term and the asymptotic
form of g(w, r) is (v/r) ~ The fact.or gw/K still in-
creases and needs to be resummed (as done with the
momentum-dependent counterterms in the temperature
renormalization group equation), but the g w/K terms
actually go to zero and the exact high-7 limit would be
under control. We have found (see Sec. III) that cx is ac-
tually zero, but there is a correction to the constant co,
though it does not change the sign of P for large gx/m.

It is also interesting to see what happens if a magnetic
mass is present; although such an efFect is believed to
be nonperturbative, we could crudely mimic such a term
perturbatively by introducing some constant mz g w

by hand as the position of the pole of the static transverse
mode. Assuming that t"2 is negative and dominates, we
find that g(w, e) (w/m) ~ . It may thus be inconsistent
to assume that g2+/~ is large since it goes to a constant,
and one would have to solve the renormalization group
equation with the full (~, K) dependence. We found that
c2 is gauge dependent and positive in the Landau gauge.
Again, even if this correction would make P negative, it
is not consistent to separate out g 7/e and subleading
constants since they all go to constants.

To summarize, a negative cq term would cure the prob-
lem of a divergent perturbative expansion of P, but the
actual result shows only corrections to the co and the sign
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remains positive, leading to a divergent g(r, z) at some
finite w.

III. RESUMMED ONE-LOOP CALCULATION

To find the P function in the scheme described in Sec. I,
we need to compute the transverse part of the polariza-
tion tensor at one loop using the effective propagators
and vertices, including hard thermal loop corrections. We
shall perform the calculation in an arbitrary covariant
background field gauge for comparison with other results
and to see which terms are gauge independent, though
the Vilkovisky-DeWitt approach prescribes the Landau
gauge. The Feynman rules in the background gauge can
be found in [26], and a one-loop calculation of the po-
larization tensor at finite T was performed in [27]. Let
us start with the P function without resummation in a

I

general covariant background gauge, parametrized with
The Landau gauge g = 0 was considered in [14,15]

and the Feynxnan gauge ( = 1 in [28]. We can extract
the result for general ( from the calculation in [27]. Fur-
thermore, the leading r/r coxnes from the IR-dominant
part of the loop and is determined by the n = 0 Mat-
subara &equency. For diagrams that are UV convergent,
we can extract the linear r/e term by simply restricting
the sum to n = 0. Diagrams that are not UV conver-
gent have to be summed over all n. For the integrals we
are dealing with, it turns out that if the diagram is only
logarithmically divergent it is in fact enough to take the
n = 0 term to get the correct leading real part. There
is an example in [27] where this does not work for the
imaginary part. The expression needed for the one-loop
polarization tensor in a general background field gauge,
includixig the ghost contributions, is [27] (we are using a
difFerent sign convention than [27])

II„„(K)= gNT)— g„„iD (P) —
~

1 ——
~

iD„„(P)2vrs. ( )
I' p„—(P, Q, K)D (P)DPP (Q)I' p „(P,Q, K),

where P+ Q + K = 0 and the bare three-point vertex is electric mass mI ——3g N7 comes &om the one-loop
hard thermal loops, but the transverse magnetic mass
mT is zero perturbatively. Here we try to estimate its
efFects by hand by inclusion of the term mT = O(g r)
in the propagator as a crude approximation to the true
(nonperturbative) situation. Only the pure gauge boson
diagrams are affected by the resummation. The correc-
tion to, e.g. , the tadpole diagram isCalculating the transverse function II+(po ——0, p2

rc2), we find using the bare propagators in Eq. (12) the
following result for P of Eq. (11):

3—) [p„'„~p~D p (K) —p„„"pD'p(K)], (16)

I' p„(P, Q, K) = g p(P —Q)„+gp„~ Q —K+ P~—( 1

+g„/K —P ——Q /
(13

Jp

(14)

For ( = 0 and 1 this coincides with [14] and [28], re-
spectively, and confirms the conjecture in [15] that the
difFerence between their result and that of [28] is due to
the gauge choice.

The general one-loop calculation with effective propa-
gators and vertices is diKcult, but in our case there are
some simplifications. First, we consider the external en-
ergy to be zero, and in the ITF only the n = 0 internal
modes need resummation since all other modes are hard.
The efFective propagators are thus only needed for zero
energy, and then they take the simple form

where the asterisk denotes efFective vertices and propaga-
tors. Each of the two terms in Eq. (16) is quadratically
divergent and receives a contribution from all Matsub-
ara &equencies at high T. The difference, however, is
only logarithxnically divergent, and to get the leading r/e
term only the n = 0 mode is needed. It then follows that
p„*„~& is only needed for zero external energy, and then it
reduces to the bare vertex. Similar simplifications can be
done for the bubble diagram. The degree of divergence is
reduced by 2 when subtracting the unresummed result,
and that is enough for using the n = 0 approximation.
We write the additional contribution to II+ &om nonzero
ml. and mT' as

Drab(0 ) hub

Sll (z„z ) = S,ll (z,)+ S"="II~(z )

1 I'i I'j, ~~oh. o + 4p2 +mL p' (15) +(1 —g)a«~'&11~(z ), (17)

where mT and mL, are transverse (magnetic) and longi-
tudinal (electric) masses, respectively. The longitudinal

where zL, = ml, /e and zT = mT/e. The explicit expres-
sions turn out to be
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T g N2
2

2

SL,II = TK ZL, + ZL
4' 2 2 2

pip) + pL
8m 2 K 16 (22)

pi&=~) II&T

——[1 + 4zc] arctan(2zr, ) I,
7r 2

4

g2N I ~ 5 + 4z~2 37r
TK zT

4m 2 8 zT 4

vr (4z&~ + 1)(8zT4, —12z&~ + 1) arctan z2.
16 zT

~4zT+3zT 4zT+1
arctan(zT )

((gg) T g N vr 2zT —1
T 4~2 4 zT

TK —— ——ZT

m' 1+zT 2zT arctan(zT )4 zT
(18)

t'x+ I ) '—ln
i

p x ix —1)
xdx (x+ I) '

ln
~ ~

= m —2a arctan(z),
p x2+ z2 (x —I)

In this, the following integrals have been used:

/ mT ~'& 23, 1
(1 —() i

m. 4- —
i

——m.

8) 16
(23)

where everything inside the square brackets comes &om
the inclusion of mT . In the Landau gauge, P is positive,
even when including mT. Even though it is possible to
choose a gauge with a large enough ( in order to stabilize
the running of n„ it seems rather artificial since we only
can argue in favor of the $ = 0 gauge from the Vilkovisky-

The resummation has not changed the sign, but has
changed the quantitative result to this order, showing
that it was necessary to include these effects for a con-
sistent calculation. The results of [10,14,15] are in this
sense incomplete, but the general conclusions are correct
since the sign remains unchanged. They could have been
drastically changed if, for instance, the linear mL, had
become nonvanishing and negative (see Sec. II).

When including mT the large-z limit gives

~ ((g~ 3)2+12,
P N 7r +—

8~2 /c
~

16 8

dx (x+ 1)'+ z2—ln = vr —2m arctan(z),
x (x —1)2+ z'

xdx (x+ 1)'+ z'
ln = vr —2m arctan(2z).

p x~+z2 x —1 2+z2

The limit of bil+ for small z is given by

bL II TKT g2N
4m2

2N
(g—g) T g N

4~2

2N
T 4m

91m
T

2
2 ~ 3

ZL/ + ZL ZL/ +
4 8 3

10m 3m

3 4
zT + zT-

2m m'2
2 8'——zT ——zT + —zT +

3 4 15

b)

0 10

while for large z we find

' IlT

a"~'IIT

g N
4~2

g N
4~2

g2N
4~2

7r' 7r 7r

8 12ZL, 240ZL

23m 13m 47m+ + ~ ~ ~

16 6zT 120zT
ir2 2' 7r2

7rzT + + ~ ~ ~

8 3ZT 8zT

(21)

It is worth noting that bl.IIT is independent of the gauge
parameter ( and that it contains terms that are poten-
tially dominant for large ZL, . However, it turns out that
the leading terms cancel between the tadpole and bub-
ble diagrams and that hL, II+ only contributes to cp (and
not to cq) in Eq. (11). When added to the bare one-loop

result P( ) of Eq. (14), we find, for ( = 0,

2-

10

FIG. 1. Running coupling constant in an SU(2) Yang-Mills
theory for the initial conditions g(1) = 0.5, 1.0, 1.5, and 2.0.
Only the thermal contribution is included. The hard thermal
loops are resummed, and a magnetic mass m~ ——cg 7, with
c = 0.24, is included. The value of c is taken from the numer-
ical simulations in [22]. (a) In the Landau gauge f = 0 the
coupling diverges at a finite temperature and perturbation
theory breaks down. (b) In the ( = 2 gauge, the contribution
from nonzero mT prevents the coupling from diverging.
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0
1.0 1.5 2.5 3.0

FIG. 2. EKects of including or excluding mL, and m~ in the
P function. The parameters are the same as in Fig. 1 with

( = 0 and g(l) = 1.

IV. DISCUSSION

The problems associated with a consistent calculation
to this order of the P function concerning the "wrong
sign" and the gauge dependence are rexniniscent of the
early one-loop bare calculations of the gluon damping
constant at rest. Such calculations also gave the "wrong
sign" in that the modes were antidamped, and the results
were also gauge parameter dependent. The use of the
Vilkovisky-DeWitt efFective action to address the prob-
lem of gauge dependence in this case did not resolve the
problem completely, as the damping constant calculated
in this formalism still had the wrong sign. Indeed, there
were also arguments for choosing the background field
Feynman gauge ( = 1 as the "preferred" gauge based
on the gauge-invariant propagator of Cornwall [29], but
this too gave the wrong sign for the bare one-loop damp-
ing constant and was quantitatively difFerent than the
Vilkovisky-DeWitt gauge ( = 0. The resolution to these

DeWitt approach.
We have numerically solved the ROE in the high-~

limit at a fixed momentum scale ir, (i.e. , neglecting the
vacuum contribution and expanding in e/r), but using
the exact dependence on mI, and m~. The result is pre-
sented in Figs. 1 and 2. In the ( = 0 gauge [Fig. 1(a)],
the coupling constant diverges at a finite temperature,
just like without resummation. If we choose ( & 1, e.g. ,
( = 2 as in Fig. 1(b), the contribution from mz changes
the sign of P for large r/e. To see the efFect of resum-
mation in the ( = 0 gauge, we have computed g(r/K)
with and without the contribution from mL, and m~ (see
Fig. 2). We find that the qualitative behavior is not dras-
tically changed by the resummation. The inclusion of ml,
has a tendency to increase the growth of g(r/K), while
m~ pushes the divergence to a higher temperature.

problems was later supplied by the Braaten-Pisarski re-
summation scheme [23], where a gauge-invariant and pos-
itive result is obtained to first order. Lessons &om this
could be drawn for this calculation of the P function.
The results presented here indicate that higher-loop ef-
fects can change the result quantitatively, but the par-
ticular corrections considered here were not enough to
resolve the problems of the wrong sign and gauge depen-
dence. This may mean that if the renormalization group
equations in this form are to provide a useful tool a fur-
ther resumination below the soft O(gT) scale is needed
to do a consistent calculation for the P function; as ar-
gued in [15], the fact that the combination e/r appears
means that a large temperature expansion is in a sense
the same as probing the in&ared behavior. The need
for such a further resummation in this context can also
be seen when the simultaneous running of the coupling
constant with temperature ~ and momentum scale K is
investigated; &om Eqs. (6) and (7), we see that with the
particular resummation investigated here the integrabil-
ity condition

is not automatically satisfied. This particular problexn
could be solved in a somewhat ad hoc manner by having
the T derivative in Eq. (6) act not only on the explicit T
dependence arising from the Matsubara frequency sum,
but also on the implicit T dependence of the masses mg
and mz. Doing so changes the results presented here
only slightly quantitatively, however. One might thus
expect that an improved resummation scheme, as well as
addressing the problems of the sign of the P function and
of gauge dependence, would also yield an integrable set
of equations for g(r, e). Similar integrability conditions
are found in other theories with multiple mass scales, and
it has been suggested [30] to use a principle of minimal
sensitivity to define an optixnal integration contour in the
(r, K) plane. The need for a resummation beyond that
of Braaten and Pisarski has also been recognized in the
calculations of the damping rates of moving particles and
of the production rates of soft photons [31]. Whether
such a scheme can be developed and can be used to give
tractable results remains to be seen.
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