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Casimir effect of strongly interacting scalar fields
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The Casimir efFect of nontrivial P theory is studied for a rectangular box. The scalar modes
satisfy periodic boundary conditions, which correspond to a compactification of space. Nontrivial

theory is obtained by an analytic continuation of the theory to negative quartic coupling. This
theory is studied in a renormalization-group-invariant approach. It is found that the Casimir energy
exponentially approaches the infinite volume limit, the decay rate given by the scalar condensate.
This behavior is very di6'erent from the power law of a free theory. This might provide experimental
access to properties of the nontrivial vacuum. At small compactification lengths the system can no
longer tolerate a scalar condensate, and a first order phase transition to the perturbative phase occurs.
The dependence of the vacuum energy density and the scalar condensate on the box dimensions is
presented.

PACS number(s): 11.10.Gh, 11.10.Ef

I. INTRODUCTION

The Casimir effect [1—4] in quantum field theory is the
change of the vacuum energy density due to constraints
on the quantum field induced by boundary conditions in
space-time. The contribution to the energy density by
the quantum Huctuation of the electromagnetic field was
experimentally observed by Sparnaay [5] in 1958, thus
verifying its quantum nature. Following this observation
the Casimir effect was extensively studied, the renormal-
ization procedure that must be used in order to extract
physical numbers out of divergent mode sums being of
particular interest. This procedure is most elegantly for-
mulated in a path-integral approach [6], and leads to a
full understanding of the Casimir effect for noninteract-
ing quantum fields. Perturbative corrections to the free
Casimir effect arising from a weak interaction of the Huc-
tuating fields can also be obtained [7]. It was shown that
the net effect of the boundaries is to produce a topologi-
cal mass for the fluctuating modes [8]. In the recent past
there has been a renaissance of the Casimir effect due to
its broad span of applications, which range from gravity
models [9] to @CD bag models [10] to nonlinear meson
theories describing baryons as solitons [11]. A closely
related subject is quantum Beld theory at finite temper-
ature, since it can be described in the path-integral for-
malism by implementing periodic boundary conditions
in the Euclidean time direction [12]. Despite these many
different applications it is possible to understand the ba-
sic features of the Casimir effect by investigating a scalar
theory. It is also of general interest to study P, theory
due to its important applications, e.g. , in the Weinberg-
Salam model of weak interactions (see, e.g. , [13]),in solid
state physics [14], and inflationary models of the early
Universe [15]. In these applications a nontrivial vacuum
structure is desired for phenomenological reasons. Lat-
tice simulations [16, 17], however, show that for positive
quartic coupling (A ) 0) P theory is trivial (i.e. , a free
theory due to renormalization). Lattice P4 theory with
a negative bare coupling [18] can be defined by analytic

continuation of the theory with positive A. It was ob-
served that this theory yields the desired nontrivial con-
tinuum limit [18]. It might happen that this theory vio-
lates the Osterwalder-Schrader axioms [19, 17] indicating
problems defining this theory in Minkowski space. How-
ever, this question is not settled yet. We will not address
this question in this paper but confine ourselves to the
Euclidean P theory. Recently, a nonperturbative path-
integral approach to nontrivial P4 theoryi was proposed
which also exhibits a nontrivial phase other than the triv-
ial one [20, 21]. The perturbative (trivial) phase is unsta-
ble (at zero temperature) because a second phase with
nonvanishing scalar condensate has lower vacuum energy
density [20]. It was found that at a critical temperature
the energy densities of the nontrivial and perturbative
phases are equal, and the nontrivial phase undergoes a
first order phase transition to the perturbative one [21].

Using this approach it is possible to study the Casimir
effect in a theory with nontrivial vacuum properties.
Since the nontrivial phase contains an intrinsic energy
scale (i.e., the magnitude of the scalar condensate at zero
temperature), one expects deviations of the Casimir en-

ergy from the free field law. This presumably provides
an access to nonperturbative vacuum properties.

In this paper we investigate the nontrivial phase of
four-dimensional P theory (i.e. , its version obtained by
analytic continuation to negative bare coupling) in a rect-
angular box. We require periodic boundary conditions
in p (( 4) directions of space, which means that in these
directions we compactify space to a circle with circum-
ference a, (i = 1, . . . , p). When these compactification
lengths a, are large, the Casimir energy decays expo-
nentially for greater lengths, the decay rate given by the

The theory with an analytic continuation of the bare cou-
pling A to negative values is called nontrivial P theory
throughout this paper.
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magnitude of the scalar condensate. At small lengths the
field theory no longer tolerates a scalar condensate and
the perturbative phase is adopted.

The paper is organized as follows. In the second section
we brie8y review the Casimir effect of a &ee theory and
the recently proposed nonperturbative approach [20, 21]
to P4 theory. The analytic continuation to negative quar-
tic coupling and the renormalization procedure are dis-
cussed. Renormalization-group invariance is shown. In
the subsequent section results are presented. The asymp-
totic behavior of the Casimir energy for large (compared
with the scalar condensate) compactification lengths is
obtained analytically, and the deviations from the energy

I

in a free-field theory are discussed. The phase transition
from the nontrivial vacuum to the perturbative phase
at small compactification lengths is studied; the vacuum
energy density and the scalar condensate are calculated
as functions of the compactification lengths. Discussions
and concluding remarks are given in the final section.

II. THE CASIMIR EFFECT
OF SCALAR FIELDS

P4 theory is described by the Euclidean generating
functional for Green's functions: i.e.,

m2
Zfj] = jD4 exp( —f d'e

~

8„$8—„4 + 4' + rtr' —j(e)d'(e)(2" " 2 24 )

I'[P,]:= —lnZ[j]+ d x P, (x)j(x),
b lnZ[j]

8j(x) (2)

From here the efFective potential U($2) is obtained by re-

where m denotes the bare mass of the scalar field and
A the bare coupling strength of the P4 interaction. Pro-
vided some regularization prescription is used, the path
integral (1) is well defined for A & 0, which is assumed
in Sec. IIB where a nonperturbative expansion of (1)
will be derived. We will then allow for negative bare
couplings and consider the analytic continuation in this
expansion. j(x) is an external source for gP(x) which is
introduced, so that we can derive the effective potential
[22, 23] of the composite field P later on. It was observed
in [21] that it is more convenient to use the efFective po-
tential of P to study the phase structure of the theory.
In particular its minimum value is the vacuum energy
density and thus provides access to the Casimir effect,
if it is calculated by imposing adequate boundary condi-
tions on the scalar modes. As mentioned in the Introduc-
tion, for these initial investigations we adopt the simplest
geometry and consider a rectangular box with periodic
boundary conditions in p (( 4) directions with distances
a; (i = 1, . . . , p). Therefore the integration over the field

P in (1) only includes configurations which satisfy these
boundary conditions. As we shall see, the only geometry-
dependent divergence is proportional to the volume of the
cavity (rectangular box) in the case of periodic bound-
ary conditions, while for Dirichlet or Neumann bound-
ary conditions, divergences depending on the shape of
the cavity also occur. Whereas the volume divergence
drops out from the renormalized vacuum energy density,
the shape-dependent divergences of the latter case enter
the effective potential. In that case the results would
sensitively depend on the physical structure of the sur-
face [24] (e.g. , the scale set by the atomic dimensions of
the plates), and such effects are beyond the scope of this
paper.

The effective action is defined by a Legendre transfor-
mation of the generating functional Z[j]: i.e. ,

I

stricting P, to constant classical fields ( I'[P, = const] =
f d 2: U(P, ) ), which are obtained for a constant external
source j. The minimum value of the efFective potential
U;„ is the vacuum energy density and is obtained from
(2) at the zero external source: i.e. ,

dU
d62

=0.

The minimum classical configuration P, o represents the
scalar condensate.

A. Casimir effect for free scalar Aelds

Umin Tr ln( —Bz+ m )2TVd,

1 dkp dS (I &+@2)2' i 2' i(~2 8

(4)

where T is the Euclidean time interval, Vg i is the (d —1)-
dimensional space volume, and A is the proper-time cut-
off. For definiteness we use Schwinger's proper-time reg-
ularization, but note, however, that the specific choice
of the regularization prescription has no infI.uence on
the renormalized (finite) result (e.g. , compare [23] and
[26]). The trace in (4) extends over all modes satis-
fying periodic boundary conditions. Their eigenvalues

2
are E = h -hP,. ra; (

—",where a; (r' = 1, . . . , p)
is the compactification length in the ith direction. Af-
ter the Iho integration in (4) has been performed, a par-

In this subsection we review the Casimir effect of a
free scalar theory (A = 0) using Schwinger's proper-time
regularization. We demonstrate that the minimum of the
efFective potential U coincides with the mode sum usually
considered in the study of the Casimir effect [1—4]. This
equivalence was also obtained by using another regular-
ization scheme [2] and previously observed with proper-
time regularization in the context of chiral solitons [25].

The minimum of the effective potential of a free scalar
theory is in Schwinger s proper-time regularization
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tial integration in the 8 integral yields the mode sum
Vq 1U~;„= 2 Tr~E in cutoff regularization with the par-

+2ticular cutoff function ~r(z, &, ). This establishes the
equivalence of the mode sum approach and the approach
provided by the effective potential.

In order to introduce in the regularization procedure
encountered in the next section we proceed in calculating
the Casimir energy for the massless case (m = 0). The
integration over the continuous degrees of freedom can
be performed in a straightforward manner, and rewriting

where

Z(ai a„,d) = 1

(a2vi2+ . + a2vz) ~

is the Epstein ( function (the prime indicates that the
term with all v; = 0 is excluded from the sum). For p = 1
and four space-time dimensions (d = 4) one obtains the
analytic result for the vacuum energy density and the
Casimir energy E, respectively, i.e. ,

—8W2 (
2m )2

Eq. (4) becomes

&Vd —1Umiak

a 2 0
4s2~, )

L" P 1 OO

2 (2~/vr)" —&,(~, si+","

~2I 2

Ec —Vs U~1n 90a3

(9)

where ((s) = P i n ' is Riemann's g function. This
is precisely the result usually obtained by evaluating the
mode sum of zero point energies [2].

The crucial observation is that the ultraviolet behavior
is dominated by the integrand at small 8 and that the
only divergences result from the term with all v; equal
to zero. In the case of a &ee theory the divergent term
is proportional to the d-dimensional space-time volume
V = Vg 1 T and a pure constant that can be absorbed by
a redefinition of the action. After the substitution 8 ~
1/s the s integration can be performed in (6) yielding,
for the finite part in the limit A ~ oo,

1 1 1 (dl——lnZ = U;„= —— I'
l

—
l

Z(ai .a, d),V ' 2vr+z (2' P 'J

B. Nontrivial P~ theory with boundary conditions

In this subsection we describe the nonperturbative ap-
proach to P theory provided by the modified loop ex-
pansion [20], taking into account the constraints on the
scalar field imposed by boundary conditions. We demon-
strate that the renormalization procedure is not affected
by the presence of a rectangular box implying that the
renormalization-group invariance of the infinite volume
limit (a; ~ oo) is preserved.

The modifie'd loop expansion [20] is based on a lin-
earization of the P interaction in the path integral (1)
by means of an auxiliary field y(x): i.e. ,

Z[j] = 17/ 17yexp — d x —8 $0 P + —y (x) +4 1 6, fm'
2

—&&(&)
l
&'(&) —&(&)&'(&) (10)

This linearization was first proposed in [27]. The inte-
gral over the fundamental field P is then easily performed,
yielding

0. (14)

+fil =f&x ~Rr (—~fx, ilk,

(12)

17 [y,j] y
——( —)9 +m —2iy(2:) —2j(2:)) 8 y .

(13)

The trace Tr~~) extends over all eigenmodes of the oper-
ator 17 [y, j], which satisfy the periodic boundary con-
ditions; the subscript (B) indicates that a regularization
prescription is required. The approach of [20] is defined
by an expansion with respect to the field y around its
mean field value yo defined by

This modified loop expansion of the generating functional
Z[j] arises from (10) for A ) 0. In order to perform the
analytic continuation to negative bare coupling we al-
low A & 0 from now on in this expansion. Note that
the modified loop expansion of [20, 21] coincides with an
1/N expansion of the O(N)-symmetric P theory [29] for
N = 1 implying that the convergence of the expansion
is doubtful. However, the next to leading order calcula-
tion shows that the qualitative behavior of the effective
potential is unchanged even for N = 1. Quantitative re-
sults can be obtained in good approximation from the
leading order calculation by a proper redefinition of the
renormalization-group-scaling coeKcients [30]. We there-
fore confine ourselves to the leading order of the modified
loop expansion, because the Casimir effect of a quantum
system with a nontrivial vacuum can be qualitatively in-
vestigated already at this stage.

At zeroth order we obtain, f'rom (10),
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b'1n Z[j]
bM (16)

For a constant external source j this equation is satisfied
for constant M.

The effect of the rectangular box shows up only in the
loop contribution, which is given in Schwinger s proper-
time regularization (d = 4) by

L= —Tr(~) ln( —c) + M)=1 2

2
L4-p d4-pI

2 (2')4-&
(n, )

ds

".(2~n;l'
x exp —s ) k& +M+)

l=1

where L is the extension in the unconstrained directions.
The sum over the unconstrained modes (k integration)
can be performed easily. Applying Poisson's formula to
extract the divergent terms, as we did for the free theory
in Sec. I, we obtain

M'r ~~—2,
32m. 2 ( ' A')

V ) ds, M

1/Ag 8

'. a,', 't
x exp )

—) —'v,' (18)4s ')
where I' denotes the incomplete I' function, V the space-
time volume, and the prime indicates that the contribu-
tion with all v; = 0 is excluded. This implies that the
second term of the right-hand side of (18) is ultravio-
let finite, so we can remove the regulator in this term
(A ~ oo). Using the asymptotic expression of the in-
complete I' function, we find

V 2 1 z f M 3I MA'+ -M'
~

ln
32vr2 2 ( Az 2

V
Fs (M, aq . .a ),327r2 p ) (19)

where p = 0.577... is Euler's constant and the function
F3 is defined by

dsF (Maq . .a„) = —e ' e ~'4 "'
(~i ) 0

(20)
with e = 3. The first term on the right-hand side of (19)
is the contribution of the loop term L to the effective

—ln Z[j](aq .a ) = d z ——(M —m + 2j)4 3 2 2
p 2A

+ —Tr(R) ln( —8 + M),
1 2

2

where M is related to the mean field value yo by yo ——

i(M —m2 + 2j)/2. The mean field equation for yo (14)
can be recast into an equation for M: i.e. ,

potential in the infinite volume limit, since the function
Fs vanishes for a, ~ oo. The second term in (19) is thus
the modification of the effective potential due to the pres-
ence of the Casimir boundary conditions and gives rise
to the Casimir effect. Note that this term is finite imply-
ing that the boundaries do not affect the renormalization
procedure. This is the desired result.

Following the renormalization scheme given in [21] we
absorb the divergences in the bare parameters A, m, j by
setting

6 + ln
A 16~2 ( p2

3m'
A

6.j
A

-~+1
I

=
) AR'

1 2 6
32 A

A = jR

j —m'=0,

3mR
AR

(21)

(22)

where p, is an arbitrary renormalization point and a sub-
script R refers to the renormalized quantities. Later we
will check that physical quantities do not depend on p, .
In the following we consider the massless case mR ——0.
The coupling strength renormalization in (21) was ear-
lier used by Coleman et aL [27] and coincides with the
renormalization of the corresponding lattice theory (with
negative bare coupling) [18]. Note that the bare coupling
becomes infinitesimally negative, if the regulator A is
taken to infinity. This implies that only the theory with
the analytic continuation to negative bare couplings pos-
sesses a scaling limit. The lack of a scaling limit of the
theory with positive quartic coupling gives rise to trivi-
ality of the standard P theory as seen in lattice simula-
tions. The above scaling behavior of the bare coupling is
also consistent with perturbation theory [20]. In fact, we
have, f'rom (21),

AR

1 —PeAR(ln —„, —p+ 1)

1
96vr2 '

(24)

implying A ~ 0 for A ~ oo, whereas in contrast an ex-
pansion of (24) with respect to the renormalized coupling
strength, i.e. ,

6
MjR

R

2)
—nFs (M, ag . a„),

1——ln Z[j](aq. -a ) =—
V p

(26)

This is sometimes called precarious renormalization in the
literature [28].

A = AR(p) 1 + Po AR ln
2

—p+ 1 + Q(A~)
)

(25)

suggests that A ~ +oo, if A —+ oo.
Inserting (21)—(23) and I from (19) in (15) one obtains
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where o. = 1/32vr and M is defined by the mean field
equation (16): i.e. ,

6 t'M )j~+ aMin~
&R &~')

+~ I"2 (M ai . a„) = 0. (27)

It is now straightforward to perform the I egendre trans-
formation (2). The final result for the efFective potential
1s

0.5

0.0

cont
Moa
M.'a

o. f M 11
U($, ) = —M

~

ln ———
~2)

—nF) (M, ai . a„),
where

1 blnZ[qR] 6

V bj~ AR

M2
2A~

(28)
-0.5

/

/
/r

rr

~t'

r
/

/
/

/
I

/

The efI'ective potential is renormalization group invari-
ant, since a change in the renormalization point p, can
be absorbed by a change of the renormalized coupling
strength [20, 21]. Note that due to the renormalization
of the composite operator P in (23) M = A~/, /6 is
renormalization group invariant rather than P2. Thus M
is a physical quantity and is referred to as scalar conden-
sate. In the infinite volume limit (a, ~ oo) the efFective
potential has a global minimum for

(96~' l
M =Ms ——p exp' (A~) (30)

implying that the ground state has a nonvanishing scalar
condensate [21]. Furthermore, the minimum value of the
efFective potential (vacuum energy density) is related to
the scalar condensate by [21]

~ q2 (~2)2 1&(&~)(. ~4.)144 4 24
(31)

which yields the correct scale anomaly at this level of
approximation.

In order to make renormalization group invariance ob-
vious we remove the renormalization point dependence
in (28) by using relation (30). Both the renormalization
point p, and the renormalized coupling AR drop out, and
we obtain

2( M 11
U(M) = —M

I
ln ——

I

—aFs (M ai. a ) .
2 ( Mo 2)

(32)

The effective potential U as a function of the scalar con-
densate M for periodic boundary conditions in one di-
rection (p = 1) is shown in Fig. 1. In this case the
results are equivalent to those of finite-temperature field
theory, if the inverse compactification length 1/a is iden-
tified with the temperature (in units of Boltzmann's con-
stant) [12]. Further results of finite-temperature P the-
ory are given in [21]. For a large compactification length
a (zero temperature) the effective potential of the infi-
nite volume case is obtained, and this has a minimum at
a nonvanishing value of the scalar condensate. At finite

-1.0
0.0

i

0.5 1.0
M/M,

I

1.5 2.0

FIG. 1. The effective potential for periodic boundary con-
ditions in one direction (p = 1) as a function of the scalar
condensate at various compacti6cation lengths.

a, a second minimum at zero condensate M develops,
which is referred to as the perturbative phase. At large
a, this trivial phase is unstable, because the nonpertur-
bative minimum has a lower vacuum energy density. De-
creasing a (increasing temperature) lowers the difference
in the energy density between the perturbative and the
nonperturbative phase. At a critical length a the non-
trivial phase becomes degenerate with the perturbative
one (at M = 0). If a is decreased further, the nontrivial
phase becomes metastable and a first order phase transi-
tion to the trivial phase at M = 0 can occur by quantum
fIuctuations.

III. RESULTS

A. Near the infinite volume limit

The scalar cond. ensate M at the minimum of the ef-
fective potential is given by the gap equation (27):

In a free massless field theory (with p = 1) with pe-
riodic boundary conditions there is no intrinsic energy
scale in competition with that of the compactification
length a. This implies that the vacuum energy density
Uo scales as 1/a with this length by dimensional ar-
guments. This scaling law was experimentally observed
by Sparnaay in the case of the quantum electromagnetic
field [5]. In the case of nontrivial P theory an intrinsic
energy scale is provided by the scalar condensate. Thus
one expects deviations from the 1/a scaling law of the
kee theory. Such deviations might provide experimental
access to properties of the nontrivial phase.
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dU M
M„ ln

" + Eq(M„, ai . a„) = 0.
Mp

( ) e—1

Il, (M, ai . a„) =)
(u, )
88

, x = —e ' e
p

~ ((i4)
(34)

After some technical manipulations the functions f, ( x)

can be related to the modified Bessel functions of the
second kind: i.e. ,

f, (x) = 2x ~ K, , (2vx) = ~vrx 4 e 'v*,
(35)

where the last approximate expression is just the asymp-
totic form of the Bessel function for x —+ oo. There
are two contributions to the variation of the vacuum en-

ergy density U„(M„(a;),a, ) (32) with the compactifica-
tion length, one from a change of the scalar condensate
and one from the change of the effective potential U(M)
via the function Fs. Equation (33) implies that a varia-
tion of the condensate does not change U„ in first order,
and thus the leading contribution results from a change of
E3. Using the asymptotic form in (35) for Fs one obtains

—AU„= —(U„—U )

The vacuum energy density U„ is obtained by inserting
M„back into (32). For large compactification length
a; )) 1/M„ the function F,(M„,ai. . .az) can be analyt-
ically estimated by noting that only terms with a single
v; g 0 and all others v~. = 0 contribute to the sum (20),
l.e. )

sition &om the nontrivial vacuum to the perturbative
vacuum, if the compactification length becomes small
enough. Numerical investigations of the effective poten-
tial (32) for various lengths a; show that the same effect is
present for p ) 1; if the box is small enough, a Grst order
phase transition to the perturbative vacuum occurs.

Equating the energy density Up of the perturbative
phase at M = 0 to that of the nontrivial phase at M =
M„we obtain

M2 ( M„1)
~

ln " ——
~

—I"s (M„,ai. . .u„)
2 ( Mo 2

+Fs (O, a, . a„) = 0, (37)

where the dependence of the scalar condensate
M„(ai . az) on the compactification lengths a, is im-

plicitly given by (33). The set of Eqs. (33,37) defines
a hypersurface in the space spanned by the lengths a, ,
which separates the nontrivial phase kom the perturba-
tive one. Note that this transition line is given in terms of
renormalization-group-invariant (and therefore physical)
quantities.

As we have seen, for one compactification (p = 1) the
formulation is equivalent to finite-temperature P theory
(identifying 1/a with temperature), and the phase tran-
sition at small lengths a has the same structure as in
finite-temperature theory at high temperature. Because
of this correspondence, the numerical value for the criti-
cal length al, l

can be taken from [21]:

Mp a( )
——10.29134. . . .

The ratio of the scalar condensate M at the transition
point and the continuum (zero temperature) condensate
Mp is

M„(a(,)) / Mp ——0.9041. . . . (39)

where U is the vacuum energy density in the infinite
volume limit. This is the desired result: Eq. (36) gives
the change of the vacuum energy density due to bound-
ary conditions. In free or perturbative field theory (and
p = 1) this energy decays by the power law 1/a [see
Eq. (9)]. In contrast, the Casimir energy density (36)
of strongly interacting scalar modes decays exponentially
(with a power law correction), where the slope is given by
the magnitude of the scalar condensate Mp. This implies
that at least, in principle, one can decide by observing the
qualitative behavior of the Casimir energy, whether the
theory is in a perturbative or in a nonperturbative phase.
In the latter case it is also possible to extract ground state
properties, e.g. , the scalar condensate. Since for quantum
electromagnetic fields the 1/a power law was experimen-
tally verified [5], the ground state is trivial, and there is
no photon condensate. This is an expected result, since
photon self-interactions are absent.

1 1 Mp+
G i G 2 9 (40)

For p = 3 we have numerically checked that the erst
order phase transition occurs, if the rectangular box is
sufIiciently small.

C. Boundary dependence of energy density
and scalar condensate

For a given vacuum energy density U„, Eq. (32) be-
comes

Because of the first order nature of the phase transition
the scalar condensate has a discontinuity at the transition
point a~ ~

and is zero for smaller lengths.
For compactifications in two directions the transition

line between the two phases was obtained by solving
(33,37) numerically. The result is presented in Fig. 2.
Numerical investigations (cf. Fig. 4) suggest that the
transition line is approximately given by the equation

B. At the phase transition

As was seen in Sec. IIB for one compactification
(p = 1), the system undergoes a first order phase tran-

U„
M„

i
ln

" ——
i

—Is (M„,oi .a„),
2 q Mo 2)

(41)
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15.0 1.8

1 0.0
nontrivial phase

1.2

5.0
0.8

0.0
0.0

perturbative phase

I

5.0
I

1 0.0 1 5.0

0.2
0.2 0.8

I

1.2
16/a, '

1.8

M a, /4

FIG. 2. The transition line separating the nontrivial
phase and the perturbative phase, when two compactification
lengths aq and aq are introduced.

where M„ is defined by (33). This equation yields a
hypersurface of constant energy density in the space
spanned by (a;, i = 1, . . . , p). Comparing (41) with (37),
it is easily seen that the phase separating surface is not
a surface of constant energy density implying that there
are intersections between the two surfaces. We expect
that a hypersurface of constant energy density is contin-
uous at the intersection, but not difFerentiable due to the
first order phase transition.

Figure 3 shows the vacuum energy density for periodic

0.0

FIG. 4. The lines of constant vacuum energy density a M02

for two compactification lengths; a, in units of the inverse
scalar condensate 1/Mp.

boundary conditions in one direction (p = 1) as a func-
tion of 16/a, where a is the compactification length (or
equivalently the inverse temperature). For large values
of 16/a (small a), the perturbative phase is realized,
and the 1/a scaling law is observed. For small values
of 16/a (large a), the scalar theory is in the nontrivial
phase, and the energy density exponentially approaches
the continuum value [see (36)] given by the scale anomaly
(31).

For two compactifications (p = 2) Fig. 4 shows lines
of constant vacuum energy density in the 16/az-16/az
plane. The phase transition line (dashed curve) is also
shown. As expected the lines of constant energy density

perturbative phase

1.2
perturbative phase

-0.5

-1.0

nontriv

0.7

-1.5
0.0 1.0

I

2.0
1 6/a

I

3.0

FIG. 3. The vacuum energy density for (p = 1) as a func-
tion of the compactification length (inverse temperature) in
units of 1/QMp.

0.20.2
I

0.7
16/a, ' 1.2

FIG. 5. The lines of constant scalar condensate M/Mp for
two compactification lengths.
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are continuous, but have a cusp at the first order phase
transition point.

We have also studied the hypersurfaces of constant
scalar condensate in a, space. For p = 1, this is anal-
ogous to the temperature dependence of the scalar con-
densate, and thus the results are given in [21]. For p = 2,
the lines of constant condensate (in units of continuum
condensate Mp) are presented in Fig. 5. A line of con-
stant condensate is discontinuous at the phase transition
line, because the condensate is zero in the perturbative
phase. This behavior is again due to the first order phase
transition.

IV. DISCUSSION AND CONCLUDING
REMARKS

We have studied Euclidean P theory (i.e. , its analytic
continuation to negative quartic coupling) constrained
by a rectangular box. It was shown that the nontrivial
ground state undergoes a first order phase transition to
the perturbative vacuum, if the extension in at least one
space-time direction becomes small enough. For large
boxes the finite-size corrections of the energy density in
comparison with the infinite volume limit are exponen-
tially small. They are negligible if the compactification
lengths are large compared with intrinsic scale provided
by the (continuum) scalar condensate (i.e. , a;i/Mp )) 1).
On the other hand, finite-size effects become important
for a;QMp 1 and induce a phase transition to the triv-
ial vacuum.

We believe that these properties are a common fea-
ture of a wide class of quantum field theories. Indeed,
an analogous situation is observed in lattice gauge theo-
ries. Theoretical investigations show that for high tem-
peratures, pure SU(N) lattice gauge theory has a phase
transition &om a nontrivial (confining) ground state to
a perturbative phase [31]. Numerical simulations of the
SU(N) theory use a lattice with size nin, n )) nt, which
corresponds to a system with volume n and inverse tem-
perature n&. Such a system shows two phases, a non-
trivial phase for p ( p, (nq) and a deconfined phase for

p ) p, (nq) [32] [p = 2N/g with g the SU(N) coupling

strength]. This can be related to our considerations as
follows. The intrinsic scale of lattice gauge theories is
provided by the string tension y [33] (or equivalently
by the gauge field condensate [34] as in the continuum
Yang-Mills theory). Our investigations suggest that a
finite-size phase transition occurs if

ngn a y & 1, (42)
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where a is the lattice spacing. The string tension in units
of the lattice spacing a y strongly depends on the in-
verse coupling strength P dictated by the renormaliza-
tion group. Numerical simulations [33] show that a4y
decreases with increasing P for fixed nt and n, implying
that (42) is satisfied for P = P„ the coupling strength at
which the phase transition occurs.

To conclude, we have studied P4 theory in a
renormalization-group-invariant approach inside a rect-
angular box with periodic boundary conditions in p di-
rections. We have further investigated the ground state
properties of the nontrivial phase affected by the geomet-
rical constraints. The dependence of the vacuum energy
density and the scalar condensate on the compactifica-
tion lengths was studied in some detail. In the nontriv-
ial phase the vacuum energy density exponentially ap-
proaches the infinite volume limit, the decay rate given
by the magnitude of the scalar condensate. This behav-
ior of the energy density essentially differs &om that of a
free theory, where it scales according a 1/a4 power law.
This implies that at least, in principle, one can deter-
mine which phase the system has adopted by measuring
the Casimir energy. At small compactification lengths
the system undergoes a first order phase transition to
the perturbative phase. This phase transition is of the
same nature as the transition at high temperature.
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