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Can disoriented chiral condensates form? A dynamical perspective
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We address the issue of whether a region of disoriented chiral condensate (DCC), in which the
chiral condensate has components along the pion directions, can form. We consider a system going
through the chiral phase transition via a quench, in which relaxation of the high temperature phase
to the low temperature one occurs rapidly (within a time scale of order 1 fm/c). We use a
density matrix based formalism that takes both thermal and quantum Quctuations into account
nonperturbatively to argue that if the O(4) linear cr model is the correct way to model the situation
in QCD, then it is very unlikely, at least in the Hartree approximation, that a large () 10 fm) DCC
region will form. Typical sizes of such regions are 1—2 fm and the density of pions in such regions
is at most of order 0.2/fm . We end with some speculations on how large DCC regions may be
formed.
PACS number(s): 11.30.Qc, 11.10.Wx, 11.15.Pg, 11.30.Rd

I. INTRODUCTION

The proposition has been put forth recently that re-
gions of misaligned chiral vacuum, or disoriented chi-
ral condensates (DCC), might form in either ultrahigh-
energy or heavy nuclei collisions [1—4]. If so, then this
would be a striking probe of the QCD phase transition.
It might also help explain [5, 6] the so-called Centauro
and anti-Centauro events observed in high-energy cosmic
ray experiments [7].

How can we tell, &om a theoretical standpoint,
whether or not we should expect a DCC to form? Clearly,
investigating QCD directly is out of the question for now;
the technology required to compute the evolution of the
relevant order parameters directly from QCD is still lack-
ing, though we can use lattice calculations for hints about
some aspects of the QCD phase transition. What we need
then is a model that encodes the relevant aspects of QCD
in a faithful manner, yet is easier to calculate with than
QCD itself.

Wilczek and Rajagopal [8] have argued that the O(4)
linear 0. model is such a model. It lies within the
same static universality class as QCD with taboo mass-
less quarks, which is a fair approximation to the world at
temperatures and energies below AqgD. Thus work done
on the n = 4 Heisenberg ferromagnet can be used to
understand various static quantities arising at the chiral
phase transition.

One conclusion &om Ref. [8] was that, if as the criti-
cal temperature for the chiral phase transition was ap-
proached &om above the system remained in thermal
equilibrium, then it was very unlikely that a large DCC

region, with its concomitant biased pion emission, would
form.

The point was that the correlation length ( = m i did
not get large compared to the T . A more quantitative
criterion involving the comparison of the energy in a cor-
relation volume just below T, with the T = 0 pion mass
(so as to find the number of pions in a correlation vol-
ume) supports the conclusion that as long as the system
can equilibrate, no large regions of DCC will form.

The only option left, if we want to form a DCC, is
to ensure that the system is far out of equilibrium. This
can be achieved by quenching the system (although Gavin
and Miiller [10] claim that annealing might also work).
What this means is the following. Start with the system
in equilibrium at a temperature above T . Then suddenly
drop the temperature to zero. If the rate at which the
temperature drops is much faster than the rate at which
the system can adapt to this change, then the state of
the system after the quench is such that it is still in the
thermal state at the initial temperature. However, the
dynamics governing the evolution of that initial state is
now driven by the T = 0 Hamiltonian. The system will
then have to relax &om the initial state, which is not
the ground state of the Hamiltonian to the zero temper-
ature ground state. During this time, it is expected that
regions in which the order parameter is correlated will
grow. We can then hope that the correlation regions will
grow to be large enough to contain a large number of
pions inside them.

The possibility that the chiral phase transition might
occur following a quench in heavy-ion collisions was ex-
plored by Wilczek and Rajagopal in Ref. [9]. They argue
there that long-wavelength fluctuations in the pion fields
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can develop after the quench occurs. Modes with wave
numbers A: smaller than some critical wave number A:„;q
will be unstable and regions in which the pion field is cor-
related will grow in spatial extent for a period of time.
The essence of this mechanism is that the pions are the
would-be Goldstone particles of spontaneous chiral sym-
metry breaking. In the absence of quark masses, the
pions would be exactly massless when the m and o fields
are in their ground state. However, during the quench,
the o field is displaced from its zero temperature mini-
mum so that the required cancellation between the neg-
ative bare mass term in the Lagrangian and the mass
induced through the pion interactions with the 0 con-
densate does not occur. This then allows some of the
pion momentum modes to propagate as if they had a
negative mass, thus causing exponential growth in these
modes. In Ref. [9], the classical o model was simulated.
The correlation functions were taken as spatial averages,
and the expectations for the growth of various pion field
momentum modes were borne out. More recently how-
ever, Gavin, Gocksch, and Pisarski [ll] have concluded
that the strongly coupled linear 0 model does not pro-
duce large correlated domains of pions. These authors
also performed a numerical simulation of the classical
equations of motion.

The mechanism advocated by Wilczek and Rajagopal,
the growth of unstable long-wavelength modes leading to
large correlations (domains), is similar to the mechanism
of spinodal decomposition in field theory [12, 13]. How-
ever, there are already hints &om previous work [12, 13]
that both quantum and thermal effects may be important
in determining the growth of correlation regions in a field
theory. The process of phase separation via the forma-
tion and growth of correlated domains is similar to the
process of spinodal decomposition in condensed matter
systems [14]. Below the critical temperature, a band of
long-wavelength modes become unstable and grow [12,
14, 15]. This growth is manifest in the equal-time spatial
Fourier transform of the two-point correlation function.
This process is well known in classical statistical mechan-
ics [14] and has already been studied within a nonper-
turbative &amework in scalar quantum field theories [12,
15].

The growth of the unstable long-wavelength modes is
responsible for large quantum (and thermal) fluctuations,
and leads to profuse particle production via parametric
amplification [12, 16].

The rest of the paper is devoted to a systematic, non-
perturbative analysis of the growth of fluctuations, the
onset of long-range correlations and the ensuing produc-
tion of pions after a rapid (in time scales of the order
of few fm/c) cooling into the unstable phase below the
critical temperature.

In the next section, we will develop the formalism nec-
essary to take the quantum and thermal fluctuations of
the fields into account. Having done that, we turn to the
actual numerical solution of the equations we find, and
use these solutions to calculate the equal time two-point
correlation function for the pions. It will be clear after
doing this, that in the case in which the system is ei-
ther quenched or relaxed from a high temperature phase

whose temperature is larger than the critical tempera-
ture, the correlation regions are never large enough for
the correlations in pions to be observed. We strengthen
this conclusion by computing the number of pions in the
correlation volume. We then end with some speculations
concerning possible ways in which a large DCC region
might form.

II. THE O(4) o MODEL OUT OF EQUILIBRIUM

Our strategy is as follows. We will use the techniques
developed by us previously [16] and use the functional
Schrodinger representation, in which the time evolution
of the system is represented by the time evolution of its
density matrix.

The next step is to evolve the density matrix in time
from this initial state via the quantum Liouville equation:

where H is the Hamiltonian of the system after the
quench. Using this density matrix, we can, at least in
principle, evaluate the equal-time correlation function for
the pion fields, and observe its growth with time.

Let us now implement this procedure. We start with
the 0 model Lagrangian density

12 = —0„4 8"4 —V(o, 7r),P

V(o, m) = —m (t) 4' 4+ A(4 . 4) —ho,

(2)

(3)

(4)

with P(t) a c-number field defined by

where @ is an O(N + 1) vector, 4 = (o, vr), and n' rep-
resents the N pions.

The linear o model is a low-energy effective theory for
an SUL, (2) x SUR(2) (up and down quarks) strongly inter-
acting theory. It may be obtained as a Landau-Ginzburg
effective theory &om a Nambu —Jona-Lasinio model [17].
In fact, Bedaque and Das [18] have studied a quench
starting &om an SUL, (2) xSUR(2) Nambu —Jona-Lasinio
model.

We have parametrized the dynamics of the cooling
down process in terms of a time-dependent mass term.
We can use this to describe the phenomenology of either
a sudden quench where the mass2 changes sign instan-
taneously or that of a relaxational process in which the
mass changes sign on a time scale determined by the
dynamics. In a heavy ion collision, we expect this relax-
ation time scale to be of the order of w 0.5 —1 fmjc.
The term ho accounts for the explicit breaking of chiral
symmetry due to the (small) quark masses. We leave N
arbitrary for now, though at the end we will take N = 3.

Our first order of business is to identify the correct or-
der parameter for the phase transition and then to obtain
its equation of motion. Let us define the Quctuation field
operator y(x, t) as
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P(t) = — d z(o.(x))0
T [ (t) ( )1

0 Trp(t)
(5)

(
(m ~) -+ 2+ — (7r )m + const,

N)
7r'y' m m'(y') + (m') y',
m'y —+ (m')y,

(12)
(13)

b(~) = (~) = —„jd'*(&-( )),

1 f ~ 8v(am)

(6)

Here 0 is the spatial volume in which we enclose the
system. The fluctuation field y(x, t) is defined so that

(i) (y(x, t)) = 0, and (ii) y(x, t) = —P(t). Making use of
the Liouville equation for the density matrix, we arrive
at the equations

where by "constant" we mean the operator-independent
expectation values of the composite operators. Although
these will be present as operator-independent terms in
the Hamiltonian, they are c-number terms and will not
enter in the time evolution of the density matrix.

It can be checked that when P = 0 one obtains the
O(N + 1)-invariant Hartree factorization.

In this approximation the resulting Hamiltonian is
quadratic, with a linear term in y:

where II (x) is the canonical momentum conjugate to
o.(x).

The derivative of the potential in the equation for a(t)
is to be evaluated at O' = P(t) + y(x, t). These equations
can be combined into a single one describing the evolution
of the order parameter P(t):

To proceed further we have to determine the density
matrix. Since the Liouville equation is first order in time
we need only specify p(t = 0). At this stage we could
proceed to a perturbative description of the dynamics
(in a loop expansion).

However, as we learned previously in a similar situa-
tion [12, 13], the nonequilibriurn dynamics of the phase
transition cannot be studied within perturbation theory.

Furthermore, since the quartic coupling of the linear
o model A must be large (A —4 —5 so as to reproduce
the value of f 95 MeV with a "o mass" 600 MeV),
the linear o. model is a strongly coupled theory, and any
type of perturbative expansion will clearly be unreliable.
Thus, following our previous work [12, 16] and the work
of Rajagopal and Wilczek [9] and Pisarski [ll] we invoke
a Hartree approximation.

In the presence of a vacuum expectation value, the
Hartree factorization is somewhat subtle. We will make
a series of assumptions that we feel are quite reasonable
but which, of course, may fail to hold under some cir-
cumstances and for which we do not have an a priori
justification. These are the following: (i) no cross corre-
lations between the pions and the o field, and (ii) that
the two-point correlation functions of the pions are diag-
onal in isospin space, where by isospin we now refer to
the unbroken O(N) (N = 3) symmetry under which the
pions transform as a triplet. These assumptions lead to
the following Hartree factorization of the nonlinear terms
in the Hamiltonian:

M'(t), ~ (t)+ x +
2 2

(14)

Here II~, II are the canonical momenta conjugate
to y(x), 7r(x), respectively, and Vi is recognized as the
derivative of the Hartree "effective potential" [19, 20]
with respect to P (it is the derivative of the nongradi-
ent terms of the effective action [12, 16, 21]).

In the absence of an explicit symmetry-breaking term,
the Goldstone theorem requires the existence of massless
pions, M = 0 whenever Vi for P g 0. However, this
is not the case within our approximation scheme as it
stands.

This situation can be easily remedied, however, by not-
ing that the Hartree approximation becomes exact in
the large N limit. In this limit, (m ) = O(N), (y ) =
O(1), Pz = O(N). Thus we will approximate further by
neglecting the O(1/N) terms in the formal large N limit.
This further truncation ensures that the Ward identities
are satisfied. We now obtain

V (t) = P(t) m (t) + 4AQ (t) + 4A(m ) (t) —h, (15)

M' (t) = m'(t) + 4Ay'(t) + 4A(7r') (t),

(t) = m (t) + 12AQ (t) + 4A(m )(t).

(16)

p(t) = p (t) p (t).

The Hamiltonian is now quadratic with time-dependent
self-consistent masses, and Goldstone's Ward identities
are satisfied.

Since the evolution Hamiltonian is quadratic in this
approximation, we propose in the Hartree approximation
a Gaussian density matrix in terms of the Hartree-Fock
states. As a consequence of our assumption of no cross
correlation between y and m, the density matrix factor-
izes as

X —i6(X )X +const

X' ~ 3(X')X

(9)
In the Schrodinger representation the density matrix is

most easily written down by making use of spatial trans-
lational invariance to decompose the fluctuation fields
y(x, t) and n (x, t) into spatial Fourier modes:
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1
y(x, t) = ) yi, (t) exp( —ik x),0

1
m(x) = ) mi, exp( —ik x),0

(19)

(20)

where we recall that y(x, t) = o(x) —P(t). We can now use these Fourier modes as the basis in which to write the
density matrices for the 0 and the pions. We will use the Gaussian Ansatze

p„[y, y, t] = JV~ i (t) exp — "' yg(t)y i, (t) + 'h yi, (t)y i, (t)
A, ,~(t) A;,.(t)

k

+
h (t) — (t) +

h ,.(t) [ — (t) — — (')]Bx,l (t)
(21)

p [ir, m, t] =
I

k

A, (t) A', (t) B., (t)
Af„,~(t)exp — '

w~ w „+ ' ir~ ir ~+ "'
m~ ir

2h 2h
(22)

The assumption of isospin invariance implies that the ker-
nels A I„B I, transform as isospin singlets, since these
kernels give the two-point correlation functions. Further-
more, Hermiticity of the density matrix requires that the
mixing kernel B be real. The lack of a linear term in the
pion density matrix will become clear below.

The Liouville equation is most conveniently solved in
the Schrodinger representation, in which

n, (x) = ih, -rV. (x) = ih
b

by
'

bar~
'

*r = a)rr„n. ~ ~;~) —
H, )rr„, n„,g, ~;~)) p(~).Bt

Comparing the terms quadratic, linear, and indepen-
dent of the fields (y; m), we obtain the following set of
diBerential equations for the coefBcients and the expec-
tation value:

lack of a linear term in m' in the Hartree Hamiltonian, as
the symmetry has been specified. to be broken along the
0. direction.

To completely solve for the time evolution, we must
specify the initial conditions. We will assume that at an
initial time (t = 0) the system is in local thermodynamic
equilibrium at an initial temperature T, which we take to
be higher than the critical temperature, T —200 MeV,
where we use the phenomenological couplings and masses
to obtain T .

This assumption thus describes the situation in a high-
energy collision in which the central rapidity region is at
a temperature larger than critical, and thus in the sym-
metric phase, and such that the phase transition occurs
via the rapid cooling that occurs when the region in the
high temperature phase expands along the beam axis.

The assumption of local thermodynamic equilibrium
for the Hartree-Fock states determines the initial values
of the kernels and the expectation value of the o. field and
its canonical momentum:

JV„,i, .
Z

JV~ I,

iA~ I,

iB~ A,

, (t)

1
2

(Ax, ) —A*,~)

A,' A:
—B,' a

—~„' a (t)

B~ g (A~ i, —A' „),
k'+ M2(t),

y+ m (t)y+ 4Ay +4Alj(7r (x, t)) —h = 0,

(24)

(»)
(26)

(27)

B~ g(t = 0) =—

A, ),(t = 0) = ru A,, (0) coth[Ph~, q(0)],

(u I, (0)
sinh[Ph(u 1, (0)]

P(t = 0) = Po., P(t = 0) = 0,

B A(t=0)=—

A~ i, (t = 0) = ~~ ), (0) coth[Ph(u~ I, (0)],
~~,~(o)

sinh[Ph~~ g(0)]
'

(33)

(34)

(36)

(37)

.JV I,

JV g,

iA I,

iB A:

~.',.(t)

1—(A~ i, —A„'„),

[A.', A:
—B.',~

—~.',~(t)

B I, (A g —A'q),
k'+ M'(t).

(30)

(»)
(32)

with P = 1/kRT. We have (arbitrarily) assumed
that the expectation value of the canonical momen-
tum conjugate to the 0 field is zero in the initial equi-
librium ensemble. These initial conditions dictate the
following Ansatze for the real and imaginary parts of
the kernels A 1, (t), Az 1,(t) in terms of complex func-
tions A A,, (t) = AR, 1, (t) + iAI, I, (t) and A~ i, (t)
AR, ~ g(t) + iAI, ~ g (t) [16]:

The lack of a linear term in (22) is a consequence of a AR, (t) 1= AR, ),(t) coth[ph~ q(0)],
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( )
AR~ ~(t)

sinh[Phur g(0)]
'

As; i, (t) = As; , i (t). (4o)

A, (t)
0',~(t)

(4i)

with 4' y obeying the following Schrodinger-like differ-
ential equation, and boundary conditions:

The differential equation for the complex function A can
be cast in a more familiar form by a change of variables

The creation a& and annihilation ag operators are inde-
pendent of time in the Heisenberg picture and the mode
functions 4' y(t) are the solutions to the Hartree equa-
tions (42) which are the Heisenberg equations of motion
in this approximation. The boundary conditions (43)
correspond to positive frequency particles for t & 0. The
creation and annihilation operators may be written in
terms of the Heisenberg fields (47) and their canonical
momenta. Passing on to the Schrodinger picture at time
t = 0, we can relate the Schrodinger picture operators at
time t to those at time t = 0 via a Bogoliubov transfor-
mation:

d2

, +~'„(t) @ &(t) = 0, (42)
with

(48)

14,k(t = 0) =
Q~, i (o)

g(t = 0) =i (u i, (0). (43)

Since in this approximation the dynamics for the pions
and o fields decouple, we will only concentrate on the
solution for the pion fields; the effective time-dependent
frequencies for the o fields are completely determined by
the evolution of the pion correlation functions. In terms
of these functions we finally find

I &+,~(t) I' —
I
&-,~(t) I'= ~.

(49)

At any time t the expectation value of the number
operator for pions (in each k mode) is

(7rg(t) 7r i, (t)) =

(44)

T a.'.(t) a-,~(t)p(0)P-,~(t)) =
Trp 0

Trat „(0) . a i, (0)p(t)
Tr p(t)

(So)

In terms of this two-point correlation function and rec-
ognizing that the 4 &(t) only depends on k2, we obtain
the important correlations

(n (x, t)) = dkk'
I

@ „(t) I' oth
4m2 2

(m(x, t) 7r(O, t)) = dkk 14' (t) I'Kh sin(kz)

h~ A (0)x coth
2

(46)

The presence of the temperature-dependent function in
the above expressions encodes the finite temperature cor-
relations of the initial state. The set of equations (28) and
(42), with the above boundary conditions, completely
determine the nonequilibrium dynamics in the Hartree-
Fock approximation. We will provide a numerical analy-
sis of these equations in the next section.

A. Pion production

1
~&(t) = a„%t „(t)+at „0 k(t) (47)

In the Hartree approximation, the Hamiltonian is
quadratic, and the fields can be expanded in terms of
creation and annihilation of Hartree-Fock states

After some straightforward algebra we find

(~-,A)(t) = (21&+, (t t-) I' —~)(~-,~)(0)

+(I &+,~(t t-) I' —~).
The first term represents the "induced" and the sec-
ond term the "spontaneous" particle production. In this
approximation, particle production is a consequence of
parametric amplification. The Hartree-Fock states are
examples of squeezed states, and the density matrix is a
"squeezed" density matrix. The squeeze parameter (the
ratio of the kernels at a time t to those at time t = 0) is
time dependent and determines the time evolution of the
states and density matrix. The relation between squeezed
states and pion production has been advanced by Ko-
gan [22] although not in the context of an initial thermal
density matrix.

Thus far we have established the formalism to study
the nonequilibrium evolution during the phase transition.
A question of interpretation must be clarified before pro-
ceeding further. Our description, in terms of a statisti-
cal density matrix, describes an isospin-invariant mixed
state, and thus does not prefer one isospin direction over
another. A real experiment will furnish one realization of
all the available states mixed in the density matrix. How-
ever, if the pion correlation functions become long ranged
(as a statistical average) it is clear that in a particular
realization, at least one isospin component is becoming
correlated over large distances; thus, it is in this statisti-
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cal sense that our results should be understood.
This concludes our discussion of the formalism we will

use to study the nonequilibrium evolution of the pion sys-
tem. We now turn to a numerical analysis of the problem.

III. NUMERICAL ANALYSIS

The phenomenological set of parameters that define
the linear o model as an effective low-energy theory are
(we will be somewhat cavalier about the precise value of
these parameters as we are interested in the more robust
features of the pion correlations)

M = 600 MeV, f =95 MeV, A = 4.5,
h = (120 MeV), T, = 200 MeV. (52)

The above value of the critical temperature differs
somewhat from the lattice estimates (T, 150 MeV),
and our definition of A differs by a factor four from that
given elsewhere [9, 11].

The first thing to notice is that this is a strongly cou-
pled theory, and unlike our previous studies of the dy-
namics of phase transitions [12,13] we expect the relevant
time scales to be much shorter than in weakly coupled
theories.

We must also notice that the linear o. model is an effec-
tive low-energy cutofj' theory. There are two physically
important factors that limit the value of the cutoff. (i)
This efFective theory neglects the inHuence of the nucle-
ons, and in the Hartree approximation, the vector res-
onances are missed. These two features imply a cutoff
of the order of about 2 GeV. (ii) The second issue is
that of the triviality bound. Assuming that the value
of the coupling is determined at energies of the order of
M, its very large value implies that the cutoff should
not be much larger than about 4—5 GeV, since otherwise
the theory will be dangerously close to the Landau pole.
From the technical standpoint this is a more important
issue since in order to write the renormalized equations
of motion we need the ratio between bare and renormal-
ized couplings. In the Hartree approximation this is the
"wave function renormalization constant" for the com-
posite operator m .

Thus we use a cutoff A = 2 GeV. The issue of the cut-
off is an important one since (m ) requires renormaliza-
tion, and in principle we should write down renormalized
equations of motion. In the limit when the cutofF is taken
to infinity the resulting evolution should be insensitive to
the cutoff. However, the chosen cutoff is not very much
larger than other scales in the problem and the "renor-
malized" equations will yield solutions that are cutoff
sensitive. However, this sensitivity will manifest itself
on distance scales of the order of 0.1 fm or smaller, and
we are interested in detecting correlations over many fm.
The size of the correlated regions and the time scales for
their growth will be determined by the long wavelength
unstable modes [12] (see below), and thus should be fairly
insensitive to the momentum scales near the cutoff. The
short distance features of the correlation functions, such
as, e.g. , the amp/itude of the Huctuations, will, however,
be rather sensitive to the cutoK

The most severe ultraviolet divergence in the compos-
ite operator m is proportional to A . This divergence is
usually handled by a subtraction. We will subtract this
term (including the temperature factors) in a renormal-
ization of the mass at t = 0. Thus

m~(t = 0) + 4A(~') (t = 0; T) = m„'(t = 0; T), (53)

M2 T2 —1 0(—t).
2 T-'

(54)

This parametrization incorporates the dynamics of the
expansion and cooling processes in the plasma in a phe-
nomenological way. It allows for the system to cool down
with an effective temperature given by

t
T, (st) = T exp

where T is the initial value of the temperature in the
central rapidity region, and t„ is a relaxation time. This
parametrization also allows us to study a "quench" cor-
responding to the limiting case t„=0.

It is convenient to introduce the natural scale fm
200 MeV = M~ and define the dimensionless variables

p(t) =M+f(t), @.I, (t) = &.(&)

QMp
'

z
k=Mpq, t=, t„= ", x=

F F
(56)

In these units

A M h=10, =3, H = s 0.22, (57)
MF ' Mp

' MF'

= W,
' = q'+ —,—1 + 4A f'(0). (58)

Thus we have to solve simultaneously the Hartree set
of equations:

d2f 9+ f exp
~

——2 —
I

—1 + 4Afd~' 2 T2

+4fAZ(0, ~) —H = 0, (59)

(
9 T'

+q + — exp
~

—2 —
~

—1 +4Af (~)d'r2 2 T2

+4AE(0, v))6q(v) = 0, (60)

where we made explicit the temperature dependence of
vr2 and m2&(t = 0;T). Furthermore we will parametrize
the time-dependent mass term as

M2 T
m~(t) = exp

~

—2—
~

—1 O(t)
2 T' ( t)
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Z(z, ~) = (~(x, t) ~(O, t))iM'
10

w (I y. (~) I' —
I @,(0) I')

N (t) N (~)

(64)
R'q

loT(GeV)

with the boundary conditions

f(0) =f, =0,df (o)

(o) = ,
' (0) = i/W~.

1 dQq

(61)

(62)

(63)

Finally, once we And the Hartree mode functions, we can
compute the total pion density as a function of time:

with (N z(w)) given by (51) in terms of the dimensionless
variables.

The mechanism of domain formation and growth is the
fast time evolution of the unstable modes [12].

Let us consider first the case of H = 0. Then f = 0 is
a fixed point of the evolution equation for f and corre-
sponds to cooling down from the symmetric (disoriented)
phase in the absence of explicit symmetry-breaking per-
turbations. Let us consider the simpler situation of a
quench (~„= 0). The equation for the Hartree mode
functions (60) shows that for q2 ( 9/2 the corresponding
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FIG. 1. (a) 4hZ(7) vs 7.
T, = 200 MeV; T = 250 MeV;

=0; f(0)=0;H=0;A=
4.5. (b) Z(z, r = 1;3;5) vs z
for the same values of the pa-
rameters as in Fig. 1(a); larger
values of time correspond to
larger amplitudes at the origin.
(c) N (v) vs v for the same val-

ues of the parameters as in Fig.
1(a). N (0) = 0.15.
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modes are unstable at early times and grow exponen-
tially.

This growth feeds back on Z(w) which begins to grow
and tends to overcome the instability. As the unstable
fluctuations grow, only longer wavelengths remain unsta-
ble, until the time when 4AZ(w) = 9/2, at which point no
wavelength is unstable. The modes will continue to grow,
however, because the derivatives will be fairly large, but
since the instabilities will be overcome beyond this time
the modes will have an oscillatory behavior.

We expect then that the fluctuations will grow dur-
ing the time for which there are instabilities. This time
scale depends on the value of the coupling; for very small
coupling, Z(v) will have to grow for a long time before
4AZ(w) = 9/2 and the instabilities are shut off. On the
other hand, for strong coupling this time scale will be
rather small, and domains will not have much time to
grow.

It is clear that allowing for a nonzero magnetic field or
f(0) g 0 will help to shut off the instabilities at earlier
times, thus making the domains even smaller.

For typical relaxation times (= 1 —2 fm/c), domains
will not grow too large either because the fast growth of
the fluctuations will catch up with the relaxing modes
and shut off the instabilities [when T,tt(r) ( T,] on short
time scales. Thus we expect that for a nonzero relax-
ation time w = fm/c, domains will not grow too large
either, because the fluctuations will shut ofF the insta-
bilities [when T,tr(~) ( T,] on shorter time scales (this
argument will be confirmed numerically shortly).

We conclude from this analysis that the optimal situ-
ation for which large DCC regions can grow corresponds
to a quench &om the symmetric phase in the absence of
a magnetic field.

Figure l(a) shows 4AE(w) vs r, Fig. 1(b) shows
Z(z, r = 1;3;5) vs z, and Fig. 1(c) shows N (r) vs w

for the following values of the parameters: T
200MeV; T=250MeV; &„=0;f(0)=0; II=0; A=
4.5 corresponding to a quench from the symmetric phase
at a temperature slightly above the critical temperature
and no magnetic field.

We clearly see that the fluctuations grow to overcome
the instability in times = 1 fm, and the domains never
get bigger than about 1.5 fm. Figure l(c) shows that
the number of pions per cubic fermi is about 0.15 at the
initial time (equilibrium value) and grows to about 0.2 in
times about 1—2 fm after the quench. This pion density
is thus consistent with having only a few pions in a pion-
size correlation volume.

Figures 2(a—c) show again the same functions but
now we let the system relax from an initial temperature
T = T, with a relaxation time t„= 1 fm/c. Notice that
now the fluctuations grow less rapidly as they are mod-
ulated by the relaxation time, but again on a time scale
of the order of a fm/c, they become big enough to shut
off the long wavelength instabilities. Figure 2(b) shows
Z(z, w = 1;3; 5; 7) vs z. Once again, pions are correlated
over distances of the order of a 1 fm. The reason the
fluctuations grow so quickly and thus shut ofF the growth
of the unstable modes so quickly is the strongly coupled
nature of the theory.

The possibility of long range correlations exists if the
initial state is in equilibrium at the critical temperature.
In this situation there are already long range correla-
tions in the initial state that will remain for some time
as the temperature factors enhance the contributions
for long wavelength modes since the Boltzmann factor

1/k for long wavelength fiuctuations. Figures 3(a-
c) show this situation for the values of the parameters
T=T, =200MeV; ~„=0; f(0) =0; II=0; %=45.
Figure 3(b) shows Z(z, v = 1;2) vs z. In this case the
number of pions per cubic fm in the initial state is 0.12
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are much larger than typical pion sizes. This is precisely
the situation studied previously [12] within a difFerent
context.

We have analyzed numerically many different situa-
tions in the strongly coupled case (A =4—5) including the
magnetic Geld and letting the expectation value of the 0.

Geld "roll down, " etc. , and in all of these cases in which
the initial temperature is higher than the critical (be-
tween 10 and 20% higher) we find the common feature
that the time and spatial scales of correlations are —1
fm. Thus it seems that within this approach the strongly
coupled linear o model is incapable of generating large
domains of correlated pions.

Thus, modes with wavelength k and energies wI, are clas-
sical when h~I, (( k~T and yield a contribution to the
propagator:

h(dj,
h coth = 2k~T/~I,

2 gT

(notice the cancellation of the 5). For long-wavelength
components this happens when

M2
, [T'/T.' —1] && 1,

IV. DISCUSSIONS AND CONCLUSIONS

Our study differs in many qualitative and quantitave
ways &om previous studies. In particular we incorporate
both quantum and thermal Huctuations and correlations
in the initial state. In previous studies it was argued that
because one is interested in long wavelength Buctuations
these may be taken as classical and the classical evolution
equations (with correlations functions replaced by spatial
averages) were studied. We think that it is important to
quantify why and when the long wavelength Huctuations
are classical within the present approximation scheme.
This may be seen &om the temperature factors in the
Hartree propagators. These are typically (incorporating
now the appropriate powers of h)

h, (dg
h coth

2 +T

because the "thermal mass" (squared) for the excitations
Min the heat bath is 2 [T /T, 1]. For the phe—nomenolog-

ical values ofI and T„ the "classical" limit is obtained
when

T2

C

(65)

that is, when the initial state is in equilibrium at a tem-
perature that is extremely close to the critical tempera-
ture. This is the situation that is shown in Figs. 3(a-
c) where, indeed, we obtain very large correlated do-
mains that were already present in the initial state af-
ter a quench &om the critical temperature all the way to
zero temperature.
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After an energetic collision it seems rather unlikely
that the central region will be so close to the critical
temperature. If the temperature is higher than critical,
in order for the system to cool down to the critical tem-
perature (or very near to it) and to remain in local ther-
modynamic equihbrium, very long relaxation times are
needed, as the long wavelength modes are typically crit-
ically slowed down during a transition. Long relaxation
times will allow the Huctuations to shut oK the instabil-
ities as they begin to grow, and the system will lose its
long range correlations. This was the original argument
that discarded an equilibrium situation as a candidate for

large domains. Furthermore, typical heavy ion collisions
or high-energy processes will not allow long relaxation
times (typically of a few fm/c). Thus we believe that
in most generic situations, a classical approximation for
the long wavelength modes is not reliable in the Hartree
approximation. We should make here a very important
point. We are not saying that large coherent fluctuations
cannot be treated semiclassically. They can. What we
are asserting with the above analysis is that within the
Hartree approximation, long wavelength excitations can-
not be treated as classical. The Hartree approximation
in the form used by these (and most other) authors does
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4
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FIG. 3. (a) 4AZ(~) vs r.
T = T, = 200 MeV; 7.„=0;
f (0) = 0; H = 0; A = 4.5.
(b) Z(z, 7 = 1;2) vs z for the
same values of the parameters
as in Fig. 3(a); larger val-
ues of time correspond to larger
amplitudes at the origin. (c)
N (r) vs r for the same val-
ues of the parameters as in Fig.
3(a). X.(0) = O. i2.
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(66)

and assuming, for the sake of argument, that the thin-
wall approximation is reliable, we obtain an approximate
form for the energy of the droplet:

E=47rR f M ——R hf . (67)

nat capture correctly the physics of coherent semiclassical
nonperturbative configurations.

Thus although the most promising situation, within
the model under investigation, is a quench from the criti-
cal temperature (or very close to it) down to zero temper-
ature, it is our impression that this scenario is physically
highly unlikely.

There is another very tantalizing possibility for the for-
mation of large correlated pion domains within the linear
o model with h g 0 and that is via the creation of a crit-
ical droplet that will complete the phase transition (first
order in this case) via the process of thermal activation
over a "&ee energy" barrier. The small magnetic field
(resulting &om the small up and down quark masses)
introduces a small metastability [23]. The classical equa-
tions of motion allow for a solution in which the pion
field is zero everywhere and a droplet in the o field [this
is the O(3) symmetric bounce responsible for thermal
activation in scalar metastable theories in three dimen-
sions [24]]. Using a spherically symmetric Ansatz for a
sigma droplet of radius B,

The critical radius is thus (this approximation is clearly
reliable only as an order-of-magnitude estimate)

B =3 —5 fm.

Typical &ee energy barriers are thus of the order of 500—
600 MeV. By considering the fIuctuations of the pions
around this configuration, it is conceivable (although we
cannot provide a more convincing argument at this stage)
that the unstable mode of the droplet (dilation) that
makes the droplet grow to complete the phase transi-
tion via thermal activation, produces a large amount of
correlated pions. This scenario, however, requires super-
cooling (the false vacuum to be trapped) which again
requires long relaxation times (again unlikely for strong
coupling) .

As argued above, this possibility cannot be studied via
a Hartree approximation which only provides a (select)
resummation of the perturbative expansion and is prob-
ably reliable only for short times, before nonperturbative
configurations truly develop.

Thus we conclude that although our analysis provides a
negative answer to the question of the possibility of large
correlated domains near the chiral phase transition, these
results are valid only within the Hartree approximation
of the linear o model. There are several conceivable pos-
sibilities that would have to be studied thoroughly be-
fore any conclusions are reached: (i) perhaps the linear o
model is not a good candidate for studying the dynamie8
of the chiral phase transition (although it describes the
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