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Wilsen i+ops, winding modes, and demain walls in finite temperature +CD
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We discuss the effective action for Polyakov-Wilson loops winding around compact Euclidean
time, which serve as order parameters for the finite temperature deconfinemeiit transition in SU(N)
Yang-Mills gauge theory. We then apply our results to the study of the high temperature continua-
tion of the con6ning phase, and to the analysis of certain ZN domain walls that have been argued to
play a role in cosmology. We argue that the free energy of these walls is much larger than previously
thought.

PACS number(s): 12.38.Aw, 11.10.Wx, 11.27.+d, 12.38.Bx

I. INTRODUCTION

W„(x) = —Tr exp i
N A(, )d

[with the trace in the fundamental representation of
SU(N)]. Only K —1 of the W are independent. Their
correlation functions are of utmost importance; e.g. , the
quark-antiquark &ee energy Ez q defined by

e ~ "("'")= (Wi(x)W i(y)) (1.2)

measures the free energy of a system with a static quark
at w and an antiquark at y. Higher W are related to
higher representations of SU(K). In the confining phase
(W„) = 0 and E~ q(x) - ~x~ as ~x~ m oo, while in the

There are numerous reasons to study SU(N) gauge
theory at finite temperature. In particular, a detailed
understanding of the SU(3) theory should be useful in
describing the physics of QCD in the early Universe, and
properties of the quark-gluon plasma [1] (the high tem-
perature phase) are important for relativistic heavy ion
collisions. More formally, one is interested in understand-
ing the deconfinement transition at large N and studying
its relation to the ideas of Hagedorn [2] and to string the-
ory [3]. This is especially interesting since the perturba-
tive gauge field description, suitable at high temperature,
and the string one, valid at low temperature (in the con-
fining phase), should be complementary to each other.

As we will brie8y review later, the free energy e
Tre ~ and other physical quantities are given at fi-

nite temperature by a path integral over gauge fields liv-

ing on the Euclidean manifold R x S with Euclidean
time x identified with xo + p; gauge fields are periodic:
A„(x + P, x) = A„(x,x), while quarks (if present)
are antiperiodic. There is a nice correspondence be-
tween the phase structure of SU(K) gauge fields and
Ziv spin systems [4]. The high temperature (deconfined)
phase in gauge theory corresponds to the ordered (low
temperature) phase of the spin system and vice versa.
The scalar gauge invariant order parameters which cap-
ture the dynamics of gauge fields are timelike Polyakov-
Wilson loops:

deconfined phase (W ) g 0 and E~ ~(x) const as ~x~
—+

To focus on the dynamics of the W one may integrate
out the other degrees of freedom and study an eII'ective
action of the general form

d xd y) W„(x)W „(y)G( )(x —y)

d xid x2d xs ) W„, (xi)W„, (x2)

xW „, „,(xs)G( )„(xi,x2, xs) + (1.3)

The kernels G~ ), G( ), . . . summarize the dynamics, and
are the object of this paper Equat. ion (1.3) is the ana-
logue of a I andau-Ginzburg description of the spin sys-
tem, and can be used [5] in the usual way to study the
behavior of E~ ~ (1.2) and other observables. At large K
the structure is similar to string theory. Terms of high
order in W are suppressed by powers of g,t„.„s ——1/N.
In particular, it is very interesting to compare the in-
verse propagator for Wilson loops G~ ) to the correspond-
ing quantity in conventional string theories; knowledge of
G( ) is sufBcient to deduce the value of the large N decon-
finement (Hagedorn) transition (PIt) and other physical
properties, such as the string tension as a function of
temperature.

The immediate motivation for our work is related to
three recent ideas.

(1) In [6], Polchinski proposed studying properties of
the confining phase [essentially properties of G( ) (1.3)]
of four-dimensional Yang-Mills theory using perturbation
theory, valid at high temperature, by "analytically con-
tinuing" the con6ning phase to that regime. These ar-
guments were since generalized to other cases [7]; there
have also been attempts to match the resulting behavior
of G( ) to particular string theories (strings with Dirichlet
boundaries [8], and rigid strings [9]). As pointed out by
Polchinski [6], it is surprising to obtain properties of an
essentially nonperturbative object (the confining phase)
from perturbation theory. Our study of (1.3) will allow
us to clarify this issue somewhat.

(2) It has been proposed [10], that at high temper-
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ature, when one knows that the minima of S,g are at
(W ) = e2 ' »~, j = 0, 1, . . . , % —1, the system may
possess domain walls separating regions in space with
di8'erent (W„); these domain walls may be of cosmologi-
cal interest T. he interface tension (energy per unit area)
o. of such domain walls has been argued to be perturba-
tively calculable and to go like n T /g(T) [11] (with
T the temperature and g the running gauge coupling).
If valid, these arguments could suggest interesting new
phenomena that may have occurred in the early Universe
[12]. In addition, these domain walls would correspond
to nonperturbative effects of order exp( —1/g) in (finite
temperature) gauge theory, which would be of more gen-
eral theoretical interest [13]. However, various objections
to this scenario have been raised [14,15]. In particular, it
has been claimed [16] that infrared (IR) divergences may
lead to subtleties in the arguinents of [ll], although the

Ts
leading behavior o.

~T&
was argued to be safe. We willg(T)

reconsider some of these issues below.
(3) In [7,17] it has beeii argued that two-dimensional

QCD coupled to adjoint "quarks" may be a good toy
model of the relation between large N gauge theory and
strings, exhibiting a nontrivial spectrum of "Regge tra-
jectories" and a large N deconfinement transition. It is
of interest to develop techniques that would allow cal-
culations of properties of this Hagedorn transition. The
results of this investigation will be reported separately
[1s].

In this paper we are going to discuss the structure of
the efFective action S ~, presenting techniques to evaluate
G~ ~ perturbatively in the gauge coupling. The plan of
the paper is as follows. Section II is devoted to a brief re-
view of finite temperature gauge theory, presented mainly
to set the notation and specify the necessary calculations.
In Sec. III we describe the calculations of G~ ~ to one-loop
order and outline the calculations of higher order kernels
(G(s~, . . .). The perturbative analysis is seen to be in-
&ared finite in a certain region. We discuss separately
the contributions to G~ ~ of gluons and other kinds of
adjoint matter.

In Secs. IV and V we discuss the lessons learned from
the one-loop calculations of Sec. III for the two prob-
lems mentioned above, of the high temperature limit of
the con6ning phase, and the interface tension of domain
walls. We show that infrared divergences do not alter
the analysis of [6,7] (contrary to recent claims), but un-
fortunately one does not appear to be able to learn much
about properties of the confining phase kom this anal-
ysis. On the other hand, for the domain wall problem
infrared issues are found to play a crucial role, and in
fact alter the qualitative behavior of the domain wall en-
ergy per unit area n [ll], &om o. 1/g to n ~ 1/g .
Section VI contains a summary of our conclusions and
necessary future work.

in the Ao ——0 gauge. Ignoring matter fields for simplic-
ity, we have for the QCD Lagrangian l: = —,TrE the

g
Hamiltonian

'R = — d x g'(E )'+ —,(B )2

where E, 8 are the color electric and magnetic fields,
respectively; E, A are canonically conjugate. The
physical Hilbert space is spanned by ~A(x)) satisfying
Gauss' law constraint

D . E~phys) = 0 . (2.3)

This constraint may be enforced via a Lagrange multi-
plier

Z= 'VAx Ae ~ PA (2 4)

where P = 1' 17I'(z) exp (i jdsxTrDI'(x) E(z)) projects
on solutions of Gauss' law (2.3). Standard Feynman path
integral manipulations then lead to the expression

Z = 'VA„x exp —— dx d xTrF„„
o

(2.5)

where I" has been renamed Ao and the gauge fields have
the periodicity properties:

A„(x +P, x) = A„(x,x) . (2.6)

One can also study more sophisticated questions such
as what the free energy in the presence of sources is. For
that one needs to generalize the Gauss' law constraint
(2.3) to D E = p. Repeating the previous discussion
one finds [5,19] that the &ee energy with static quarks at
positions x~, . . . , x and antiquarks at yi, . . . , y is given
in terms of Euclidean timelike Wilson loops (1.1) by

PF(X1 ) )X~ )g1 ) )g~ )

i=1
Wx(~;)W &{y,)) (2.7)

with the average performed in the measure (2.5). We see
that the dynamics of the W encoded in (1.3) summarizes
many important physical properties of the theory.

The theory (2.5) is invariant under gauge traiisforma-
tions A„-+ U A„U+ U O„U such that U(x +P, x) =
zU(x, x). The prefactor z is constrained by the period-
icity of A„(2.6) to lie in the center of the gauge group.
For SU(N) the center is simply Z~ and z = e2 ' ~~,
n = 0, 1, . . . , N —1. Local gauge invariant observables are
invariant under these aperiodic transformations, while
W (1.1) transforms as

II. CENEH. AL FORMALISM
R'„m z"lV„. (2.s)

Z(P) = T--~" (2 1)

It is customary [5,19] to calculate quantities such as

The efFective action (1.3) must exhibit the global Ziv
symmetry (2.8), but this symmetry can be broken span-
taneously. Indeed, in the confining ("disordered") phase
where this ("center") Ziv symmetry is unbroken, (W~) =
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0, while at high temperature (W„) g 0 and Zzv is spon-
taneously broken just as in the ordered phase of the spin
models [4).

To calculate quazitities such as (2.7) in the continuum,
one may proceed as follows. First fix the gauge; (2.5) and
(2.6) do not allow going to Ao ——0 gauge. A convenient
gauge choice is

(2.9)

( ) ) 2mins (x)1 "=
(2.10)

Thus Ao is diagonal and independent of xo and

i 0 = 0 (mod 1). Then integrate out the spatial
gauge fields A; in (2.5) and whatever (adjoint) matter
fields are present, and Gnd an e8'ective action of the gen-
eral form (1.3) written in terms of 0 (x) or (1.1):

with the three determinants on the right-hand side (RHS)
arising from integration over Ai, P, and the ghosts, re-
spectively. The ghost contribution exactly cancels that
of Aq and we are left with

S,~ ~(Ao) = —lndet( —D + m ) . (3.4)

For constant Ao one can use the results of [19,20] to eval-
uate S,zr(AO). We will discuss the determinant for an x
dependent Ao (2.9).

For.fermionic (Majorana) adjoint znatter one finds

S',' &(A, ) = ——lndet( —D'1+ Z„„J&"+ m'1), (3.5)

where J" = —'[p", p ] are the Lorentz generators and
D„=9„—iA„.

(2) D-dimensional pure Yang-Mills (with D ) 2).
Thus we start with

The description in terms of 0 (x) is natural in the de-
confined phase (at high temperatures) where, as we will
see, the effective action is minimized for certain Gxed 0,
so that (W ) g 0. Below the deconfinement transition
the 0 are randomly distributed and (W ) = 0, thus it
is preferable to describe the dynamics in terms of W .
We will use perturbation theory in the gauge coupling
g, which in principle should be reliable at high tempera-
tures (up to possible IR divergences) due to the running
of the gauge coupling; nevertheless, we will mostly write
the efFective action in terms of W (2.10), in the spirit of
[6]; the Wilson loops seezn to be the suitable variables for
discussing the Hagedorn transition [18], and may teach
us something about high temperature string theory. To
study the deconfznement transition and/or the confining
phase one must use nonperturbative tools [18].

III. THE ONE-I OOP EFFECTIVE ACTION

%'e will be mostly interested in two general classes of
gauge systems.

(1) Two-dimensional Yang-Mills coupled to adjoint
(bosonic or fermionic) matter [7,17]. The Lagrangian for
scalar matter is

C = (D„y)'+ m'y'+ —,Z',1
(3.1)

We choose the gauge (2.9); the Faddeev-Popov deter-
minant is det(OO + iAO). Adding to this the efFect of
integrating out Ai, P to one-loop order we find

where

D„$ = B„Q+i[A„,Q], I' = OOAz —BzAO + z[Ap, Ai] .

(3.2)

2F
g

(3.6)

Here, it is convenient to use a background Geld gauge
and Feynman gauge for the quantum Gelds. The one-
loop effective action in this gauge is

S,@ (Ao) = —lndet( —D 1+I"„„J"")
—lndet( —D ) (3.7)

A. The one-loop efFective action for scalar adjoint
mat ter—general considerations

It is useful to use a Grst quantized representation to
calculate the determinant (3.4) (see, e.g. , [21] for a recent
review). The efFective action is given by a path integral
over worldline trajectories z„(t),0 & t & T that wind n
times around the compact xo direction:

x(t+ T) = x(t), x (t+ T) = x (t) + nP . (3.8)

One has also to sum over the length of the worM line
T C B+ and winding number n g Z. Thus the one-loop
effective action (3.4) can be written as

with the Lorentz generators (J„„)~ = i(g~q —g~zI„).
The second terzn on the right-hand side of (3.7) is due to
the ghosts, whose contribution is minus that of a (com-
plex) massless scalar in the adjoint representation.

The one-loop efFective actions (3.4), (3.5), and (3.7)
should be evaluated for A„= AO6&o (2.9) and added to
the classical action S;z' ——(P/g2) I dD x(V'Ao)

Most of the analysis will be done for the case of scalar
adjoint matter, which (at one-loop) has most of the qual-
itative features of the other two cases. The properties
special to the other cases will be mentioned later.

e -«& '& = (det[(BO+ iAo) ])
x [det( —D' + m')] '~' det(B, + iA, )

(3.3)

The following two subsections are rather technical. Read-
ers interested only in the results may proceed directly to
Eq. (3.34).
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dT
T

A' [Z7z(t)]exp dt —x —iAo[z(t)]xo
I

—m Tl. 2 (3.9)

with the trace taken in the adjoint representation and A' a normalization factor. This form of expressing the deter-
minant (3.4) is related to the standard Feynman diagram representation by Poisson resummation. It is convenient to
exhibit the n dependence explicitly by taking zp(t) + xp(t) + n/3t/T such that xp(t) is now periodic and the efFective
action becomes:

S.''"[A, ] =-- Q T dT A' [ez(t)]

1.2 n p2

4T2
—iAo[*(t)] I *o(t) +(. nP)

T (3.10)

The path integral over x(t) f'or a general Ap (2.9) defines a complicated quantum mechanics problem (which is
closely related to the amplitude for pair production in a general external electric field), but fortunately we do not
need the full solution, at least when trying to set up the expansion (1.3) in powers of W . As a warm up exercise,
consider the simple case of constant Ap [or 0 (2.9)]. Because of the periodicity of xo we have

dtAp
~

xo(t) + = n/3Ap,
nP
T

and [replacing SU(K) by U(K), which is unimportant at large N]

N oo

a,b=i n= —oo

N) c—WW„,

dT ( n'P'
exp

~

—" —m'T
~

" '"f'--"l
Tl+d/2 ( 4T2 )

(3»)

d/2
where c =

2 p Kg/2 nm alla K is a modified

Hessel function. For m = 0, d = 4 this gives the result
of [19] [for constant Ao there is no difference between
the scalar (3.4) and the gauge (3.7) determinants], while
for d = 2 it agrees with [7]. We also notice that the
winding of the adjoint scalar around compact time n in
(3.10) is identical to the winding of the Wilson line n in
(1.3) [using (2.10)]. This is a general feature of the one-
loop determinants (as we will see below) which will make
things easier later. Note also that for constant Ao [or
W=,„(l.l)] the efFective action (1.3) is exactly quadratic
to one-loop order, i.e. , G( } = G( } = = 0. We will
see soon that this is not the case for nonzero momentum
and for higher orders in the gauge coupling.

For arbitrary Ao(x) one may proceed as follows. Write

Ao (z,( + z~) = Ap (z,)) + Ap(z, ))z~ + —Ap (z,))z

+ . . + —A (z.))z +'(). -
0 C q (3.14)

~(~} 0(n1) g(ng ) 2~in8u (acl }1
711 )...) YL 7g a a ni&1,

We will write this compactly as Ap[z(t)] = Ao[z] +
Ap[x(t)] where we use x to denote z, ~

and x(t) to de-
note x,I+ xq.

Now expand (3.10) in powers of Ao (or 0 ) and use
(3.13) and (3.14) to average over quantum fluctuations
of the trajectory. We find that S,& ~[Ap] is naturally
expressed in terms of bilinears in quantities of the form

(8
" denotes the nth derivative of 8 )

x(t) = z.&+ x, (t), (3.12)
(3.15)

{*,"(t.),"(t.)) = -&(t. —t.)~",
G(t+T) = G(t) = ltl —t'/T . (3.13)

Now substituting (3.12) in (3.10) and expanding (for sim-
plicity we take A0 to depend on only one of the d —1 spa-
tial directions; no generality is lost because of rotational
invariance) we get

where xc~ is constant, and xq is the fluctuating quantum
mechanical variable in (3.10), which is Gaussian with

i.e.,

z,','"[v] = x' Q o,„,,&,v,'"',v,'"', . (3.16)

This structure follows immediately from properties of
the trace in the adjoint representation [for U(K)]. A
Wilson loop in the adjoint representation of U(1V) can be
written as a product of a Wilson loop in the fundamental
N and one in the antifundamental % representation: i.e.,
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1 1 . dT ~'p'

2 (4~)d/2 ~ ~ Td/2+1

/'. np 5 np)
x TrN exp i ChAp xo + TrN exp i dtAO i p +

o
(3.17)

Now for the gauge choice (2.9), each Wilson loop in the fundamental representation can be written in the form (3.15)
by first expanding the gauge field as in (3.14) and then expanding the exponent in powers of g: i.e. ,

2~ins (x) (2mi/P) J'o dts [x(t)][+0(t)+nP/T]
T)

= ) e' *"'-'*' 1+ dtg. (x(t)) l
x, (t) +

~pq &. ~py
dti dt2ga(x(tl))gca(x(t2)) l xo(ti) +

I l
xo(t. ) +

l

+."
o o T) ~ T )

=) e' '"'-'*' 1+ dt g.'(x)x, (t) l
x, (t)+ l+. .2vri, (. nP )

p
'

0 T)

g (x)g (x)xq(ti)xq(t2)
l

xo(ti) + T )
(. np)

x
~
zoo)+ ~+. +. .

)T)
T

o
'

k T)

, V,'",' dti dt2 x, (ti)x, (t2)
I
*.(ti)+ l I

xo(t2)+ T I

o o T I~

+ ~ ~ 4 (3.18)

This expansion can be thought of as an expansion around
slowly varying Ao. One obtains a similar term for the an-
tifundamental %wilson loop and together they give a one-
loop effective action which is written in terms of bilinears
of V(„,l (3.16).

It is not clear at Erst sight how to rewrite the compli-
cated functions Vi, l (3.15) in terms of the Wilson loops
W (x) (2.10), which is a necessary step for constructing
the expansion (1.3), although it is clear that up to global
issues the TV 's exhaust the degrees of &eedom of the 0
out of which the V~ .

~
are constructed. It turns out that

one can construct an expansion of V~ .
~

in a power series
in TV . To leading order in II/V the results are simple; in
fact one can show that, for A: & 2 in (3.15),

N
~(~) g ~ g 2

. 0~I 2mine

N
V(~) L

1 )~(gi)2 2nina
7 N u=1

(3.21)

lable as well. We will not derive (3.19) and (3.20) here.
To illustrate the flavor of the arguments, we consider the
simplest nontrivial case of Vi . l with g,. i n, = 2. There
are in this case only two functions:

V„(,") „„=O(W"),
whereas for A: = 1 we have

(3.19) Clearly (2.10)

(3.20)

W" = Z —(2am) L (3.22)

The terms of order R' / & 2 above are of course calcu-
To illustrate (3.20) we have to show that L = O(W ).

To establish that, consider
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0 ~ Q ~ Q (gI 0I )2 2min8 —2vrik(0 —Og )

a,b=1 k= —oo

= 2(L„+IPW„) + 2 ) LkW„
k+O, n

~l ~f
k n —k (3.23)

All the L are expected to be of the same order in W;
we see from (3.23) that this order must be O(W ) and
that

9 [see (3.18)] this implies that one need oiily take terms
up to first order in 8 from each fundamental trace (or up
to second order in 0 if the trace is done in the adjoint
representation). Higher order (in W ) contributions to
the effective action (1.3) can be derived systematically
by using (3.23), (3.24), and generalizations to expand
the V~ .

~
in a power series in W„. The fact that the

winding n contribution to the one-loop e8'ective action
(3.10) is directly related to G„ in (1.3) together with
the above observations allow one to calculate G to this
order. We now turn to this calculation.

L„=—) WkW„' „+O(W ) . (3.24)
k+P, n

Similar considerations allow one to prove (3.19) and
(3.20) for all n;

The importance of the observations (3.19) and (3.20)
is that to select terms in (3.16) which are bilinear in W
[and thus contribute to Gl l (1.3)], we need to keep only
terms with k = 1 (3.20). In terms of the expansion in

B. Calculation of the inverse propagator
for Wilson i~~ps G~'~

Starting from (3.17), we have to expand in 9, average
over the Auctuating xq and rewrite the results in terms
of bilinears in 8 . Using the results of the previous sub-
section it is easy to see that

oo N

s.','"[0]=—
—, „, Q )

~=—oo a,b=].

2

x 1+ «i

—n'P'//4r —~'T+~~'ne. , (~)

(. npl f. npl«0-[*(~ )]0k[*(t2)l I
& (t )+ I I

&o(t )+ T lT) (3.25)

where we defined 0 k
= 8 —ob and neglected O(W ) terms.

Now we need to expand 0[x(t,)] (3.14) and average over the xz. Only those terms with equal numbers of derivatives
in the expansion of the 0 Ob contribute after averaging over quantum fluctuations:

ao N

efr [ ] 2 (4 )(g/2
n= —oo ~,b=l

—n'P'/47 —~'7+2~in&. & (~)
Tl+d/2

8m n2 2

~ + 2 ~~l d~2 0 + Ob + + tl —t2 + ~l —t2 + (3.26)

~ ~

where both derivative in G are with respects to tl. Note that the n = 0 contributions to the sum vanishes, since
P 0 (x) = 0 (mod 1).

We can shift the variables of integration to make the integral independent of t2 due to the periodicity of the
propagators G. Doing the remaining integration over ti gives a factor of 'T[I.'l'. /( 2+t1).']:

N

~.'e'"[0] = —
—,(, )„, )

a,b=l neo

—n'P'/4T —~'r+2~ine (~)
Tl+d /2

1+ ) ' ' ~"'(*)~"'(*)
~

~P', ; (2l+1)! ' T ) T (3.27)

Next we change variables to u = (2m /o)T where n = ~n~Pm. The last equation can easily be written in terms
of the W by using (3.20). For convenience we write the answer in momentum space (an integral over momenta is
imphed):

Except for the n = 0 contribution which will be discussed separately later.
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2q d/2 oo

S.'g'"[W] = —— ) I
I

e
—(-/2!("+'/" l W„(k)W „(—k)2 (4~)d/2 ( n ) 0 ii i+d/2

n+0

(—1)'I! /'k2nu) u

(2l+ 1)! ( 2m ) n (3.28)

The integral over u can be expressed in terms of modified Bessel functions using the defining equation
OO

( ) d v —i —(m/2) (n+1/u)
2 0

From this we obtain

d/2

S ' p,lr[w] = —) I I w„(k)w „(—k)
g 27m

(—1)'I! /' nk' ) 1
X Kd/2 n +2

l ~ 2 Kl-d/2 n ——Kl-d/2+1 n2l+ 1! (2m2) n (3.29)

As mentioned above, to complete the calculation we have to evaluate the zero winding, n = 0, contribution. For
constant 8 the zero winding sector gives rise to an unimportant temperature independent constant, which is usually
dropped. In general, however, the n = 0 contribution is nontrivial. Indeed, to quadratic order in W one finds

gl loop
[g] ) ~ —m T 1

+ ) ( ) g(l) ( )g(l) ( )~
2 (4&)d/2 Tl+d/2

~ P2 (2I + 1)l )a,b=1
(3.30)

where half of the contribution is due to the fundamental and half to the antifundamental representations.
We need to write this in terms of nonzero winding Wilson loops W, which can be achieved by utilizing the derivation

of (3.24) and generalizations. In momentum space, one finds

2m2

n+0 l=l
(3.31)

where we have dropped a temperature-independent constant, and as usual a momentum integral is implied.
Finally, doing the T integration gives

2g d/2 —1 'I!I / ——"+1 k'

n+0 I,=1
(3.32)

We can now combine (3.29) with (3.32) and find the one-loop contribution to the quadratic action for Wilson loops:

2 d/2

n+0

(—1)'t! ( k2 ) n+ - (2l+1)! (m2) 2

(2) "/
W „(—k)W„(k)

En)
Kd/2 (n)

[nl~i —d/2(n) —~i—d/2+i(n)] + —21 I

~ ——+ 1
n2 ( 2 )

(3.33)

Adding this to the term in the effective action coming &om the classical action we get G to one-loop order:

(2) 1 m k

(4vr) /' n' 2g2N

( 1)iI! ( k2 )~- (2l+1)! gm2) 2

Kd/2(n)

2 f d
[ ~l—d/ ( ) —~l —d/+ ( )]+ —,~l ~ ——+1n2 ( 2 )

(3.34)

Recall that n = mPlnl. Equations (3.33) and (3.34) are the main result of this section. We now turn to the study of
some of their properties.
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C. Properties of G(2) (k)

Despite appearances, the limit m —+ 0 of (3.34) is actually regular. To study this limit it is convenient to rewrite
the sum over Bessel functions in terms of a compact integral by reversing the order of the sum and integral in (3.27).
This gives

m2 k2 d/2

(4~)"/2 n2 2g2% (2vrn2)

OC) ~n2k2u—(i/2)(n2u+1/u) f (~
~1+d/2 2m2 )

OO

(e
—( / )~'~+ /~) -( /2)(~ ~)f

~

~~ (3 35)~d/2 2m

where, for x ) 0,

"'2'
and, for z ( 0,

I~I

f(x) [x ~/4 dt t/4—
V'Ixl

(3.37)

d/2
(2)

i

m

& ~')
ltL

~(d+3/2)n2)k/2

n2u ( fk(2 l- )'.x exp

To study the convergence properties of the integrals
in (3.35) we have to examine the asymptotic behavior of
f(x) First .note that in both cases f (x) —x as x -+ 0.
Thus, for d ( 4 the integrals in (3.35) are convergent
in the UV (for small u). The second integral exhibits a
standard logarithmic UV divergence which corresponds
to coupling constant renormalization in d = 4. For x ) 0,
it is easy to see that f(x) goes to a constant (—2) as
x ~ oo. Hence for k ) 0 the integral representation
for G(2) (3.35) is convergent even for m = 0 (and fixed
P), for which the exponential IR suppression of the in-
tegrals (provided by the mass) is absent. This is to be
contrasted with the in&ared divergent results one finds if
one expands f in a power series in (n /m )k u (deriva-
tive expansion) and integrates term by term.

In the case x ( 0 as ~x~ -+ oo the integral in (3.37)
converges to 2~jr. This implies that f(x) grows as
e~ ~/4/g)x) as x -+ —oo. Putting this asymptotic form
for f(x) into (3.35) for k ( 0 and large u gives

contains couplings of the form R' CC where C is a con-
stituent, such as a gluon or adjoint fermion already in
leading order in the 1/1V expansion. These couplings will
be further discussed in Sec. IV.

As mentioned above, we find a regular expression for
G( ) as m ~ 0. This is easiest to see from (3.35), in the
limit n -+ 0, n/m = P~n~ fixed. We find

k~ it/2
G(')(k) =

(4~)~/2 n2~2»2~ E4~n

—i 4u2d —i + —i/414 f ( 2P2k2 )
tL

OO

(e '/4" —1)f(n'P'k'u)

(3.39)

By using the asymptotic behavior of (3.36) and (3.37)
we see that G( ) (k ) 0) is regular. The branch cut
mentioned above starts now at k = 0.

Before going on to apply these results to physical prob-
lems, in the next subsections we briefly comment on sim-
ilar calculations for gauge fields and fermionic matter.

For k & —4m this integral diverges. By rescaling the
integration variable we see that in this range G~ & devel-
ops a branch cut: G( ) oc (4m —~k~2)("+')/ .

We will see below that this cut has some important
consequences, but it is appropriate to say a few words
about it here. Cuts correspond usually to thresholds for
production of physical particles. Clearly, perturbatively
in A~ the two point functions of local, gauge invariant op-
erators (e.g. , TrE2„) contain cuts corresponding to pair
creation of constituents. However, it is not at all obvious
that in a perturbative expansion in R', the two-point
function (W W ) should contain these thresholds. Our
results imply that the eR'ective theory of Wilson lines

D. Ferxnionic m. .atter

For fermionic matter we start &om (3.5) and remem-
bering that the fermions have antiperiodic boundary con-
ditions, i.e., po ——(vr/P)(2n+ 1), we derive the analogue
of (3.10). Since the p matrices are anticommuting op-
erators, it is natural in this first quantized approach to
introduce world line fermions to represent them. The
easiest way to do this is to implement a supersymmetric
generalization of (3.8), introducing superpartners g~(t)
for the x„(t). For more detail see [21].

For adjoint fermionic matter in two dimensions we ob-
tain
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~.'e'"I&tl= t ). (—t)"T ~~/(»(t)II&t'(t)l
n= —oo 0

1 1 . n2P2
x exp — dt —x + — + 2i Fpl +

4 2 4T2
np&—tA [x(t)] ~

x (t) +.
~

—m TT J
(3.4O)

where Fpl —01Ap.
We need to expand to second order in Ap and then average over the quantum Huctuations of the path, as well as

the @ fields. Note that the vP 6elds satisfy

8'"(ti)& (t2)) = —G~(ti —t2)&""

Gy (t—+ T, t') = Gy (t, t') = sgii(t —t') .
(3.41)

After some algebra we obtain

~i loop[~] y ~
( 1)nT np —/4T rn T+in—pA(x)

of 4 (4 )tt/2 ) ~ g1+8/2
n= —oo 0

T tl
( 1)t

X 1 — dt1 dt2 A~'~ x G tl —tq ' —l G~ tl —t2
0 0 l 1 ~

~ ~ 'p'i l+&(4 —4) l
t-(4 —4) +

l T2 )
(3.42)

The rest of the analysis follows straightforwardly from the bosonic case. The term introduced by the world sheet
fermions does not eKect the position of the cut in the efFective action.

E. Gauge fields

We write here only the one-loop effective action obtained from integrating out gauge fields in four dimensions. The
interested reader may consult the work of Stassler [21] for a thorough discussion on how to handle vector fields in this
approach. The efFective action is given by

~i ioop[~] g T nP /4T+inPA—(x)
eff 4 (4 )ti/2 / ~ T3'

n= —oo 0

T tt
x 1 — dt, dt, ), (A")(x))'[G(t, —t,)]'-'

0 0 l=l

r r 'p'i l
x —4/ + G(tz —tt) l

G(tz —t2) + , l )
.

l T2

(3.43)

The rest of the analysis is similar to the scalar case with the cut starting at k = 0 as expected.

IV. CONSEQUENCES FOR THE HIGH
TEMPERATURE CONTINUATION

OF THE CONFINING PHASE

are routine; the analogues of the Wilson lines W, which
are winding modes around compact time, are governed
by an action

In Ref. [6], Polchinski has proposed to use the form
of G(2) (1.3) to study the confining phase of @CD. The
idea, inspired by string theory, is to view the perturba-
tive calculation of G~ &, Gc ~, . . .which is in principle only
valid at high temperature, in the deconfined phase, as an
analytic continuation of the confined phase to high tem-
peratures. In string theory such analytic continuations

, w„(k)w „(—k)[k'+M„'(P)]+ o(w'),
~e~

M„(p) =p n —C (4.1)

with C a positive constant. There is no difhculty in for-
mally extending this formula to p ( p~ = ~C. Thus,
the main idea of [6] was that, as in string theory, the ef-
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fective Landau-Ginzburg action for Wilson lines (1.3) will
be analytic in P and k despite the fact that the physics
it describes undergoes a phase transition (and hence is
nonanalytic in P) as P goes through P~.

It has been pointed out [22] that calculations such as
those of [6,7] in which G( ) is calculated only at zero mo-
mentum may suffer &om IR divergences, since to find
S,g in that case, massless particles are sometimes inte-
grated out, and the efI'ective action is in principle non-
local already at k 0. Of course, in four-dimensional
(4D) gauge theory the spatial gauge fields that are in-
tegrated out are not really massless but rather develop
a inagnetic mass [19] rn = g (P)/P (which is unfortu-
nately incalculable in perturbation theory), and in ad-
joint two-dimensional QCD (QCD2) one may turn on by
hand a mass for the matter fields (whose role is precisely
to mimic the above magnetic mass). One would, however,
like to understand whether the results of [6,7] are reliable
in the massless limit, and more importantly whether one
can indeed learn about the confining phase from such
perturbative calculations.

The results of Sec. III help to resolve both issues. Re-
garding the IR divergences, we see that they are harmless,
even for massless adjoint matter (gluons) in 2D (4D).
Consider for example the case of massless, bosonic ad-
joint QCD2. The inverse propagator G( ) vanishes when
(3.39):

—"e-'~'"f(k'P'n'u)
4g2N 2 0 u2

—(e '~ "—1)f(k P n u) = 0 (4.2)

(see Sec. III for definition of f and derivation). In [6,7]
the last two terms on the RHS of (4.2) were neglected,
because they are formally small at high temperature (of
higher order in P2g ) when the sum of the first two van-
ishes, i.e., when k = 4g ¹ We saw in Sec. III that
the IR singularity due to integrating out a massless field
results in a cut to the left of k = 0. This cut is not
dangerous at 4g N = A: & 0. The full inverse propa-
gator (4.2) vanishes at k = 4g N[l + O(g P )] (up «
logarithmic corrections), approaching the results of [6,7]
as the temperature goes to infinity. To put it differently,
integrating out the massless constituents does not intro-
duce in&ared subtleties since the Wilson loops TV„are
tachyonic at high temperature. Thus the calculations of
[6] and [7] are valid, contrary to the recent claims [22].

Unfortunately, our result (3.33) seems, at least naively,
to invalidate the basic idea of using perturbation theory
for G( ) to study the confining phase of QCD. Our cal-
culations give a (one loop) glimpse of the analytic struc-
ture of the efFective action (1.3) in marnentum space. In-
deed, one of the most important qualitative difI'erences
between the confining and deconfined phases of QCD is
the analyticity properties of the Green's functions, such
as G( ) (k). In the confining, low temperature phase, G(2)
is expected to be an analytic function of k to leading
order in 1/N [compare to (4.1)], since any singularities
would have to be interpreted in terms of interactions of
the W among themselves and with other singlet bound

states and would be down by powers of the string cou-
pling 1/N. In the high temperature phase, one expects
the structure to change drastically. The W are no longer
the natural degrees of &eedom, and in particular there
are nonsinglet operators (quarks, gluons) that may cou-
ple to W . Thus one expects G~ ~ to contain branch
cuts corresponding to pair production of such nonsinglet
degrees of &eedom and to have a complicated analytic
structure typical of the deconfined phase already in /ead-

ing order in 1/N.
To determine whether the perturbative calculations of

[6,7] correspond to an analytic continuation from the con-
fining phase or to properties of the deconfined phase one
has to study the analytic structure of G~ ~ and in partic-
ular look for branch cut singularities signaling the prop-
agation of constituents. The cuts we found in Sec. III are
precisely of this kind; they correspond to coupling of W„
to two constituents (quarks, gluons). Thus, the natural
conclusion &om our analysis is that the perturbative cal-
culations performed in [6,7] and Sec. III give the efFective
action for Ao in the deconfined phase, written in terms
of the variables W', and not, as one would hope, the an-
alytic continuation of the confining phase. The latter
would have a very difI'erent analytic structure than the
former, and than what we find (Sec. III). One cannot eas-
ily infer any properties of the confining phase (other than
it being unstable at high temperature) from these calcu-
lations. In particular the number of degrees of &eedom
of the string does not seem to be easily extractable.

Unlike the case of string winding modes, we find that
the Landau-Ginzburg efI'ective action itself is nonanalytic
in P, even the analytic structure in k changes drastically
as P passes through P~. There does not seem to be a
simple way to calculate in the confining phase without
actually following G(2) up to the phase transition at P~,
where all the nonsinglet singularities should disappear.
This requires a nonperturbative analysis, which may be
feasible in certain toy inodels [18].

V. CONSEQUENCES FOR THE STRUCTURE OF
DOMAIN WALLS

In this section we shall discuss the application of our
results to the study of certain aspects of the physics
of gauge fields at temperatures far above the deconfine-
ment transition. We start by reviewing the picture devel-
oped in [4,10—12] suggesting the appearance, in Euclidean
space, of certain domain walls. In the deconfined phase
it is natural to express the action in terms of the 0 vari-
able (2.9) as apposed ta Wilson loops. If an expression
in slowly varying 0 (x) is justified (an assumption that
as we saw in Sec. III will have to be examined more care-
fully later), the Lagrangian (1.3) takes the form (to one

In principle one has to investigate the analytic structure of
higher order (in g) corrections to (1.3), but it is clear physi-
cally that the qualitative picture presented here should persist
to all orders.
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loop order)

N

Q (V0 ) + V,»r (0),
g a=1

(5 1)

where the kinetic term comes &om the classical La-
grangian (3.6) and the one-loop potential V,»r is (3.11),
which in four dimensions is (for 0 & 0 b & 1)

2minq/N 1 + 2minq1
N'

Thus q = 0 corresponds to W = 1 while q = 1 corre-
sponds to W = e ' / . The action (5.1) for q(z) (5.3)
is (L» is the transverse area of the domain wall)

L»24(N —1)7r 1

V.»r(0) =—
N oo

) ~ ) ~ 2mins~)

a, b=jL &=—~
(5.2)

(5 4)

2-' "-
= 3, ).&4(0-b)

a, b=l
[q]—:q mod 1. The solution with the right boundary
conditions is

where 0 b
——0 —0b and B4(x) is the Bernoulli polynomial

B,(x) = x' —2x'+ z' —1/3O.
q(z) = gz/P)

g~/P)

0 = q(z)/N, a = 1, . . . , N —1,

N —1
q(z) .

N

(5.3)

In this parametrization the Wilson loop takes the form

The Lagrangian (5.1) is invariant under the Ziv sym-
metry (2.8) 0 -+ 0 + k/¹ This symmetry implies that
there are in fact N di8'erent minima of the potential V,ff,
corresponding to all 0 = k/N for k = 0, 1, . . . , N —1.
In terms of Wilson loops, these minima correspond to

2~~~&/N

By analogy with spin systems [4], it is natural to study
domain walls separating regions in space corresponding
to diferent vacua of V,g. In particular, one can attempt
to calculate the interface energy n, de6ned as the free
energy per unit area of the wall.

At high temperature, when g(P) is small, one may
hope to use semiclassical techniques to study these walls

[ll]. To calculate the free energy of a domain wall be-
tween regions in space corresponding to R' = 1 and
W = exp(2min/N), say, we have to find a solution of the
efFective action (5.1) which behaves as 0 (z ~ —oo) = 0,
0 (z ~ oo) = 1/N (for all a). It can be shown [ll] that
the minimal action solution is obtained by choosing a
particular path in 0 space, parametrized by

Plugging it back into (5.4) we find that the interface ten-
sion ls

S,»r 4(N —l)m 2 1

PL,' 3&3N P'g (5.6)

It is natural to ask whether and how our results in
Sec. III modify the picture described by (5.1)—(5.6). It
is clear f'rom (5.5) that the scale of variation of the solu-
tion q(z) is I/g. Hence, each derivative comes with a
power of g. Formally, this implies that higher derivative
terms in the effective action (as well as higher loop con-
tributions) modify the solution (5.5) and n (5.6) oiily
slightly, as the eBective coupling at high temperature
g(P) is small. One might worry [16] that infrared effects
due to integrating out massless gluons may spoil the for-
mal power counting. To examine this issue one has to
look at higher derivative terms in the efFective action for

q(z).
Our results are in general insufBcient for this task,

since we have not calculated S,»r for arbitrary q(z). How-

ever, to study the above in&ared issues it is enough to
consider the behavior of the domain wall profile q(z)
as z -+ —oo (say), since then q (5.5) is small, q(z)
exp ~(N/3)(»Iz/P), and one can use our results from

Sec. III to write the effective action to order q2 [but to
all orders in the derivative expansion (3.14)]

There is some debate in the literature regarding the ex.—

istence and physical significance of such walls in Minkowski
space [10—12,14—16]. We will have nothing new to say about
this issue.

Note that in this section N is not assumed to be large.

The modifications to Eq. (5.7) as compared to Eq. (3.39)
are due to the difFerence between scalar (3.4) and gauge (3.7)
determinants (see Sec. III), and should not matter for the
qualitative remarks that follow.
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L, 4(N —1)7r2
~.a q = dzq(z) g2% 3

—.1(1
+ -)2~2P2 = n2 (4m+0

—e '~ "f(—0 P n u) —— —(e ' "—1)f(—0 P n u)
'll 2 D S

2@2/2 —(e '~ "—1)[f(—82P'n'u) + 1]
D

q(z) + O(q', " ) . (5.7)

We see that the situation is difFerent &om that of Sec. IV.
Plugging in the asymptotic form of (5.5) in (5.7) we 6nd
that A: = —0 = —(K/3)g /P & 0, so the terms on the
second and third lines of (5.7) are not small corrections
to the "leading behavior" obtained &om the first two
terms on the RHS. Instead, we find that the correction
diverges. Unlike the TV in Sec. IV, the mass squared of q
is positive (and equal to the square of the electric mass).
Therefore, the branch cut discussed in Sec. III signifi-
cantly alters the behavior coming from (5.1). It seems at
first sight that (5.7) completely eliminates the possibility
of the existence of a domain wall, since q(z) = exp(az)
is not a solution for any real a. Indeed, substituting
q(z) = e ' into (5.7) we see that the u integral defining
the Lagrangian diverges for all a. However, the correct
interpretation is difFerent.

One important efFect due to higher order contributions
in g that we have neglected so far is the generation of a
"magnetic mass" for the spatial components of the gauge
field (static magnetic fields are screened). This magnetic
mass, which is of order m s g /P is not perturba-
tively calculable [23,19] but its presence alters the pic-
ture following from (5.7). As we saw in Sec. III, it shifts
the branch cut &om A: = 0 to k = —4m = —4g /P .
The scale of the solution (5.5) of [ll] is on the other hand
the "electric mass" m, i g/P. Since g is small in high
temperature QCD, m~~s (( m, ~, so that even with the
modification of (5.7) due to the magnetic mass, the so-
lution (5.5) is not infrared stable. However, as is clear
from (3.35) (with m = m. s, and an appropriate gener-
alization for the gauge case), there is now a solution q(z)
which behaves asymptotically as q(z) exp(az) with
a m g. To determine a one has to solve the equation

G~'l(k= ) =0.
The main question now is whether the scale of variation

of the domain wall solution remains m z for moderate q
as well. In [16] it has been argued that the answer to this
question is negative since the inh. ared scale is determined
by the mass of the spacelike gluons A g which for generic

8 is m2 s+ (0 b/P)2 In that . case, the form of the

domain wall solution q(z) (5.5) is only significantly mod-
ified at the tails ~z~ -+ oo, and the leading behavior of
the interface tension (5.6) is not efFected [16]. However,
we believe that the scale of variation of the solution q(z)
is of order m z throughout the wall. The point is that
there are Inany physical states whose masses are of order
m s for generic 0 (or q). Examples include the spacelike
gluons A g with a = 6, and gauge invariant combinations
like Trr . These can be pair produced at higher orders
in the loop expansion and lead, as explained above, to a

domain wall profile which varies on the scale m m
for all q.

Thus, we conclude that infrared e8'ects change the scale
of the domain wall solution of [11] from m, ~ (5.1), (5.5)
to m m s. Accordingly, the interface tension o., (5.6)
changes from n 1/gP to n 1/g P . This can be
easiest seen by computing the contribution of the poten-
tial term to the effective action (5.4), using the fact that
q q(mz) and m m s. Higher terms in the efFec-
tive action give subleading contributions to the interface
tension. The free energy of the domain wall seems to be
much larger than previously believed, and is in accord
with the expected nonperturbative behavior of asymp-
totically free gauge theory.

To actually prove the above assertion one would need
to derive the efFective action for finite q and verify that it
admits a finite action domain wall solution with the above
described asymptotics. Because of the nonperturbative
nature of m g and other problems this seems dificult
at present.

VI. CONCI USION

The main purpose of this paper was to study the
properties of the efFective action for Wilson loops wind-
ing around compact time in difFerent finite temperature
gauge theories. The main results obtained are as follows.

(1) We have calculated the quadratic term in the effec-
tive action for the Wilson loop W to one-loop order in
the gauge coupling constant, and have outlined the cal-
culation of higher order (in W) terms. We found that the
inverse propagator of Wilson loops Gl ~ (1.3) and (3.34)
contained a branch cut which was interpreted as due to
pair production of constituents in the external W Beld.
The improved understanding of the dynamics of Wilson
loops was then used to reconsider two recent proposals to
apply high temperature perturbation theory to difFerent
physical problems.

(2) We have discussed the idea [6] (see also [7]) that
one can use perturbative techniques in QCD to deduce
properties of the confining phase, analytically continued
to high temperature. We argued that the analytic struc-
ture of the quadratic term in the efFective action for Wil-
son loops that we found does not support such an inter-
pretation of the perturbative calculations. The inverse
propagator in the confining phase is not expected to ex-
hibit any singularities in momentum space, to leading
order in 1/A', while such singularities do appear in the
perturbative results.

(3) We found that certain domain walls between dif-



WILSON LOOPS, WINDING MODES, AND DOMAIN WALLS IN. . . 7123

ferent vacua with broken ZN symmetry that were exten-
sively studied in recent literature [10—12,14—16] are modi-
Ged significantly due to in&ared e8'ects. In particular, we
argued that the free energy of such domain walls behaves
like 1/g as opposed to I/g as previously believed.

There are many natural extensions of this work. One
would like to extend the results obtained here to higher
orders in the gauge coupling. In order to study the large
JV deconfinement (Hagedorn) transition one needs, as we
saw, to calculate the Green's functions in (1.3) to all or-
ders in g. This may be feasible in toy models of lower
dimensional Yang-Mills theory [18], where one may use
extensions of our techniques to calculate the Hagedorn
temperature and perhaps to see explicitly the change in
the analytic structure of the action (1.3) between the de-
confined and con6ning phases. The physics of the branch
cuts in the Wilson loop propagator found above, and in
particular their relation to ones that appear in the true
high temperature vacuum (at different k2 in general),

also needs to be understood much better.
It would be interesting to understand what are the im-

plications of the larger free energy domain walls found
here for the cosmological scenarios described in the lit-
erature [10,12]. Also, a better understanding of the dy-
namics of Wilson loops may suggest ways to study the
disintegration of fundamental strings into their purported
constituents suggested in [24]. In particular, it would be
interesting to obtain a similar picture to that found here
for unified strings above the Hagedorn temperature.
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