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We study the resonant divergences that occur in quantum scattering cross sections in the presence
of a strong external magnetic field. We demonstrate that all such divergences may be eliminated
by introducing radiative corrections to the leading-order scattering amplitudes. These corrections
impose a choice of basis states that must be used in scattering calculations: electron states must
diagonalize the mass operator, while photon states must diagonalize the polarization operator. The
radiative corrections introduce natural line widths into the energy denominators of all propagators,
as well as into the time-development exponentials of all scattering states corresponding to external
lines. Since initial and final scattering states may now decay, it is logically necessary to compute
scattering amplitudes for a finite time lapse between the preparation of the initial state and the
measurement of the final state. Strict energy conservation, which appeared in previous formulations
of the theory, must thus be abandoned. We exhibit the generic formulas for the scattering cross
sections in two useful limits, corresponding to the cases where either the initial states or the final
states are stable, and discuss the application of the general formula when neither of these limits
applies.

PACS number(s): 12.20.Ds, 11.10.St, 97.60.Jd

I. INTRODUCTION

Astrophysicists have had a long-standing interest in
the physics of elementary processes in superstrong mag-
netic fields, with field strengths B & 10 G. The cy-
clotron lines observed in the spectra of Her X-1 [1] and
of 4U 0115+63 [2] as well as in many other x-ray pul-
sars have energy centers which correspond to field inten-
sities in this range. There is also evidence for such field
strengths in the spin-down rates of radio pulsars. If the
spin-down is attributed to energy loss to electromagnetic
radiation from a spinning magnetic dipole, many obser-
vations are consistent with field strengths of the order
of 10 —10 G, with some pulsar field strengths well in
excess of even 10 G [3,4]. In addition, there is tan-
talizing evidence for cyclotron lines in the spectra of p-
ray bursts seen by the p-ray burst detector aboard the
GINGA satellite [5], with line center energies consistent
with field intensities of' order 10 G.

The association of soft gamma repeaters with su-
pernova remnants provides indirect evidence for even
stronger fields. If the 8 s periodicity of the March 5,
1979 event is identified. with the rotation period of the
neutron star, the known age of the N49 remnant may be
used to estimate that the field strength is approximately
6 x 10 G [6]. Moreover, such a strong field could help
resolve the puzzle of how the March 5, 1979 event could
ostensibly have been so extravagantly in excess of the Ed-

' Electronic address: carlotwinkie. gsfc.nasa. gov

dington limit (I 10 IEd~), by suppressing the Thom-
son cross section for photons propagating nearly parallel
to the field lines [7].

In fields such as these, comparable in strength to the
critical Beld strength B, = rn cs/eh = 4.414 x 10 G,
all calculations of elementary processes must be carried
out using quantum electrodynamics. There have been
many such calculations over the past two decades, cov-
ering topics such as cyclotron absorption [8], cyclotron
decay [9,10], single-photon pair production [11,12], pair
annihilation to a single photon [13—16], Compton scatter-
ing [17—20], two-photon pair production [21], two-photon
pair annihilation [13,14], e e scattering [22], and sev-
eral more. All these processes have very diferent behav-
ior from their B = 0 counterparts (if those counterparts
are even possible), on account of the peculiar kinematics,
as well as the discrete electronic states (Landau levels)
associated with a uniform external magnetic field.

These calculations have always been carried out in the
Furry picture, in close analogy to the B = 0 Feyn-
man rules. The kee space electron propagator is re-
placed by a propagator that is a Green's function for
the Dirac equation in the external field, and the external
fermion lines are represented. by solutions of that equa-
tion. The results have often been interesting and use-
ful, but they have not been uniformly satisfactory. The
leading order calculation of resonant Compton scatter-
ing yields results which are divergent at the cyclotron
resonances [17,18], evidently because to this order the
theory makes no provision for natural line width. The
line width may be included "by hand" in the results,
making the cyclotron resonances finite [19,20]. However,
there are other such "resonant divergences" in Compton
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scattering, which have nothing to do with the cyclotron
resonances and which are not nearly as tractable [17,18].
In fact, one such resonance, which occurs exactly at the
threshold where the initial photon may pair produce, is
responsible for making the total Compton cross section
divergent everywhere above this threshold.

In fact, the theory of elementary processes in external
magnetic fields is plagued with such divergences. With a
little practice, it is not hard to discover divergences re-
sembling these in every single process of second or higher
order. Clearly, this is a troublesome development that
casts a shadow upon the entire undertaking.

These resonant divergences occur because the kinemat-
ics of these processes allow intermediate "virtual states"
to be real —that is, on shell. Often, the on-shell in-
termediate state is an excited state, such as an electron
in an excited Landau level, or a photon above the one
photon pair-production threshold. In this case there is
an associated decay width that may be pressed into ser-
vice to control the divergence. The Weisskopf-Wigner
broadening prescription,

l.E —+E ——iF,
2

when applied to the energy denominators in the prop-
agator, pushes the poles in the propagator oIII' the real
axis, so that while the intermediate states may still be
on-shell, the propagator no longer diverges there. This is
in fact the approach that has been adopted for Compton
scattering [19,20,23], and which ascribes the natural line
width to the cyclotron resonances.

However, there are circumstances in which a stable on-
shell intermediate state may be produced. Such states
are not attended by a decay width, so the associated
divergence may not be reined in as before.

It should be pointed out that these divergences are en-
tirely unrelated to the notorious ultraviolet divergences of
@ED. They are not the consequence of improper manip-
ulation of Geld-theoretic distributions; rather, they occur
whenever the circumstances of the elementary process
permit a kinematically accessible on-shell intermediate
state (KAOSIS). It is easy to recognize when a KAOSIS
is permitted. For example, a second-order process will
allow one if it may be viewed as a succession of two real
first-order processes. Thus the KAOSIS corresponding to
cyclotron resonance occurs because the process may be
viewed as a real cyclotron absorption followed by a real
cyclotron emission. Similarly, the second "disastrous"
resonance in Compton scattering is due to a KAOSIS
that corresponds to the initial photon undergoing a real
decay to a pair, followed by the resulting positron an-
nihilating with the initial electron to produce the Gnal
photon. The reason this KAOSIS is catastrophic is that
the intermediate positron may be in the Landau ground
state, so that no decay width is available to restrain the
divergence.

At the same time, there is a second defect of the theory
which so far has not received recognition as a problem.
The calculation of S-matrix elements as outlined above
always results in a b function that enforces strict energy
conservation between initial and final states. This re-

mains true even if some of these scattering states are
unstable. But this is not physically sensible; the energy
of an unstable state is only known to within its decay
width, so that it is ludicrous to demand strict energy con-
servation for such transitions. Nevertheless, the current
theory does so irrespective of whether or not the states
are stable. As an example, the calculation of the decay of
an electron in an excited Landau state produces the re-
sult that the emitted cyclotron photon is monochromatic,
rather than having the I orentzian line shape character-
istic of resonant decay [9,10].

The difhculties of resonant divergence and of spurious
energy conservation are related. Briefly, a stable KAOSIS
may only occur if some of the particles in the initial and
Gnal states are themselves unstable, and it is their decay
widths that restrain the divergence. However, the intro-
duction of these decay widths smears out their energy,
so that energy conservation (which was a consequence of
their assumed eternal duration) no longer obtains.

Thus it appears that we must modify the current the-
ory somehow if we are to circumvent these unphysical
features. That modification is the purpose of this work.
We demonstrate below that radiative corrections modify
the propagators and the scattering states by introducing
their respective decay widths into the S-matrix elements.
In this sense, we are extending the results of Graziani
[23], who carried out this program for the electron prop-
agator only. The corrected "dressed" states and propa-
gators result in scattering cross sections that are always
finite.

In Sec. II we discuss the role of the bare propagators in
producing resonant divergences. In Sec. III we review the
work of Ref. [23] on the electron propagator, which we
extend to the photon propagator in Sec. IV. We exhibit
the corrections to the scattering states in Sec. V. In Sec.
VI we derive the modiGcation of the S-matrix elements,
and exhibit two useful limits: the absorption limit and
the emission limit, wherein the initial and Gnal states
are stable, respectively. Finally, in Sec. VII we discuss
the applicability of these results and the extent of the
modification from the "standard" theory.

II. RESGNANT DIVE]RGENCES AND
PB.OPAC ATGRS

We begin with a discussion of the role that the bare
electron and photon propagators have in producing the
resonant divergences. In this section and through-
out the rest of this work we use the metric signature
[+1,—1, —1, —1].

The bare electron propagator is simply expressed in
terms of the fermion one-particle states. We work in
the Furry picture, so these states are represented by so-
lutions 4& of the Landau-Dirac (LD) equation, that is,
the Dirac equation in the presence of a classical, uniform,
external magnetic Geld:

(2 1)

Here, g = +1 refers to whether the solution has positive
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or negative energy, while A is the set of quantum numbers
that specify the state Landau level number, x mo-
mentum, spin, and an orbit center coordinate. We choose
the gauge A = 0, A = Bx e2 for the external mag-
netic field, which is directed in the e3 direction. We also
choose the orbit center coordinate a to be the x Carte-
sian coordinate of the orbit center. With these choices,
the functional dependence of the solutions of Eq. (2.1) is
that of a plane wave in the x and x coordinates, while
the x dependence is that of a one-dimensional harmonic
oscillator eigenfunction centered about x = a [24,25].

It is convenient to separate out the time dependence
of e{"'

@(n)
( )

iqE—~~ y(n) (

where P& (x) is an eigenstate of the Landau-Dirac
Hamiltonian with quantum numbers A and eigenvalue
E~. E~ is given by E~ = [rn + (p ) + 2mNcu~] ~,
where N is the Landau level number, p is the momentum
in the x direction, and w~ is the Larmor frequency. The
bare electron propagator G~(x, y) may be represented in

terms of the P&

G)s(x, y) = )
A, vy

d o . . . y(n) (x)y(n) (y)
27r po —g(E~ —iO)

Dgy (x —y)"
84k —ik{a—y)

(—g" + k"k"/k )(2~)4 k2+ tO

(2.4)

It is easy to verify that the expression in Eq. (2.3) is a
Green's function for Eq. (2.1) with the required boundary
conditions [26]. We write G~(x, y) rather than G~(x-
y) because neither Eq. (2.1) nor its Green's functions
are translationally invariant they are invariant under
combinations of translations and gauge transformations.

The bare electron propagator enters the leading or-
der calculation of such processes as Compton scattering,
pair annihilation to two photons, and two-photon pair
production. The S-matrix elements for these processes
are obtained by sandwiching G~(x, y) between appro-
priate fermion and photon states and integrating over x
and y. These processes all exhibit resonant divergences.
The proximate cause of those divergences is evidently
the energy denominator in Eq. (2.3). The convolution
of the propagator with the initial and final states fixes
the values of p and p at the total energy and x mo-
mentum of the states, respectively. Thus, the residual
energy-related degree of freedom in the summation over
intermediate states is the Landau level number N, a non-
negative integer. It follows that the energy denominator
in Eq. (2.3) may be zero if the energy and x momen-
tum of the scattering states are suitably tuned to one of
the Landau levels. If this happens a resonant divergence
occurs.

The bare photon propagator has the usual "transverse"
expression

It enters the calculation of S-matrix elements for pro-
cesses such as electron-electron scattering [22] and
electron-positron scattering. These processes have total
cross sections that exhibit resonant divergences. This
may seem surprising at first, since the S-matrix ele-
ments for these processes are entirely finite, even when a
KAOSIS is present. There is a key difference between
the photon and electron propagators: In the electron
case the on-shell energy contains a dependence on the
Landau level quaritum number, a discrete degree of free-
dom. Thus the resonances are "spaced out" and well sep-
arated. On the other hand, the photon on-shell energy
is entirely dependent on the purely continuous degrees
of freedom k, and the "sum over intermediate states" is
really an integral. While this integral will undoubtedly
encounter any KAOSIS singularity, the small imaginary
part in the denominator of the propagator provides a per-
fectly straightforward prescription for circumventing the
pole. Thus the S-matrix elements are finite for these pro-
cesses. Nevertheless, whenever an on-shell intermediate
state is kinematically accessible, the total cross sections
diverge. What is going one

The divergence is evident in the expressions in Ap-
pendix C of Langer [22] for the e-e scattering cross sec-
tion. Langer performed the integrals over the interme-
diate states simultaneously with those over final states
and the average over initial states, in order to take ad-
vantage of several simplifications that ensue. Unfortu-
nately, these manipulations obscure the source of the di-
vergences. In order to shed some light on the situation,
we have calculated cross sections for e-| and e+-e scat-
tering by computing the S-matrix elements before sum-
ming over final and averaging over initial states.

What we have found can be best illustrated by con-
sidering the specific example of e+-e scattering. As
depicted in Fig. 1, there are two relevant Feynman dia-
grams. We have confirmed that in each case the S-matrix
elements are finite even when there is a KAOSIS. When
a KAOSIS exists, however, there is a divergence result-
ing from the sum over final states. In the diagram of Fig.
l(a), the divergence arises from the integral over the vari-

(b)

FIG. 1. Two diagrams for e+-e scattering. The labels
a,+. , a,. denote the x coordinate of the orbit center of the
initial positron and electron, respectively, while the labels a&,
a& denote the orbit center of the final positron and electron,
respectively. The spatial separation between the two fermion
lines is given by the parameter s = a& —a& for (a), and

by & = a& —a, for (b). In either case the interaction does
not fall off with increasing separation, so that the result is a
divergence in the total cross section.
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able s = a& —a&, where a& and a& are the orbit center
x coordinates of the final positron and electron, respec-
tively. In the diagram of Fig. 1(b), the divergence is due
to the integral over the variable t = a& —a,--, where a,.
is the orbit center x coordinate of the initial electron.

We see, then, that the divergence manifests itself as an
infinite range of interaction. When a KAOSIS is present,
the intermediate photon may travel an arbitrarily large
distance between its emission and its absorption without
a reduction in amplitude. Consequently there is no spa-
tial cutoff in the interaction, and the resulting integral
over orbit center separation diverges.

The situation may be further clarified by explicitly
computing the interaction range in the x direction.
When we calculate an S-matrix element for these pro-
cesses, we integrate the bare photon propagator D~(z-
y)" multiplied by two fermion currents, one for each
vertex. Since our states are chosen to be plane waves
in the x -x direction, the currents are also plane waves
in x and x, and the integrals over x, x, and x are
tantamount to Fourier transforms of the photon propa-
gator in those coordinates. The remaining integral over
x folds together two (in general well-separated) current
functions j (x )", j„(yi)" with the transformed prapa-
gator f&(x —y; k, k, k )g„. We may easily compute
f (z Q Q2 Qs). If we define p

——(ke)2 —(k2) —(ks)2 =
+q, with q & 0, we find

——'e'&~*'~ if p & O,
y (z', A.",k', A.") = ——e ~~

'
~ otherwise.

2g

Thus, if p ) 0 (the condition for the existence of a KAO-
SIS), the effective interaction range is infinite, whereas it
is of finite range 1/q otherwise.

The situation is reminiscent of Coulomb scattering.
If a wave packet scatters with large impact parameter
from the center of the Coulomb potential, the momen-
tum transfer is very low, and thus the exchanged photon
is very close to its mass shell (that is, its k vector is
very near the apex af the light cone). This is the reason
that the total Coulomb cross section is divergent —the
extreme infrared photons, which are nearly on-shell, give
the interaction an infinite range. There is one noteworthy
difference here, however: for the processes we consider,
the virtual photons do not need to be in6nitely soft to
be on shell, so that these resonant divergences are in no
sense in&ared divergences.

As a consequence of this analysis, the cure for photon-
propagator-related resonant divergences will necessarily
have a slightly difFerent mathematical character from
that for the divergences that; arise in connection with the
electron propagator. While in the latter case we need
to show how the previously diverging amplitudes may
be made to converge, in the former case we must show
how the previously long-range "effective interaction" may
have its range curtailed.

III. THE DB.ESSED EI ECTB.QN PB.C)PAGATOB.

The necessity of complexifying the energy denominator
of the electron propagator so as to obtain the Weisskopf-

[p"(iB„—eA„) —I—2] 4'~~"l = 0. (3 1)

Naw, let O "oz(z) = e '"
P& (x). It may be shown

[25,27,23] that 8 diagonalizes E if the P& are simulta-
neous eigenstates of the Landau-Dirac Hamiltonian and
of the x component of the magnetic moment operator
of Sokolov and Ternov [28]. This condition defines what
is meant by "spin up" and "spin down, " in the absence
of the tools provided by Poincare group representation
theory (the physical system no longer has full Poincare
invariance). If this condition is satisfied, and only in this
case, G may be represented in a form analogous to Eq.
(2.3):

G(x, y) = ) d ~ 0 0 0—ip I'x —y )e
27r

(3.2)

where Z(p, A, rt) is the diagonal matrix element of Z

in the state C) "0&. It is, in general, a complex num-

ber, in contradistinction to the case where the exter-
nal field strength is zero, where the diagonal matrix. el-
ements of the self-energy operator are real. The real
part of Z(p, A, g) merely yields a small shift in the en-

ergy of the state, while the imaginary part provides a
line-width to the otherwise divergent resonant energy de-
nominator. This justifies neglecting the real shift while
preserving the imaginary width. It was shown explic-
itly in Ref. [23] that, in this approximation, the pole in
the propagator corresponding to state A, g is located
at p = rl(Fiz —zl'z), where I ~ is just the Weisskopf-
Wigner decay rate of the state A, computed to leading
order:

signer line shape has been recognized for some time
[19,20], although these authars lacked a formal justifica-
tion for their ad hoc complexification of the energy, given
in Eq. (1.1). Graziani [23] provided this justification by
considering radiative corrections to the electron propaga-
tor. As it turns out, the same procedure may be applied
ta the photon propagator as well. Quite generally, one

6nds that the operator that represents the self-interaction
(the mass operator Z in the case of the electron, the po-
larization operator II in the case of the photon) singles
out those solutions of the wave equation in which it is di-

agonal. The dressed propagator may then be expressed
as a sum over all such states, with the energy in the
denominator acquiring an imaginary part given by Eq.
(1.1). We review the discussion of the electron propaga-
tor from Ref. [23] and extend it to the photon propagator
in the next section.

The dressed propagator G(x, y) is related to the bare
propagator and the self-energy operator Z(z, y) by the
Dyson equation G = G~ + G~ Z . G where the dot
denotes four-dimensional convolution as well as spinorial
matrix multiplication. It follows that G(z, y) is a |reen's
function for the dressed LD operator
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83k
I ~ = 6 3 T~~ k, 6' 2'll

B

b"„=k ( )" k ( )", (4.1b)

G( ) ) - "&, '~'(*' y) -&~ (x)&~ (y)(~) (n)

2~' u' —n(E~ —~1'~/2)

(3.4)

i) q 0 ~ (zo y&) e q(Ew —'i—'x'/2)( —y )

A, g

xy(n)( )p(n)( ) (3.5)

to first order in e .
It appears from these equations that the prescription

of Eq. (1.1) is in fact rigorously justifiable. We wish
to emphasize, however, that Eqs. (3.4) and (3.5) are

only correct when the states P& are chosen so that

the 0 ",
& diagonalize the self-energy operator, or equiv-

alently, so that the P& diagonalize the x3 component
of the Sokolov-Ternov magnetic moment operator. The
states of Sokolov and Ternov [28], and those of Herold,
Ruder, and Wunner [10] satisfy these conditions, and
their use leads to correct expressions for the scattering
cross sections. The states of Johnson and Lippmann [24],
which have gained some currency in the literature, do
not satisfy the required conditions [25]. In particular,
as discussed in [23], the use of Johnson-Lippmann states
in the computation of cyclotron scattering cross sections
can lead to relative errors of order 45% at the first cy-
clotron harmonic, depending on the field strength.

x8(EA EB Mk) ~ (3.3)

Here, T~~(k, e) is the interaction matrix element for the
transition &om the state A to the state B with the emis-
sion of a photon with wave vector k and polarization e.
It follows that the dressed propagator may be expressed
as

bL = (k"k )k~" —(k~ k~„)k", (4.1c)

d4k
D(z —y)"" =- —iI(.(x—y)

(2vr) 4

1
~ -b, . b, (k ) —(di, + II(k, k, j) '

2

(4.2)

where

11(k', k, j) =—11(k)„„b,-.b, "~(b, . b, ). (4.3)

To first order in e, the pole in Eq. (4.2) is located at
(k )2 = sr~2 —II(u&, k, j), so that to this order Eq. (4.2)
may be written

d4k
D(x —y)" —ik(~ —y)

(2vr) 4

where k~~ —ki(ei)" + k2(e2)~, and (ez)" is a unit
vector in the x~ direction. These modes diagonalize
the Fourier-transformed polarization operator II(k)~" =
J' d4xII(x)" e'" . There are three of them because by
gauge invariance II satisfies kill(k)~" = 0, so that the
fourth mode is just k, and the eigenvalue of II that cor-
responds to it is zero. The mode b~~ is so labeled because
on shell it difFers Rom the usual "parallel" polarization
three-vector by an inessential multiple of k, while b~ is
just the usual "perpendicular" mode. The vector bI, rep-
resents a longitudinal mode, which on shell is propor-
tional to k. The b in Eqs. (4.1) are orthogonal to each
other, and to k.

Using these modes, the transverse photon propagator
may be expressed as

IV. THE DRESSED PHOTON PROPAGATOR
1

X
b~ b~ (k ) —wI, 2 + II(u&, k, j)

b~ = k'(ei)" —k'(e, )", (4.1a)

The procedure for the photon propagator is entirely
analogous to the one followed for the electron propagator.
The self-interaction of the Maxwell field is represented by
the polarization operator II(x —y)"", which satisfies the
condition of gauge invariance, & „II(x—y)" = 0. The
dressed photon propagator D(z —y)"" is obtained from
the bare propagator D~(x —y)"" and II(x —y)~" by solv-
ing the Dyson equation D = D~ + D~ II D. In order
to accomplish this, it is necessary to find the polariza-
tion states that diagonalize II~, which are analogous to
the spinor states that diagonalize Z. These polarization
states were found by Batalin and Shabad [29], and writ-
ten explicitly for the case of a uniform magnetic field by
Shabad [30]. For a photon with four-momentum k prop-
agating in a uniform magnetic field B = Be3 we have the
following three (unnormalized) polarization vectors:

(4.4)

Note that when the light-cone condition k = ~A, is sat-
isfied, both b~ and b~~ are spacelike (b b ( 0) while
the longitudinal mode bl, is lightlike. It follows that
II(~i„k, L) = 0, so we only need compute II(ul„k, j)
for j

The (unrenormalized) leading-order expression for
II(x —y)" is

II(z —y)
" = —ie Tr[G~(y, x)p G~(z, y)p ]. (4.5)

Following the analogy to the case of the electron propaga-
tor, we calculate the imaginary part of the diagonal ma-
trix elements of II~", while neglecting the real part. For
this purpose, Eq. (4.5) is entirely adequate, even though
it is not renormalized. The renormalization counterterms
that are to be subtracted &om the diagonal matrix ele-
ments of II~ are purely real, so that the imaginary parts
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are unaffected by renormalization.
This expression for II" is in fact translationally invari-

ant, even though G~ is not. The translational invariance

may be established using the "translation+gauge trans-
I

formation" invariance of G~ alluded to in the preceding
subsection [31].

Substituting Eq. (2.3) into Eq. (4.5), after some ma-
nipulation we obtain

II(x —y)" = —e

A, A', g

dp' ,„ . „ [0'"'( )~"&' "'( )l[&' "'(y)~"&'" (y)1
2' gPo + EA + EA —io (4 6)

We now Fourier transform this equation. Taking the implicit translation invariance into account, we obtain

II(k)" e„e = I T I

J'"' (k)"&~l'
x d y e )II(x —y) eiq E~ = —2cdk ) gk'+ EA+ EA —io'

A, A', g

(4.7)

where

J(n) (k)P 2L —s/z(2 )
—i/2 d'xy„'")(x)~~y( ")(x)e'"" (4.8)

When e is a normalized polarization vector, J&,&(k) e„ is just the interaction matrix element for a transition from

a photon with wave vector k and polarization e to a pair with quantum numbers A A. The imaginary part of Eq.
(4.7) is

Irn[II(k)" e„e ]
= —2~kg J~~~~, (k)"e„vr 8 (E~+ E~ —lk l),

A, A'

(4.9)

2 2

where we have used the identity P&&, J&&,(k)"e„=P&&, J&&,(k)i'e„, a consequence of the parity invariance

of Eq. (2.1).
Comparing with Eq. (4.3), we see that to obtain the imaginary part of II(wi„k, j), we may impose the light-cone

condition k = wA, and let e„= (ej)& ——(bj)~/lbj baal
/ in Eq. (4.9), keeping in mind that bj b~ (0. Th. e

ko =4)k

result is
2

1m[II(~i„k, j)] = 2cuA,. ) J~~, (k)"(ej)„7rb (E~ + E~ —~g) = 2~g x I'(k, j)/2.
A, A'

(4.10)

Clearly, I (k, j) is just the Weisskopf-Wigner decay rate of the photon state (k, j). The energy denominator in Eq.
(4.4) is thus (k ) —co~ + 2iwA, I'(k, j)/2 (k ) —[err, —iI'(k, j)/2], to first order in e . Consequently, the dressed

photon propagator is

D(x —y) ~
gP gv—ik(x —y)~ j 1

(27r)4 + bj bj (k ) —(cu —ir'(k, j)/2)2
(4.11)

gP gvj j 0 i o ops iql(qqq —iI'(iq, j)/2)(q: ——y ) iqqiq (» —y)

(2qr) s2(up b, b,
(4.12)

We see that the prescription of Eq. (1.1) continues to
hold in the case of the photon Geld. It should be empha-
sized, however, that it is essential that the polarization
modes given in Eqs. (4.1) be used in the expression for
the propagator in order for that expression to be correct.

Recalling the discussion at the end of Sec. II, we inves-
tigate the range of the dressed interaction by computing
the partial Fourier transform of the propagator in Eq.
(4.11) with respect to x, x, and x . Assuming the pres-
ence of a KAOSIS [so that q = (k ) —(k )z —(k ) ) 0],
we find, for the transformed propagator f(x;k, k, k ),

f (
l. ko k2 ks)

~ iz(q)~q. "
~

2Z(q)

z(q) —= Qu'+ q'+ iqu' —q')

u = q4+ (ko)2I'(k, j), (4»)
where I"(k, j) is evaluated at the point ki = q. Since
the imaginary part of Z(q) is positive, we find that the
presence of a nonzero decay rate I'(k, j) has cut off the
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interaction range.
Note that Z(q) ~ q as I' ~ 0, so that if the

KAOSIS is below the one-photon pair-production thresh-
old the interaction range is not cut off (in fact we then
have f = f~, as expected). In the next section, we
will show how the interaction range is cut oB when the
KAOSIS is below threshold. In the meantime though,
we have already disposed of the resonant divergence as-
sociated with the process of Fig. 1(b), which always has
a KAOSIS above the one-photon pair-production thresh-
old. Indeed, we may now give a useful interpretation of
that divergence: it arose because the intermediate pho-
ton (which at the KAOSIS may be viewed as being due
to a pair annihilation) was not instructed to decay to a
pair in a finite time, so that it produced finite amplitude
for the final pair at all values of x . The resulting total
cross section was infinite. Now that the dressed propaga-
tor is used to calculate the S-matrix element, the photon
is aware of its decay obligations, and the cross section
due to this process is finite.

V. CORRECTIONS TO SCATTERING STATES

The propagator corrections described in the preceding
section are suKcient to control resonant divergences in
many processes and regimes. Nevertheless, there are still
cases where a scattering process may lead to a divergent
resonance. Specifically, any process exhibiting a KAOSIS
with vanishing decay rate will exhibit divergent scatter-
ing cross sections even if calculated using the dressed
propagators.

Such processes are not at all rare. Consider the case
of an electron scattering with a photon that is above
the one-photon pair-production threshold. The follow-
ing two first-order processes correspond to an on-shell
second-order process: First the photon pair produces,
then the initial electron annihilates with the newly pro-
duced positron to produce the final photon [see Fig. 2(a)].
If the intermediate on-shell positron is in the Landau
ground state, its decay rate is zero, so that there is no
line width supplied by the propagator to control the re-
sulting divergence. This divergence represents something
of a calamity, since its eÃect is to make the total cross sec-
tion for Compton scattering divergent everywhere above
the one-photon pair-production threshold [17,18].

A second example is provided by electron-electron scat-
tering, in which at least one of the initial electrons is in
an excited Landau state [Fig. 2(b)]. Once again, there
is a second-order on-shell process that is analogous to a
succession of two first-order processes, in which the ex-
cited electron emits a cyclotron photon, which is in turn
absorbed by the other electron. If the on-shell photon is
below the one-photon pair-production threshold, its de-
cay rate is zero, and there is a resonant divergence see
the expressions in Appendix C of Ref. [22].

It turns out that in every second-order process with a
stable KAOSIS there are nonzero decay rates associated
with the initial and final scattering states. Thus, in the
first of the two examples above, the initial and final pho-
tons are capable of decay, while in the second example,

(b)

FIG. 2. Processes allowing nondecaying, on-shell virtual
states; (a) e p scattering; (b) e e scattering. The process
in (a) may be viewed as a pair production followed by a pair
annihilation. When the intermediate positron is in the Lan-
dau ground state, it has zero decay width. Similarly, the pro-
cess in (b) may be viewed as cyclotron emission followed by
cyclotron absorption. The decay width of the intermediate
state vanishes if it is below the one-photon pair-production
threshold.

there are excited Landau levels in both the initial and
final states. One might hope, then, that the decay rates
of the scattering states might be pressed into service to
control the resonant divergences when the decay rate of
the intermediate state is zero. As we now demonstrate,
this is not only possible, it is a necessary feature of the
same program of radiative corrections that brought the
decay rates into the propagators. That program demands
that we should apply radiative corrections to the external
lines, in addition to the propagators.

It might be objected at this point that loop correc-
tions to external lines can have no bearing on the prob-
lem, since the arbitrary constants that arise during renor-
malization are in part fixed by the requirement that the
external lines should su6'er no corrections, so that the
scattering states should continue to be represented by
solutions of the "free" wave equation with the physical
mass [32].

The answer to this objection is that in the present
case, the limited number of arbitrary constants is not
sufFicient to satisfy the physical requirement above for
all scattering states. For example, in the case of the elec-
tron field, we may onLy demand that the Landau ground
state A~ propagate according to Eq. (2.1). Once we have
used up the relevant renormalization constants to ensure
this condition, the remaining excited Landau states must
propagate according to Eq. (3.1). In other words, in Eq.
(3.1) we may set Z(p = rlE~, A~, rl) = 0 (where EG is
the energy of the ground state), but then the remain. —

ing A g A~ will yield nonzero on-shell, diagonal matrix
elements of Z. Similarly for the Maxwell field, we may
only demand that II(~i„k,j) = 0 in the limit k -+ 0, so
that only infinitely soft photons see no re&ingence in the
magnetized vacuum.

The origin of this "feature" of magnetic QED is the fact
that excited scattering states are technically not scat-
tering states at all, insofar as they do not correspond
to stable asymptotic one-particle states of the quantum
field. In principle, we should only use stable states as
initial and final scattering states: electrons and positrons
in the Landau ground state and photons below the one-



CARLO GRAZIANI, ALICE K. HARDING, AND RAMIN SINA

0„=C„+G&.Z 4„+G& ZG& Z„(~) (~) (~) (n)

= eA'"'+ G~. Z. O„'"'. (5.1)

If we view the LD operator [the wave operator in Eq.
(2.1)] as a "free Hamiltonian" and Z as a perturbation,
Eq. (5.1) may be cast as a four-dimensional Lippmann-

Schwinger equation connecting an eigenstate 4A" of the
LB operator with eigenvalue zero, to an eigenstate OA
of the dressed LD operator [the wave operator in Eq.
(3.1)], also with eigenvalue zero. In other words, 0&(n)

satisfies
[p" (i 8„—eA„) —m —Z] Q~ = 0. (5.2)

It is a simple matter to find solutions of this equation,
since we already know of states that simultaneously di-
agonalize the free operator and its perturbation. Substi-
tuting O~ (x) = e 'i' P~ (~) in Eq. (5.2), we find

p = rl(E~ —ir~/2),

so that the dressed scattering state is

O(n)i ) —sg(x~ —mr~/2)x'~(q)(
)

(5.3)

(5.4)

We may repeat the above argument for a bare external
line that is represented by the Dirac conjugate spinor

photon pair-production threshoM. The consequence of
this restriction on the theory wouM be that multiple scat-
tering events and scatterings followed by multiple emis-
sions could only be treated by computing scattering am-
plitudes corresponding to very high order Feynman dia-
grams, a notoriously burdensome task. Thus, some of the
most interesting astrophysical applications of the theory
would become virtually inaccessible.

As an alternative, we may represent such high-order
Inultiple events as a succession of lower-order transitions
between states that are not necessarily stable, and treat
those states as if they were genuine scattering states. For
example, a process in which an electron in the ground
state and a photon of energy above the third cyclotron
harmonic make a resonant transition to a state with an
electron in the ground state and four photons may be
approximated by a Compton scattering event in which
the final electron is left at the third harmonic, followed
by three resonant decays.

This approximation of scattering states by excited
states is a common one in the literature [18—21], but to
date there has been no investigation of its validity and
limitations, or of what modifications the usual Feynman
perturbation theory must sufFer in order to accommodate
it. That investigation is the central concern of this work.

We now discuss the specific modifications to the scat-
tering states due to radiative corrections. Consider a
bare external electron line in a Feynman diagram that
is represented in the scattering amplitude by the spinor

(x), a solution of Eq. (2.1). After subjecting the line
to corrections associated with the self-energy operator
Z, the result is a dressed line represented by the spinor
8~(")(x), where

(x). The result is that the dressed state is A& (x),
where

A(n)( )
+i@(a~ ir~—/2)x'P(n)(

)A A (5.5)

Note that A& (x) is not the Dirac conjugate spinor of
0&(")(x), since the real part of the exponent changes sign.

The procedure is analogous for the external photon
lines. The dressed states a(x) are solutions of

(gi Hi )a = 0. (5.6)

Using the polarization states of the preceding section (for
j =J, ~~) to write

(x)v (2(d L3)—1/2(e )ve ik ~ —+ik rc (5.7)

and substituting in Eq. (5.6), we obtain

ko =+[ „—r(I, &)/2],

so that the dressed scattering state is

(5.8)

( )~ (2 Ls) —i/2( )~ +i[~a ir(&,j )/—2]~

(5.9)

Prom Eqs. (5.4), (5.5), and (5.9) it is apparent that
the prescription of Eq. (1.1) applies equally well to scat-
tering states as to propagators. It is a general feature of
this prescription that the resulting positive and negative
energy states are not conjugate to each other, since the
real part of the exponent changes sign. Consequently,
positive energy solutions decay as time increases, while
negative energy solutions grow. This is in keeping with
the interpretation of the negative energy solutions as par-
ticles that move backwards in time. In the application of
these formulas to the calculation of S-matrix elements,—.x—.r 2the e '( ' /' ) dependence is ascribed to initial states,
while the e+'( ' / ) dependence is ascribed to Anal
states.

There is a second way of understanding the introduc-
tion of decay rates in the time-development exponentials
of scattering states. We may take the view, discussed
above, that the metastable scattering states are really ap-
proximations standing in for internal lines of much larger
Feynman diagrams. That being the case, their functional
form may be read directly from the components of their
respective propagators, written in the forms of Eqs. (3.5)
and (4.12).

The appearance of the decay rates in the time-
development exponentials of the states will ultimately
lead to their appearance in energy denominators of scat-
tering amplitudes, after integration over time variables.
Here, however, there appears a major diR'erence with the
usual practice of obtaining amplitudes. The real parts
of the exponentials will lead, in general, to divergent ex-
pressions if the time integration limits are allowed to go
to +oo as usual. It is not diKcult to see physically why
we should expect trouble in this limit. Letting the upper
time limit go to infinity in the S-matrix element is tanta-
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mount to asking the question, "what is the probability of
observing this decaying state in the infinitely distant fu-
ture?" Clearly, no calculation is required to see that the
answer must be "zero." Similarly, letting the lower time
limit go to minus infinity amounts to inquiring about an
interaction at a finite time of a decaying state that was
prepared in the infinitely distant past, a process which
also has a vanishing probability of occurrence.

It is therefore necessary that the scattering theory be
formulated for states prepared at 6.nite times T; and mea-
sured at 6.nite times Ty. Only when the initial state is
stable may the limit T,. ~ —oo be taken, and only when
the final, measured state is stable may we set Ty ~ oo.
These limits are termed the "absorption" and "emission"
limits, for reasons that will shortly be made clear.

Note that because of the real parts in the time-
development exponentials, the scattering states are not
generally normalized to unit probability. In fact, they
may only be so normalized at a given, Axed time. Phys-
ically, it is necessary to ensure that the initial states be
normalized at the preparation time T, , and that the 6-
nal states be normalized at the measurement time Ty.
This could be accomplished by setting x —+ x —T; or
x —+ x —Ty, as appropriate, in the expressions of Eqs.
(5.4), (5.5), and (5.9). It is often simpler to calculate the
amplitudes with the states as written above and multiply
the result by the factor exp[2 (I',T; —I'yTy)], where I';~~i
is the sum of the decay rates of the particles in the initial
(final) state.

There is an extremely important consequence of this
finite-time formulation of the theory: strict energy con-
servation no longer holds. The energy conserving b func-
tions that appeared in the old amplitudes were a con-
sequence of the integration of time exponentials over all
time. By the time-energy uncertainty relation, we may
not determine the energy to infinite precision over a fi-
nite time interval. This is not an alarming consequence of
the theory, but rather a desirable one. When we discuss
the excitation or decay of metastable states, we cannot
expect to determine the energy of those states to bet-
ter than the natural line width, so energy-conserving b
functions should actually violate our physical intuition
for these processes. In fact, we will see that strict en-
ergy conservation is recovered only when I'; = I'y ——0.
Thus, for example, in the expressions of Herold [17] for
Compton scattering &om ground state to ground state,
the energy-conserving b functions are appropriate.

We now discuss an example which provides a simple
application of these ideas: cyclotron decay. Consider an
electron which is prepared in an excited state A at a
time T, = 0. We calculate, to first order, the probability

that the system should make a transition to the ground
state A~ with the emission of a photon in the state (k, j),
which is below the one-photon pair-production threshold.
Since I'y ——0, we may take the limit Ty —+ oo. The S-
matrix element is given by

~f' = T»(k)s (~i)

(5.10)

where T~~ (k)„is the interaction matrix element for the
transition:

T~ ~(k)" = e I ~'(2~I, )

x d x '"'"
y

+ (x)p"y
+ (x). (5.11)

Note that in Eq. (5.10), the energy conserving b function
has been replaced by the Wigner-Weisskopf line-shape
function. Thus, the new formalism has reproduced the
well-known result from nonrelativistic quantum mechan-
ics, which the old formalism could not (compare Refs.
[9—12,33]).

We close this section with a discussion of the eKect of
using the dressed electron scattering states of Eqs. (5.4)
and (5.5) on the range of the interaction in the presence
of a KAOSIS of the photon propagator below the one-
photon pair-production threshold. We may attempt to
repeat the procedure that led to Eqs. (2.5) and (4.13).
However, this time the computation of the S-matrix el-
ement corresponding to Fig. 1(a) is no longer equivalent
to taking the Fourier transform of the photon propagator
with respect to x, since the dependence of the scattering
states on x is no longer purely oscillatory. Rather, the
effective one-dimensional interaction g(x; k, k ) that re-
sults is given by

g(x;k, k ) = f~(x', k, k, k )W(k —E),

(5.12)

where W(z) is a function that is only appreciable in a
range +4 about z = 0. The restricted domain of TV

is a reHection of the restricted domain in time of the
scattering states —in fact, we have either 4 I. or

(Ty —T;), whichever is largest.
By using stationary phase arguments, it is easy to see

that g(x; k, k ) can only be appreciable for a limited
range of ~xi~:

(5.13)

Thus the range of the interaction is curtailed when the
scattering states may decay. We see that the spurious in-
finite interaction range, which entered calculations that
used bare excited scattering states, was a consequence of

their assumed infinite duration. Once their limited dura-
tion is incorporated into the formalism, their interaction
becomes short ranged.

Note that a KAOSIS of the photon propagator may
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p iE ~j &c c ~c

FIG. 3. Generic scattering diagram. The lines may be ei-
ther fermion or photon lines, and the external lines may be
either incoming (p = +1) or outgoing (p, = —1). (a)

Y;i

(b)

exist only if either some of the scattering states are ex-
cited or the KAOSIS itself is above the one-photon pair-
production threshold. Therefore, the scattering cross-
sections for processes with virtual photons are now al-
ways finite if the dressed states and propagators are used
to calculate them. We will show in the next section that
resonant divergences are now also under control in pro-
cesses with virtual fermions.

We now compute generic second-order formulas for
two-particle to two-particle scattering. The Feynman di-
agram in Fig. 3 depicts such a process irrespective of
whether the various lines represent fermions or photons.
Our notation, which is illustrated in Fig. 3, is as follows.
Let the energies of the external lines be E~, and let their
decay rates be I'~ (p = a, 6, cd). Define pz ——+1, with

p~ = +1 if the line represents an incoming state and
p~ = —1 if it represents an outgoing state. Let the lines
with p = a, 6 join at the vertex with coordinates x, and
those with p = c, d join at the vertex with coordinates y
(see Fig. 3). Define E—:p E +pi,Ei„ I' = p I' +pi, l'i„
and similarly for E„and I'&. Also define the complex en-
ergies f~—:E~ —2I'~, fy = Ey —2I'y.

Let the energies of the two initial particles be e;i, e,2,
and let their decay rates be p,.i, p,2. Also let the energies

FIG. 4. Generic direct and cross diagrams. The lines may
be either fermion or photon lines.

of the two 6.nal particles be ef i, ef2, and let their decay
rates be pf~, pf2. The e and p are set equal to the E
and I' as appropriate to the process under consideration,
an identification illustrated by the passage from Fig. 3 to
Fig. 4.

We denote the quantum state of the intermediate par-
ticle by t: f = A if the particle is a fermion, / = (k, j) if
it is a photon. The energy and decay rate of the inter-
mediate state are El and I'l, respectively, and we define
Fl = El —2I'l. We also introduce the index g = +1, where
g = +1 if the intermediate state has positive energy and
g = —1 otherwise.

The propagators are given by Eqs. (3.5) and (4.12).
The S-matrix element for the process is obtained by sand-
wiching the appropriate propagator between the scatter-
ing states in the usual vray [32] and integrating over the
space-time coordinates z and y. The general result is

Sf; = i) c„Mf;(l, r)) (T( T (f,F„).
lg

Here, Mf, (l, r)) is the product of two interaction matrix
elements appropriate to the process, c„ is 1 if the inter-
mediate state is a photon and —g if it is a fermion, and

(f f ) = e+(&*'&+&'~) '/ —(»i+»2)Ti/2 +i(e, ,+e'2)T; —i( ye, +{r)2T
(l&)

Tf Tf
x d+ (gy g [r) (T y )] exp [ i f (

0 0) .g 0 g 01
t

z v

The factor e+(&*'+&*')+*/2 (»'+»') &/ in Eq. (6.2) adjusts the normalization of the initial and final states to be
1 at T; and Tf, respectively, while the factor e+'( "+ "~ ' '{'f'+ f2~ f allows a convenient choice of phase. The
quantity (T("&) (F,8„) is the new' object that incorporates the resonant energy denominators and in general replaces
the energy-conserving b function. It may be calculated by the substitution u = x —y, v = x + y . The result is

4."~, (~* ~w) =(lg) ~+( Yi 1+pi 2 )Ti /2 —( ff 1 + ff 2 )Tf /2~+i(e;1 +ei2 )T, —i{ef1 +ef 2 )Tf

(6.3)

—i(s.~s„)T'r
[ (i/2) [(1—~)s.+(i+q)s„—2s{](Tq—T, )

X
(1/2) [(1 —rI)F + (1+rj)E„—2E&]

{E +E„{T; [q{'/2){{—1 q)E +{—1+—g)E„—2Z {{Tl T;) —{]—
(1/2) [(—1 —q) Z. + (—1+q) 8„—2f&]
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Equation (6.3) provides an expression that may be adapted to any second-order process of interest by adjusting
the p and the assignments of the e and p to the E and I'. In the particular case of two-particle to two-particle
scattering we need consider four cases: the "direct" and "cross" diagrams (Fig. 4), each for g = +1. The expressions
are sirnplified by the notation Ae = ei~ + ei2 —ef~ —ef2, Ap = p;~ + p;2 —pf~ —pf2, and v = Tf —T, .

(a) Direct diagram, i1 = +1. We obtain this case from Eq. (6.3) by setting t = (—efi + ef2) + i(pfi + pf2)/2 and
8„= (e;i + e;2) —i(p, i + p;2)/2. We obtain

4,'T, (~* ~w) =(&,+1) e —i(RI iI'I /2)T e
—i[(e;1+ei2)—i(fail+ Yi2)/2]T

X
&e —imp/2 (equi + ej2 @)—i(p, i + pj2 I'l)/2

e—i(E& —iF&/2)T e
—i[(ef1+ef2) —x(&f1+&f2)/2]T

( fi + f2 @l) ( Vi + "/f2 ~l)/2
(6.4)

(b) Direct diagram, il = —1. For the same assignments as case (a), but with il = —1, we Bnd

4'~ '(~* ~w) =
Ae —imp/2

'[(Oil +8 '2+Of 1 +ef2+XI )—i(gil+Pi2+Pf 1 +yf 2+I'& )/2]T e —i[(fail +ei2) —i{&il+Pi2)/2]7

(X
( ef1 ef2 El) i( 'nfl 'Yf2 I l)/2

i[(&il+&i2+&f1 +&f2++I ) ("ail. +Pi 2+'Y f1+ Yf2+~f )/2]T e i[(&f1+&f2) i( Y f1+ Yf2)/~]T

(—e, i —e,2 —%) —i(—p;i —p, 2
—I'l ) /2

(6.5)

(c) Cross diagram, il = +1. Here we set f = (e;2 —ef2) —i(&,2 —pf2)/2 and E„= (e, i —efi) —i(p, i —pfi)/2:

(l,+1) 1 e
—i[(ef1+ei2+EI )—i(pf 1+pi2+I'I )/2] e —[(~il++i2) i( Yil+ fi2)/2]T

(T'T+ l(E, Ey) = . x
b, e —imp/2 &fi

e—i[{ef1+ei2+E&)—i(&f1+&;2+PI)/2]T e —i[(ef1+ef2)—i(&f1+&f2)]T

(ef2 el2 @l) —i( ff2 Yi2 I l)/2
(6.6)

(d) Cross diagram, i1 = —1. The assignments here are as in case (c), and g = —1:

1 e—i[(ef 2+eil+E& ) —i(Pf 2+&ii+I'I )/2]T e ~[(eil+ei2) —i(&il+P, 2)/2]T
(F,f„) = x

Ae —imp/2 (e*'2 f2 @l) '(&*2 92 I l)/2

e
—i[(~f2+~ii+&&)—i(yf 2+P;1+~&)/2]T e

—i[(~yl+~f 2+&I )—i(yfl+Zf 2+~I )/2]T

(ef i —e*i —%) —i(Wf i —y'i —I'l ) /2
(6.7)

The expressions in Eqs. (6.4), (6.5), (6.6), and (6.7)
all contain products of two complex energy denomina-
tors, one "energy conserving" and the other resonant.
All these energy denominators may, in principle, go to
zero. When this happens, however, there is always a can-
cellation of the exponentials in the numerators, so that
the result is always finite. This is a consequence of the
fact that these expressions were derived starting from Eq.
(6.2), an integral over a finite range of a finite integrand,
which clearly may never diverge. Therefore, scattering
processes containing virtual fermions now have finite S-
matrix elements. These were the last remaining resonant
divergences in the theory, urhich is noiu entirely finite.

We have thus eliminated all resonant divergences &om
our scattering cross sections. The price we have paid
is the dependence of the S-matrix elements on the time
lapse 7. between the preparation of the initial state and
the measurement of the final state, and the attendant
loss of strict energy conservation. Note that, in general,
the nature of the dependence on w is for the S matrix

elements to decay away as w ~ oo. As discussed in the
preceding section, this is the behavior expected for scat-
tering from excited states to excited states.

Note also that these expressions lack crossing symme-
try. The reason is the introduction of the exponential
factor outside the integral in Eq. (6.3), which is not sym-
metric under the replacement eiz ++ —ef2y pi] M +f2.
If we divide the expressions of Eqs. (6.4), (6.5), (6.6), and
(6.7) by the exponential factor, we find that the resulting
expressions are, in fact, crossing symmetric.

In order to parlay the above expressions into cross
sections, we must substitute them into Eq. (6.1) to
obtain a 7-dependent expression for the S-matrix el-
ement. The reaction rate B is then given by B
d~Sf, ~2/dr = 2Re(Sf;*dSf,/dr). The cross section may
be obtained from B by using the usual kinematic ma-
nipulation: do/deaf = I ~v~ B, where deaf is a volume
element in the space of final states and v is the relative
velocity of the initial particles.

There are two special cases where it is possible to elim-
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inate the dependence on w &om these expressions: when
the initial state is stable (p, q ——p;2 ——0) and when the fi-
nal state is stable (pyq ——py2 ——0). These cases are called
absorption and emission scattering, respectively. In the
absorption scattering case, we may set T; —+ —oo, while
in the emission scattering case we may set Tf ~ oo. In
either case, 7' -+ oo, and the above expressions for the (
are greatly simplified.

A. Absorption scattering
The special case of a stable initial state corresponds to

a situation analogous to absorption, in which we prepare
beams of stable particles and observe the excited prod-
ucts before they have the opportunity to decay. If we set
p;, = p;2 = 0 in Eqs. (6.4), (6.5), (6.6), and (6.7), and
take the limit w —+ oo, we And the following results.

For the direct diagram,

(Ae —imp/2) [(—e,, —e;2 + E)) —iF(/2]
' (6.8a)

and, for the cross diagram,

(& —'&~/2) [(efi + f2 + E~) i(Qfl + py2 + F,)/2]
(6.8b)

~ + E&) (&» + F&)/ ]
(6.9a)

(Ae —i Ap/2) [(ef2 —e,2 + E&) —i(pf2 + I ))/2)
(6.9b)

We have eliminated an inessential phase factor. Note that
Ap = —(pfq+py2). Substituting these expressions in Eq.
(6.1), we obtain a time-independent S-matrix element.
In order to get the result into the form of a cross section,
note that the final state is decaying at a rate pfi + +f2.
In order that the probability of that final state be time
independent and equal to ~Sy;i2, the reaction rate must
exactly balance the decay rate, so that we must have B =
(+f1 + +f2)l~f'I' = l&pl l~f*l' Again, the cross section
do/dOy may be trivially obtained from R. Note that
do/deaf contains the following functional dependence on

do. ~Dpi ~~~o
oc

~ 2', 27r b(e, z + e;2 —eyx —ef2).
dOf De2+ 4p 2 2

(6.10)

In other words, the energy conservation in the cross sec-
tion is Lorentzian, and in the limit of stable final states we
recover the energy-conserving b function with the correct
coeKcient of 2'. As expected, the strict energy conser-
vation in the old expressions for the S-matrix elements is
correct for scattering from stable states to stable states.

B Emission scattering

The special case of a stable final state corresponds to
a situation analogous to emission, in which we prepare
a beam of excited particles and observe them after they
have scattered into the stable final state. We set pfi
pf 2 ——0 in Eqs. (6.4), (6.5), (6.6), and (6.7), and take the
limit 7 -+ oo, to obtain the following.

For the direct diagram,

(Ae —imp/2) [(efg + ey2 + @)—iF&/2]
' (6.11a)

r."-„'(~., ~, ) =
(Ae —imp/2) [(e,~ + e,2 + El) —i(p, i + p;2 + F()/2]

' (6.11b)

and, for the cross diagram,

4' (~* ~~) =(&,+~)
(Ae —imp/2) [(e;2 —ey2 + Z~) —i(p;2 + F~)/2]

) (6.12a)

(6.12b)
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Once again, we have eliminated an inessential phase &om
the amplitudes. Now we have Ap = p, i + p, 2. Substi-
tuting these expressions in Eq. (6.1), we again obtain a
time-independent S-matrix element. We obtain a cross
section by the argument illustrated in Fig. 5, which de-
picts a semi-infinite tube of cross-sectional area do/dOy,
terminating at the position of the target particle and ex-
tending in the direction of —v. The total probability (per
unit final phase-space volume) of an interaction leading
to a final state in deaf is equal to the integral over the
interior of the tube of the probability that each infinites-
imal slice should contain the projectile particle and that
it should actually reach the target particle in spite of the
fact that the two-particle state is decaying away:

/Sy, /' = I /veldt e i~*'+~'&' =
o f

(6.13)

so that

s,;
f

(6.14)

We again see the Lorentzian energy conservation of Eq.
(6.10), so that in this case we also recover strict energy
conservation for stable state to stable state scattering.

vrr. DrscUSSXON

The regime of validity of the emission and absorption
scattering limits is obvious &orn their context. On the
other hand, the general formula in Eq. (6.3) requires some
discussion. As discussed previously, the formula never
"misbehaves" in the sense that it never yields a diver-
gent result. In fact, in general, that result tends to zero
as ~ + ao. While this is physically sensible, it obviously
makes the large time-lapse limit a less than useful one. It
is clear that what fails in this limit is the validity of the
perturbation-theoretic order of the calculation. Since the
scattering states are themselves decaying to other states,
those other states should be included in the calculation,
leading to higher-order processes. The second-order cal-
culations outlined in the preceding section are only useful
for values of 7 such that the scattering states have little

FIG. 5. Kinematics of emission scattering. The tar-
get particle is at the end face of the semi-infinite tube of
cross-sectional area der/dory. The projectile particle must be
in the tube in order for an interaction to occur. The de-
creasing density of circular sections in the figure is meant to
represent the decreasing probability of an interaction due to
the exponential decay of the initial state.

chance to decay, that is for I'w (& 1, where I' is the largest
of the decay rates in the process. For example, we might
choose w to be on the order of a collision time, if we are
studying a gas with density and temperature such that
the collision rates far exceed the decay rates.

The general case above obviously represents a fairly
radical departure &om the usual scattering formulas.
The emission and absorption scattering limits amount to
somewhat less radical modifications. One obvious such
modification is the replacement of strict energy conser-
vation with "Lorentzian" energy conservation. Another
is that the "nonresonant" energy denominators [Eqs.
(6.8b), (6.9a), (6.9b), (6.11b), (6.12a), and (6.12b)] now
contain the decay rates of the scattering states as well as
those of the intermediate states. The importance of these
changes depends upon whether the decay widths enter-
ing the energy denominators are electron decay widths
or photon decay widths.

If the decay widths are purely fermionic, they are gen-
tly varying functions of energy, and their magnitudes are
smaller by e than their own characteristic scale of vari-
ation, the scale of variation of the interaction matrix
elements, and the characteristic separation of the reso-
nances. Consequently, in this case the relative change
that results from introducing Lorentzian, rather than ex-
act, energy conservation, and from introducing the decay
widths of the scattering states into the energy denomi-
nators, is of order e . On the other hand, if some of
the decay widths correspond to photon lines, they can
vary rather rapidly as a function of energy [11,12]. Thus,
the behavior of the energy denominators is not really
"Lorentzian, " despite notational appearances to the con-
trary. The departure from the cross sections computed
assuming strict energy conservation, and not including
external line decay widths, might turn out to be apprecia-
ble in this case, although its precise magnitude remains
to be assessed.

In the limit of stable scattering states the usual results
are completely reproduced, since we recover strict en-
ergy conservation and there are no scattering state decay
widths to include in resonant energy denominators.

In connection with the dressed photon propagator of
Eq. (4.11), we wish to comment on a point which is a
potential source of confusion. The decay width I'(k, j) is
to be evaluated on the light cone, as implied by the first
equality of Eq. (4.10). Now, when the photon propagator
is used in an S-matrix element, the values of k, k, and

are fjLxed by the x, x, and x momenta of the scatter-
ing states. Thus, the sum over intermediate photon wave
states involves an integral over the component k of the
wave vector k. The value of I'(k, j) must be evaluated
for each value of k in the integral. This is analogous to
the case of the electron propagator, Eq. (3.4), in which
the intermediate electron decay width is evaluated on
the energy shell for each Landau level in the sum over
intermediate states. The only difFerence between the two
cases is that the relevant degrees of freedom are discrete
for the electron propagator, while they are continuous for
the photon propagator.

The radiatively corrected photon propagator permits
the evaluation of processes such as e+e ~ e+e, e
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e e+e, and pe ~ e e+e, all of which are impor-
tant for neutron star emission. Of equal astrophysical
importance is the evaluation above the one-photon pair-
production threshold of Compton scattering, two-photon
pair annihilation, and two-photon pair production, which
is now possible by virtue of the radiatively corrected scat-
tering states. Finally, we now have access to the processes

e e + e e and e+e —+ e+e even when the initial
and final states are excited.
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