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That special variant of the Fradkin representation, previously de6ned for scalar Green s functions
G, (x, y~A) in an arbitrary potential A(z), is here extended to the case of vector interactions and
spinor Green s functions of +ED and /CD. An exact representation is given which may again
be approximated by a finite number N of quadratures, with the order of magnitude of the errors
generated specified in advance, and decreasing with increasing ¹ A feature appears for both exact
and approximate G, [A]: the possibility of chaotic behavior of a function central to the representation,
which in turn generates chaotic behavior in G, [A] for certain A(z). An example is given to show how
the general criterion specified here works for a known case of "quantum chaos, " in a potential-theory
context of 6rst quantization. When the full, nonperturbative, radiative corrections of quantum field
theory are included, such chaotic e8'ects are removed.

PACS number(s): 11.80.Fv, 11.10.Kk, 11.15.Tk

I. INTRODUCTION

This is the third paper of a series [1,2] describing a
useful special variant of the exact Fradkin representa-
tion [3,4] for vector interactions, with emphasis on QED
and QCD. Approximations to the spinor Green's func-
tion G, (x, y[A), defined in the presence of an arbitrary
vector potential A„(z)in any number of space-time di-
mensions, are again given in terms of a finite number %
of quadratures; again, the order of magnitude of the er-
rors associated with finite N can be estimated in advance,
and decreases with increasing ¹

A feature appears for such vector interactions in the
form of possible chaotic behavior (specified in terms of
a map which depends on proper time) of a central func-
tion of the representation, defined in terms of specific
potentials A~(z) or field strengths I"„.The equation, or
map, which defines this relationship resembles equations
of motion, or other forms of mappings, found in general
dynamical systems, with solutions which, for appropriate
potentials or fields, may display the now-familiar signs of
chaos. We state the necessary condition for the possi-
bility of chaos of a general map given in terms of A„orF„,and then give an example of a potentially positive
Lyaponov exponent, in terms of which chaos may be de-
fined, for a potential-theory system which is known to
contain chaotic behavior.

Any such fermion representation is somewhat compli-
cated by conventional spinorial factors; but the possi-
bility of chaos is an additional component of the con-
struction which appears when dealing with a vector in-

teraction. We here specialize to QED and QCD, but this
feature will exist even in a scalar theory with vector inter-
actions; it was not seen in the analysis of Ref. [1] because
it was automatically suppressed in the course of an ad-
ditional, simplifying, infrared (or "eikonal") approxima-
tion. In QED it is possible to define this test for chaos in a
gauge-independent way, involving only field strengths; in
practical terms, the corresponding mapping, and test for
chaos, is much simpler within a particular gauge, speci-
fied by the potentials.

One profoundly important question arises: do the field
fIuctuations encountered in the transition from the first
quantization of potential theory to the second quantiza-
tion of quantum field theory have any effect on the for-
mer's possibility of chaos' Quantum fiuctuations of the
electromagnetic field, for example, could enhance, leave
unchanged, or suppress the chaotic behavior induced by
vectorial interactions in potential theory. We argue in
this paper that the third possibility is correct.

These topics are arranged here in the following way.
In the next section, a derivation is given for exact and
approximate representations of the fermion propagators
G, (x, y[A) in QED. Section III describes an analogous
construction of the gauge-independent part of G, (x, y[A),
in which similar forms for the exact and approximate
representations appear. Section IV examines the map
which can be used, for such vector interactions, to test for
chaotic behavior, and we give an example of the construc-
tion of a pair of Lyaponov exponents, one of which is al-
most certainly positive, for a well-known choice of A~(z)
in which "quantum chaos" is known to occur. Section
V sketches the entire process for QCD, including a map
to test for chaos. Section VI explicitly shows how the
full, nonperturbative, radiative corrections of quantum
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field theory remove the quantum chaos of potential the-
ory. The Anal section contains a very brief summary and
discussion of related fundamental questions and specific
calculations which can be attempted within the frame-
work of our representation.

II. DEB.IVATION

As in Ref. [2, our starting point is the exact Fradkin
representation 3] for a causal, @ED fermion propagator
moving in an arbitrary background field A„(z):

G, (x, y~A) = i dse " expI i ds'b /bv„(s')
~

m —p„(. ' . . . , )I b

o l o
" ) "bv„(s)

8 ( B

x exp ig d—s'v„(s')A„~y — v
I

o
" "l o ).

( ', ( ' ) ) (x
~

exp g ds'o„„F~„I'y — v
I

b
I

x y+ v
o l o ) )+ l o ) (2.1)

where v~(s') is an artificial, proper-time-dependent four-
velocity, whose fluctuations produce the causal solution
to the differential equation:

s

of v„(s')and its immediate coefficient A„(y—f '
v) must

vanish. But in the O(g ) linkages of

(~+ ~. [~ —igA(*)])G.(~ ylA) = b(& —y) . dsivig(si)Aig
~

y—
S1 g ( gg
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In (2.1), the 0 E exponential must be ordered with
respect to 8', with those terms carrying the later values
of 8' standing to the left; this is necessary since any pair
of quantities o F carrying different values of 8' will not
in general commute. The "linkage operator"

S

e X[v](„~o——exp( i ds'b /bv (s') ~X[v](„~o

acting upon an arbitrary v„functional X[v] may be
reexpressed as a Gaussian-weighted. functional integral
JV f d[v] exp[(i/4) f' ds'v2(s')]X[v] over the same v de-
pendence, with a normalization constant:

there will be contributions coming from pairings of v~(si)
and A (y —f"v), and from A„(y—f '

v) and v (s2), de-
pending on the relative size of Sq and 82. Of course, there
are also the relatively simple linkages between the v (si)
and v„(s2),as between A„(y—f '

v) and A„(y—f"v),
which were fully analyzed in Ref. [1], but a novel struc-
ture now appears when we include pairings between the

II

v„(s')and the A (u —f v). (As mentioned above, this
structure was suppressed by an additional, simplifying
IR approximation used in Ref. [1].)

To investigate these possibilities, we trivially replace
the exponential factor of (2.1):

IS

d[v] exp
~

— ds v
i

l4o )
exp —zg ds vugg(s )Aid I

y— (2.2)

Inserting a Fourier representation for the b function of
(2.1),

dp exp ip
I

x —y+

by

v
i

8

d[4]dfd —vj exp vg ds'ds(s')ds (g
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with

the operator exp [17] is required to link in a pairwise fash-
ion, to "factor pair, " all the v& upon which it acts. The
essential difference between the present vector and the
previous scalar case, given in terms of a scalar potential

I

A(y f v), is t—he appearance in (2.1) of the vector forms

v~(s')A„(y—f '
v), and the necessity of factor pairing all

pairs of all the v~ dependence; in particular, one must
II

retain those linkages between v„(s')and A„(y—fo v),
which will appear upon expansion in powers of g. That
is, because V = i f' ds'[b/bv„(s')]2 can only link v de-
pendence at the same value of s', the O(g) factor pairing

s

p, =l i=-1
d P,6] P~'l —v„(s,)

where P& denotes the average value of P&(s ) in the in-(') /

terval 8; to 8;+,.
The next step is to introduce a Fourier representation

for the 8 functional of (2.3); using continuum notation,
this is

where f d[P]h[P —v] denotes a functional integral over
the 8 functional which replaces P~(s, ) by v„(s;)at every
coordinate 0 & 8; & 8. That is, for a Axed 8, one breaks
up the interval 0 to s into R subintervals of width s/R,
labeled by the index i; and one subsequently takes the
limit B ~ oo of
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8
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0
(2.4)

given in terms of a functional integral (FI) over A(s;), 0 ( s, & s, with JV an appropriate normalization. In this
way, different v~(s') terms of (2.2) may be isolated and removed from the vicinity of their immediate neighbors,

I

Ai, (y —fz v), so that (2.1) may be rewritten as

OO
bG(x ylA) =i dse " dpe'" ' " e m —p.

o Sv(s)
8 8

x exp
l g ds'o. I".

l

A' dA d[rtp] exp
l

i ds'Qi, (s')P„(s')
l

o )
$ f 8 ) ( 8

x exp —ig ds'p„(s')Aid
l y — v

l
expl i v(s') [p —O(s')]

l) 4 o
(2.5)

We can now follow the scalar calculation of Ref. [2]. All steps will be the same, except for the replacement of
p~ j' ds'v„(s') by J' ds'v~(s') [p~ —O~(s')], and the appearance of obvious spinor factors; for clarity and completeness
this procedure is sketched in the Appendix, and we here quote the result:
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l
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(2.6)

where O„(s') is defined as the solution to the "map"
(A12),

IS

n„(s')= gA„l q(s') —2 ds"n(s")
l

.
0

(2.7)

We take the liberty of using the word "map" to de-
scribe this equation depending on one continuous s vari-
able, whose solution is known, in principle, only after an
infinite number of iterations.

One small point is worth mentioning. Treating the
discontinuous function 0(x) as the limit of a continu-
ous sequence, it is natural to assign the value 0(0) =

2
in the evaluation of —Tr ln lbf/heal. That this is correct
can be checked by expanding the G, [A] of (2.20) to first
order in g, and explicitly verifying that (plG, [A]lp )
~.(p)(pip') + iy~. (p)~. A(p p')~. (p') + . . —

As in the scalar case of Ref. [2], this exact represen-
tation will be useful because it has a natural form of
the (nonperturbative) approximation defined by retain-
ing only a finite number of integers N in (2.6). The
quality of such an approximation may be understood by
remembering that it corresponds to the replacement of
the variable ]xl, in (A3), by the right-hand side (RHS)
of that equation for a finite set of N values, as pictured
in Fig. 1. As the measure A of qualitative error, choose
as in Ref. [2] the difference in area of each of the curves
of Fig. 1, divided by the true area of the straight line x,
between 0 and 1. This yields L~—z ——0.19,~~—&,3 =

0.099, L~ q 3 5 ——0.067, etc. Based upon the potential-
theory estimates of Ref. [2], these numbers should be re-
garded as upper bounds. Of course, any quantity which
depends critically on the difference of such areas will not
be able to be approximated in this way; but one would
certainly expect an overwhelming amount of qualitative
physics to be correctly described in this straightforward
and nonperturbative way. Even for N = 0, the "ze-
roth approximation" corresponding to the neglect of all
P~, Qiv dependence inside the O„and cr I' terms of
(2.6), this representation generalizes the scalar "symmet-
ric eikonal" representation of Ref. [1],and should become
more and more relevant as momentum transfers (of rel-
evant scattering amplitudes) decrease. One should also
note that, as in Ref. [2], there are many other ways of

g= l, 3 N=1,3,5

FIG. 1. A plot of (8/7r ) Q N sin (Nmz/2) vs xs for
N = 1, N = 1 and 3, N = 1, 3, and 5; and a comparison
with x, the exact value of this sum over all odd N, in the
range0&x &1.
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rewriting the exact (2.6), which need not give as accu-
rate an approximation for a Gnite number of quadratures
K, as will (2.6).

define the gauge-invariant part of G, (2:,y~A) as

G (x, y~F) = exp
~

i—g d(pAp(() ~
Gp(x, y~A), (3.1)

y )
III. A GAUGE DIGRESSION

In the next section, we consider nonperturbative solu-
tions of (2.7), and understand their relevance to possibly
chaotic behavior. Before that, however, it may be wise
to ask if a representation similar to (2.6) can be effected
for the gauge-invariant portion of G [A] in order to show,
in essence, that the map (2.7), while gauge dependent,
is not a gauge-dependent Action. For this, it is useful to

where („=AT„+(1 —A)y„, with 0 & A & 1, de-
scribes the straight-line path between the points y~ and
x„.Under a gauge transformation, A~ ~ A~ + O„A,
the explicit exponential of (3.1) will generate the fac-
tor exp( —ig[A(x) —A(y)]), which is the negative of the
complete gauge change of the exact Green's function,
G, (x, y]A+ BA) = exp(+ig[A(x) —A(y) )G, (2:,y~A).

The gauge-invariant functional Gv[F] has the exact
Fradkin representation [4]

(x~G [F][y) =i dse *' m —p e h~ x —y+ v
~ ()

8 81 1
p

e'

x exp ig dsi — ds2 Ad Av„(si)v„(s2)F„„~y —A v
~

0 0

x exp g d 'BOFF y — v
f

o l o J
(3.2)

and we now perform the same sort of analysis for G, [F] that has been done for G, [A]. Introducing a Fourier repre-
sentation for b(2: —y + f' v), and expanding in powers of g, one writes, for the field strength,

F„„iy —A dk F„„(k)exp
~

ik y —iAk

I8

and again replaces the v„(si)dependence of (3.2) by P„(si);for simplicity, we suppress the 0 . F terms, and add in
their effects at the last step. In this rvay,

G.(2:,y~F) = i
b

dse " m —p.
Sv(s)

8

dye" & »m' 'd—
[A] d[P] exp~ i O. P ~

o )
xe exp~ +i ds'v(s') [p —O(s')]

[

X exp —zg dsig„(si)
S1

ds2v„(B2) Ad A dk F„(k)exp~ ik y —iAk
S1

v
i

(3.3)

One now notes that the argument of the last line of (3.3) may be rewritten as

d»4~(») dkF (k) +ik y iAk f~~ v

Bk„ (3 4)

any may be integrated by parts to yield

zg dsi P~ (Bi )

1

dA dke+*"" i~ F„(k)
~

—y„F„(k)

Equation (3.5) has the same form as the Q{s', k) of (2.6), except that the latter's A(k) dependence is replaced by a
slightly more complicated dependence on F{k):
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G ]x, ))]p) = ( dse *'' f'dye'~' ( ")()( f d]B]f d]p]e']" J&m —ip [p —()(s)])
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where we have again replaced h/bv„(s) by i[p„—O„(s)],and where we have used an expansion of an ordinary
exponential, with

R(s)~k]) = P„(s—q) i
~

"
~

—y„F„„(k(). (OF„(k])5 (3.7)

[Were the (r F term included, one would use instead the OE expansion of (Al), with the term igo F(k~)b(A~ —1)
added to each R(s~~k~) of (3.7).]

The functional operation of (3.6) is again immediate, producing forms similar to (A2), except that each k, is
multiplied by a variable A, , and the variables K, z, C~, P~ reflect that slight complication. All the steps leading to
(A4) go through in the same fashion, and one obtains

G, (x, y~F) =i
OO 8

ds e " dpe'" "lJV' d[O] d[P] exp
~

i 0 .

x(m —ip. [p —O(s)]) ' d P~d Q~e'~ ~"~+~~l
~ ". (2m) 4
N

8

P —i ds'[p —O(s')]
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Kd Q g Ic+ ( y4)Ic& d4zd4P
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( . (9
x exp ig ds'P„(s')— dA d k~ i Fyv(k) + —y„F„(k)~e+'"'=l' '"l
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x~ exp g
8

ds'~ F(=-(.', i)) (3.8)

where we have added in the o - E dependence, and where, now,

:-(s', A) = y —A z + Q + s'(P —2p) +. 2 0+ ) ', RN (s')
N

It is now appropriate to undo the integration by parts of (3.5), so that the first exponential factor of (3.8) may be
rewritten as

8 1

exp i g ds'P„(s') dl—[:-„(s',A) —y„]F„(:-(s',A))
0 0

(3.9)

Then, again refiecting z and P, and shifting to z -+ z —Q, all Q dependence is removed from =, permitting immediate
integration over Q and K. Passage to momentum space is almost as simple as before, except that the dependence on
A prevents integration over y and P from being (trivially) performed. The result is

d4zd4P 4 r'. . . s
x d y exp~ iq. y+iz P+i P~—(m —ip [p —A(—s)])

(2 )' 4

bf'] (x exp/ —i ds'[p —O(s')] —Tr ln —
f
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where 0& is a solution of the map expressed in terms of
field strengths only:

O„(s')= g Ad AW (s')E„(y+ AW(s')) (3.11)

I

with W(s') = z+s'(2p P—) P—~ R~(s') 2J—' A(s")ds".
Although somewhat more complicated. than that of
(2.6), (3.11) provides an exact representation for the
gauge-invariant G, [I"]. As for its simpler counterpart
G, [A], G, [E] may now be nonperturbatively approxi-
mated in terms of a finite number, N, of quadratures,
and with the same assurance of qualitative accuracy as
in Ref. [2].

IV. POSSIBLY CHAGTIC BEHAVIOR

Both (2.6) and (3.10) are exact representations given
in terms of (an infinite number of) quadratures over a
functional of 0„,defined by the map (2.7) or (3.11). It
is the existence of such a map which carries with it the
inescapable possibility of chaotic behavior, at least in the
present context of vectorial interactions in potential the-
ory. In this section we describe how this appears, and
give an example in the context of one well-known case of
classical chaos.

All of the analysis used here is given directly in terms
of proper time r, x~ = x„(r),rather than in terms of a
time, t, as measured in specific Lorentz frame and used as
the independent variable of spatial coordinates, xi, (t). In
the simplest of the cases considered here, it is possible to
calculate the x~(r) exactly; and then to express xs(r) =
t(r) in terms of an elliptic integral whose "amplitude" is
directly accessible, so that this relation can be inverted
to obtain r = r(t), thereby solving for the desired xI, (t).
In this example no chaos occurs because the appropriate
average over Lyapunov exponents vanishes. A discussion
of the interplay between the relativistic w formalism and
the noncovariant t formalism will be given elsewhere.

In principle, one might expect nonlinear quantum sys-
tems to reflect at least partially the chaotic nature of
their classical limits. Indeed, solutions for classical,
charged particles moving in a specified Maxwell field
I"„„(x)described by

(4.1)

for appropriately nonlinear x dependence of E„must be
expected to display the chaotic behavior now well docu-
mented in a variety of fields, and by a variety of meth-
ods [6,7]. We comment below that, with one important
modification, the Green s-function map (2.7), in its semi-
classical limit, may be related to a "first integral" of the
classical (4.1).

High-energy physics has heretofore escaped the impact
of chaotic classical dynamics because of its fortunate abil-
ity to rely on perturbative expansions, which destroy
the nonperturbative arguments leading to the possibility
of chaos. Even certain nonperturbative approximations,

such as the standard eikonal approximation [4], remove
the possibility of chaos because they, in eÃect, destroy
the needed, exact nature of relevant maps [8]. This can
be seen immediately from (2.7), whose perturbative ex-

I

pansion in effect removes j' 0 from the argument of A„:
~~(s') = gA~(&(s'))

I8
—2g "(((s') ) . ds"A„(((s")) + .

zv P

(4.2)

so that one sums a g expansion for 0„,rather than
solving an integral or differentia equation, as in (4.2).
An eikonal approximation, on the other hand, would re-

I

place the term f' O(s")ds" in the argument of A„by
8'0„,where O~ is an appropriately chosen, averaged four-
velocity suggested by the specific scattering problem. For
both cases, the repeated "feedback" obtained &om the 0
dependence within A„is missing, as the map no longer
corresponds to an equation which must be solved, and
which can, for suitably nonlinear A„(x),display chaotic
behavior. One sees that strict attention to the exact
forms of these vector interactions, as well as to those
of the nonperturbative, Gnite-N-quadrature approxima-
tions discussed in previous sections, must finally bring
the possibility of chaos into the realm of high-energy
physics [9].

In a Green's-function context, this possibility appears
in a most eKcient way, for it is specified not in terms
of time, nor of space, nor by a mixed partial differential
equation (PDE) formulation, but in terms of proper time.
This suggests that chaotic behavior in proper time, when
restricted to lie inside the light cone, will correspond to
(temporal) chaos; while such behavior outside the light
cone may refer to a form of (spatial) turbulence. We shall
not elaborate further on this distinction in this paper,
but only note that such a Green's-function description in
terms of proper time would seem to be an obvious way
of simultaneously describing both chaos and turbulence

To the best of the authors' knowledge, Green's func-
tions have previously been used [7] to study the possibil-
ity of chaos in semiclassical, nonrelativistic systems. The
representations of this paper permit one to understand
the appearance of chaotic behavior in the Green's func-
tions describing general, relativistic systems (with vector
interactions). It is amusing that the possibility of chaos
seems to be enhanced by the true quantum fluctuations of
these Green's functions, away &om semiclassical limits.
As indicated below, for appropriately nonlinear vector
potentials, combined with a full relativistic treatment,
one must expect to find the possibility of a chaotic com-
portment of the function A„,appearing in the integrand
of the final, proper-time integration.

For more than a decade, there have been arguments
and examples of "quantum chaos" for a classical parti-
cle whose motion is in some, semiclassical sense partially
governed by Bohr-Sommerfeld quantization. We shall
here illustrate our remarks by one of these examples [10],
the case of an electron moving in a Coulomb potential
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upon which is superimposed a magnetic field. Physi-
cally, there seems to be no question of chaos when the
magnitude of the bound-state electrostatic energy-level
difFerences are either much larger or much smaller than
the magnetic energy-level differences; but when the two
are comparable, the electron becomes "confused, " and its
semiclassical motion displays the patterns of irregularity
found in chaotic classical systems. By the criterion of
the present paper, the Green's function of this example
does not appear to be chaotic; but when at least a part of
the quantum fluctuations of the true Green's function are
retained, one should obtain certifiably chaotic behavior.

We erst ask if there is any connection between the
map (2.7) and the classical equation of motion (4.1). Let
us approximate G [A], and hence (2.7), by the neglect
of quantum fIuctuations of relevant coordinates, defining
a semiclassical limit first by dropping all (P~, Q~) de-
pendence inside the (2.6) argument of A„—this is the
@ED version of what was termed the "phase-averaged, "
or (ph), approximation of Refs. [1] and [2]—and secondly
by imagining that q is small, so that wave-mechanical
fluctuations of the remaining variables are not important.
This latter step, the replacement of G, [A] by the "no-
recoil, " or Bloch-Nordsieck approximation GBN[A], is not
essential, but makes for conceptual simplicity.

The length ((s') then becomes z+s'(p+p') M z+2s'p,
and we switch to a proper-time variable r with proper
dimensions, by the replacement of s' by w/2m. With the
representation 0„=dX„/dr, the map now reads

dx„g ( pA„z+7——2 X —X(0)dr 2m " m 2m

It will be more convenient to denote the argument of A„
by x and write the equivalent

dxp p@ g= ———A„(x).d. m. m
(4 3)

Then

) "
—A.„(x)

(4.4)

Inserting (4.2) into (4.3), there follows

xp g ) dx~
y

dx~ 0 f dx~ t

d'r m d7 d7 Ox~ ( d'r )
(4.5)

But the last term of (4.5) may be rewritten as

(0/Bx„)g (dx„/dw), which quantity must vanish if the
four-velocity v —dx /dr is to represent a particle on its
mass shell (or energy shell, in a nonrelativistic context),
an association which is certainly compatible with the re-

maining terms of (4.5), and which we shall assume tem-
porarily. The result is then just (4.1), showing that in
an appropriate semiclassical limit, the map (2.7) is com-
patible with the standard, classical equation of motion,
if only the mass-shell property of the particle were guar-
aiiteed (rather than assumed). In fact, the map might be
called a "first integral" of (4.1), since it involves terms of
one derivative less, although appearing in the decidedly
nontrivial form of a map. We shall return to this point
below.

For reasons which will become clear immediately, we
will allow the magnetic Geld to vary in two transverse
directions, by introducing a function P(x&) into the ex-
pression for the vector potential:

iZg
A, (*) = —[»42 —»4il&(x~) +P r (4.6)

- i/2
where r = Q,. i x;, x~ = xi + x2, and the four-

vector notation used here is u„=(aai, iao).
Substitution of (4.6) into the map (2.7) leads to

x„(7)= z„+7.v„—2[X„(7.) —X„(O)], w = gpss/2m,

d"—
dt

= vi +(ux2$(x~) = fi(x),
d~2 2

d7
= v2 —~xi/(x~) = f2(x),

dX3
d'T

(4.7)

Zg= 'Us = fs~ —= 'Uo + = fo .
d7- mr

We have neglected the quantum fluctuations specified
by variations of the (P~, Qiv), so that x~(7) acts as ef-
fective position and time coordinates of a particle with
"average" momentum (p + p')/2. Note, however, that
the four-velocities calculated from (4.7) will not, with
constant v~, satisfy the mass-shell condition.

To test for chaos, ane is instructed [6,7] to calculate
the local, or instantaneous Lyapunov exponents A as
the eigenvalues of the Jacobian of the continuous trans-
formation: det~b f/bx —A~, and then to average the A

there are a variety of ways to do this over a suKciently
long 7 interval (such as a period, for periodic orbits), tu
be able to see whether any (A ) may be considered a
positive constant over that interval; if so, the system is
expected to be chaotic. In this case, the calculation of
the local exponents is straightforward, yielding two zero
exponents and a pair which satisfy

A = +i(ug[l + 2x~g'/P] ~

From (4.8) it is clear that a constant magnetic field,
R —+ Ro for P -+ 1, corresponds to imaginary roots, and
hence to pure oscillations in the distance between neigh-
boring trajectories. Hence, this Green s function, in its
semiclassical limit, does not display the chaotic behavior
found in the classical motion; and the reason for the dif-

" = ~~ ——A~(x) =—&~(x)
dz " m

or, in component from, with v„=(1/2m)(p+ p'), x4 ——

ZXp = Zt,
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ference is precisely that the "motion" to which (4.7) cor-
respond. s does not contain the needed mass-shell restric-
tion. If the map (4.6) is altered so that the mass-shell
condition is maintained, one 6.nds equations equivalent
to (4.1), remiinscent of Hamilton-Jacobi theory, in which
the same analysis leads to the possibility of chaos.

In the present context, the only chance of chaos (trajec-
tories that diverge exponentially with increasing proper
time) is to have gV/P suKciently negative to convert the
square root of (4.8) to imaginary values, in which case the
possibility of one positive eigenvalue will exist. However,
if the magnetic Geld is allowed to fall away to zero, or
even to change sign, the "recurrence" of the motion will
be lost, as the particle moves out to larger and larger x~
values. What is needed, then, is another augmentation
of the field, that is, of P, so that the particle is bound in
a narrow x~ range, and where the possibility exists that
the average value of one exponent will be positive.

Unfortunately, however, this motion appears to be in-
tegrable [ll], with explicit, oscillatory solutions possible
in relevant energy ranges; and one may expect that ei-
ther the average values of both exponents will vanish, or
that even if one average is real and positive the appel-
lation "chaotic" is not appropriate. In order to achieve
motion in the present context which is truly chaotic, one
must retain at least a part of the oscillatory w depen-
dence contained in the P~, Qiv terms, which were ne-
glected in taking the semiclassical limit. Then the prob-
lem is no longer integrable, overlapping frequencies will
appear, and chaotic motion always occurs. Examples
of this are well known in the mathematical literature of
chaos [7], and in the present context signify that there is
a fundamental uncertainty built into these exact Green's
functions of erst quantization.

This can be of disastrous practical signi6. cance be-
cause chaos in the construction of O„(s') means ul-
trasensitive dependence upon the initial conditions for
the difFerential equation for dA~(s')/ds', analogous to
(4.7). Those s' = 0 iiiitial conditions depend upon
z + (2v s/vr) P~(l/JV )P~', and if machine integration is
going to be necessary for the evaluation of integrals over
the latter variables, unavoidably small errors will be in-
troduced into the initial conditions for A„(s). Thus, if
the map (2.7) defining O„(s') is chaotic, the results of
such numerical integration can lead to wildly di8'ering

answers.
Very similar remarks may be made for the map (3.11)

of the gauge-invariant G [I"], and for the somewhat more
involved Green's function of @CD obtained in the next
section. Apparently, all of these Green's functions, as
well as the appropriate closed-fermion-loop functionals
L[A] = Tr ln(G, [A]/G, [0] ), display in their proper-
time representation the basic uncertainty which follows
&om the possibility of a chaotic comportment of O~
for sufficiently nonlinear A„(z). In practical terms this
may not seem particularly important, since those few
potential-theory problems which can be solved exactly
display no chaos, and if all the rest which cannot be
solved. exactly are approximated in such a way that the
basic chaotic behavior exhibited above is suppressed.

In theoretical terms, however, this discovery can be a
profound. shock —it was to the authors for the existence
of these Green's functions forms an underpinning to all
of conventional, quantum Geld theory, in the sense that
all of the latter's correlation functions, or n-point func-
tions, may be obtained in terms of Gaussian-weighted,
functional integrations over all possible fluctuations of
the fields A~(z) appearing in products of the G, [A] and
exp1L[A]}. What will now happen, in principle, to ex-
act, field-theory expressions for various physical quan-
tities? Does the nonperturbative sum of all the Lamb
shift terms, were it ever possible to calculate them, have
a numerical value subject to chaotic Huctuations? Fortu-
nately, the answer to these questions is no, as explained
in Sec. VI, where "second quantization" comes to the aid
of "first."

V. EXTENSION TO +CD

Return to (2.1) and make the replacement A„(z)
A„(z)A, where the A denote matrices of the fundamen-
tal representation of SU(N), for % = 3 the Gell-Mann
matrices. An immediate difference here is that all expo-
nential factors of exact and approximate representations
are now replaced by ordered exponentials (OEs). But all
steps of the analysis of Sec. II will go through electively
unchanged. if one makes the replacement

8

exp ig ds'P„(s')A„(s')—Agk ~ (Z
= A' d[n] d[P] exp~ i ds'n (s')P (s')

~
~

exp i ds'A P (s')
-)+

8

x exp~ ig P„(s'—)n (s')A„(s') ~,
0

(5.1)

where n, P, are s'-dependent vectors [in the sense of this fundamental representation of SU(N)], whose functional
integration on the RHS of (5.1) reproduces the I HS OE; as in Sec. II, JP' is a normalization constant defined so that

JV"f dfa] exp~ ~

8

d '
(sn)[Ps(s') —gP„(s')A„(s')]

~

= b P —gP„A„ (5.2)
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and we have suppressed in (5.2) all but the s' dependence of the argument of A . All steps leading to (2.6) are
unchanged, except for the additional JP' J d[a] f d[P] and the replacement of the map (2.7) by

B„(s'in)= get (s')A„~ {,'(s') —2
8 I

(5.3)

Now, 0 is an implicit functional of ct, as well as of the P~, Qiv, and subsequent integration over these variables must
be understood:

(p)G. [A A](p') = t d se *' A" d]n] d]]r]e*r '~ (e*r "~)

d4p d4q {i/2){Prd+Qrd) d4 ip —z+izp /4
~ -" (2')4

x(m —ap. [p —O(s')ct) j exp( —z. ds'[p-&( 'I )]'
I

I8 8

exp g ~s rr +~ C(s ) 2 ds +(& ~a)
o {, o j )

8 z

x exp —
& ~s'~ (s')c)/A„~ C(s') —2 ds"~(s'~~)

~

0 0
(5.4)

with (5.3) and I"„(x)= (B„A —8 A„+ger„A„A').
Inasmuch as the A„of(5.3) resembles that of (2.7),

with n(s') A„(s') replacing A~(s'), all of the analysis
of Sec. IV goes through, and we conclude that the map
(5.3) can be used, for arbitrary n (s'), to determine if
and when chaotic behavior exists for 0@, and hence for
the exact representation (5.4). Again, one feels more
confident of the analysis for a semiclassical, or (ph) ap-
proximation, where the PIv, Qiv fiuctuations are missing
in ((s'), and one has other knowledge that chaotic eKects
may occur in first-quantized @CD.

Apart from the possibility of chaos, (5.4) satisfies a
basic need for an exact representation which can be ap-
proximated in a nonperturbative and reasonable straight-
forward way, and in which one again has at least an idea
of the order of magnitude of the errors introduced by the
approximation. As for @ED and the previous scalar case,
use of a finite number N of quadratures should generate
sensible, accurate, and not-too-complicated approxima-
tions for quark Green's functions in the presence of an
efFective gluon background. This is briefm. y discussed in
Sec. VII.

VI. FULL RADIATIVE CORRECTIONS
AND QUANTUM CHADS

In the preceding sections we have seen how the exact
and approximate representations for G, [A] and G, [I"] can
lead to a natural version of quantum chaos. In this sec-
tion we try to understand what happens when the full ra-
diative corrections of quantum field theory are included.

We will apply the exact representation of this paper

to the calculation of the simplest, two-point function of
@ED, the dressed fermion propagator in an external field:

(pIS.'[A'"']lp') = eAO'IG-[A'"'+ A]IJ'&

~I [A +A]

(S[A "']&
(6.1)

(S[Aext]) 17 I.{A'"'+A)
]

The functional linkage operations here are exactly equiv-
alent to functional integration over a Gaussian weight:

e "%[A](A 0
——JV ~[A].--. ~ "{"-")"~[A],

where (p2 —c) ) = D, , and JV i is the same functional
integral but with %[A] = 1.

It will be simplest to work in the "quenched" approxi-
mation, neglecting the A Huctuations of I [A'" + A]; this
means the replacement of L[A'"t + A] by L[A'" ], and
(S[A' ]) by exp (L[A'"']) in (6.1). This is not essential
to subsequent arguments, for one can include arbitrary
powers of L[A' t + A] fiuctuations with unchanged con-
clusions. The same remark is true for the calculation of
all other n-point functions of the theory, and this will
become clear below.

We shall work with the simpler, G, [A] formulation,
and now ask the reader to return to the exact representa-
tion of (A10) before the final JP f d[B] J d[P] integrations
leading to (2.6) were performed. In compact notation this
may be written as

where 17A = (i/2) J(b/bA~)D, ~„(b/bA„),D ~„is the
photon propagator, L[A] = Tr in[1 + igp . AS, ]

L(G, [A]) ~ L(G, [P]j is the fermion closed-loop func-
tional, with the vacuum-to-vacuum normalization factor
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(plG-[A]lp') = t'
2—'L SVTl d4 iq—a+i sq /4 t ( /

--. - (2qr)4
N

d4P d4q i/2(P~+Q~)

xA' d[P] d[B]X[A]exp i «' is(s') (Os(s') —gAs
I
((s') —2 'BI] (6.2)

where W[O] represents all the remaining 0 dependence visible in (A10). For simplicity, we suppress the o I" term of
(2.15); but this A dependence can be incorporated without difficulty, and the conclusions are unaltered. The eff'ect of
all the radiative corrections corresponding to nonperturbative fluctuations of the quantized electromagnetic field can
now be seen by inserting (6.2) into the quenched version of (6.1):

(pl~.'[A'"']lp) = e "(plG.[A+ A "']lp') l~ ~ . (6.S)

The essential operation is the linkage operator acting on the second line of (6.2), which yields

S
A' d[O]X[A] d[@]e*fo"' +~f~ exp( +

2
ds2$„(si)D, ,„~(:-)P~ (s2) (6.4)

where f„(s')= A„(s')—gA'„"'[((s')—2l'; 0] and:-(si, s2) = (si —s2)'P —2 f"ds"n(s").
The difference between (A10) and (6.4) is that the functional integral over P is now Gaussian, and produces

—-'Ti X
8 8

I~'P* f ~I~I&P]s * '" ssv —— d» «s&s(»)(»IW ')s-I»)&-(»)
0 0

or

sc-' gAewt
[JV'] / d[f]X[f + gA'"']e 2 ~ I' f exp( —tr ln 1 —g

hO
(6.5)

where (si]A„„~s2)= g D, „„(:-).Equation (6.5) is a Gaussian-weighted, functional integral over f d[O], or over

J d[f], which is sufficiently complicated so that it cannot be evaluated explicitly. However, the map of (2.7) no longer
appears, nor will the possibility of chaos which results from that map. Here, the sharp h functional of (All) has been
replaced by a smoother, Gaussian-weighted integrand over a kernel defined by the radiative corrections; and however
complicated the final, nonperturbative results may be, it is not the chaos of Sec. IV. Rather, it is a clear example of
what has been termed [12] "environment-induced decoherence, " as the special coherence underlying the h functional
is removed by the radiative corrections, along with the map which can lead to chaos.

The same functional operations acting upon any pair of G, [A], each with their own representation (6.2), will lead
to a linked combination of terms, of form analogous to (6.4):

A' d[A ]W [0 ]A'z d[Oi, ]At, [Os] d[P ] d[Pt,] exp i
Sb

tgx exp
2

d4u d u) Q„(u)D.„(u—u))Q (ii)) (6 6)

with

& [ul= ds'P( l( )dsl u —( (s') + 2

IS Sb

ds(~ (si)~ u (&(sb) + 2

I
Sb

and where we have used the (a, b) indices to distinguish terms coming from the two G [A]. Again, the essential point
is that (6.6) is Gaussian in both P and Pb, and hence the "coherent" maps of form (2.7) are no longer present. If
any number of such G [A'" + A] factors are included, the conclusion will be the same, while the same remark is true
if any of the G[A'" + A) factors are replaced by corresponding I [A'" + A] (each of which has a representation very
similar to that of G [A ""+A]).
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VII. SUMMARY AND DISCUSSION

In this paper we have extended the exact representa-
tion for a scalar Green's function with scalar interaction
to the cases of vectorial interactions of QED and QCD,
and we have seen how the possibility of chaos can ap-
pear in this potential-theory context. We have derived
maps for a central function of each exact representa-
tion whose nonperturbative and exact solutions may dis-
play the chaotic behavior so familiar in so many other
branches of nonlinear science, a behavior here displayed
in terms of the most basic Green's functions G [A]. These
representations may be approximated in a nonperturba-
tive way, by retaining only a finite number N of quadra-
tures of the exact description, and as in the scalar case,
one knows in advance the order of magnitude of the errors
as a f(N)

Many questions and applications may now be phrased
and attempted, and at least partially resolved. For ex-
ample, it is now possible to express, in terms of a few
quadratures, an approximate but reasonable "generalized
eikonal" or (ph) representation for a quark propagator in
a specified gluon background field. This quantity will
be most useful in extending the gluon-sector analysis of
QCD given [13] in terms of a modified field-strength for-
malism; in fact, the entire analysis of Refs. [1] and [2],
and of this paper, originated in attempts to find decent,
nonperturbative approximations for such quark propaga-
tors.

Defined in the presence of "condensed" gluon fields in
the form of thin flux tubes, such quark Green's functions
will not be necessary for an eikonal quark-quark scatter-
ing picture at extremely high energies; but they will most
assuredly be necessary to "anchor" the ends of such thin,
flux tubes to quarks, and antiquarks, before a precise
discussion of confinement can be achieved.

Of course, expressing an answer in terms of a "few
quadratures" does not mean that no further approxi-
mation need be made when evaluating those integrals;
rather, this is an independent question which may well
require some numerical analysis. However, it would seem
to be worthwhile to have even reached this point.

Finally, we have applied our representations to deter-
mine whether quantum chaos, as known in a potential-
theory context, can exist in the full quantum field the-
ory, when all sectors of a quantum system are suscepti-
ble to quantum fluctuations. One might naively expect

that a summation all over relevant classes of potentials
A„will surely contain at least one subclass of potentials
for which chaotic behavior must appear. But it turns
out that the sum over all quantum fluctuations removes
the map which gives a potential-theory Green's function
(with a vector interaction) its distinctive possibility of
quantum chaos, in a manner which has elsewhere been
suggested and termed "induced decoherence. " In fact,
the full quantum field theory does not contain such quan-
tum chaos. The argument presented for QED can be
easily generalized to QCD, and to any other theory (con-
taining a vector interaction).

Various directions for further inquiry are suggested by
the analysis of this paper.

(i) The application of (5.4) and its Rnite-N approxi-
mations to nonperturbative, quark-structure problems of
QCD. Here, one will need a reasonable way of approxi-
mating the map (5.3) and of performing the subsequent
functional integrations J d[n] J d[P], and for this it may
be useful to employ an "eikonal" approximation which
simplifies the argument of A„,in the map (5.3).

(ii) The application of these representations to the cal-
culation of the logarithms of the fermion determinant,
L[A]. Certainly, a reasonably siinple, finite-N approxi-
mation could be useful in many circumstances which re-
quire a nonperturbative estimate of L[A].

(iii) The development of simple numerical procedures
for estimating 6nite-N approximations to G, [A] and
L[A].

(iv) What form of map occurs in a first-quantization
theory with arbitrary tensorial interaction? Must such a
theory contain the possibility of chaos, and if so, is such
chaos suppressed in the full quantum theory'?

These are some of the questions, and possibilities, sug-
gested by the representations of this paper.
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APPENDIX

In order to develop a useful nonperturbative result, one first expands (2.5) in powers of g, with the assurance that
its resummation will be performed in a manner analogous to that of Ref. [2]:

G, (z, y~A) = i dse " dpe'"'l "l(m —ip [p —O(s)]) ) (—ig)"
0 n

8 81 Sn —1

x ds, Q(si ski) ds2q(s2
~
k2) . ds„Q(s„ik„)

0 0 0

dki dk exp iy ) k~

L=1

8 n

xe exp x ds'v(s')
l p —&(s') —) kig(s, —s')

I

o n —+0
(Al)
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where Q(si]ki) = $(si)A(ki) + iaE(ki), and where we have used the form of expansion appropriate to an ordered
exponential (OE). We have also replaced in (2.3) the operator (m —p[b/bv(s)]) by (m —ip[p —Q(s)]), valid since
8) 8;, 8.

The functional operation of the last line of (Al) can be performed immediately, and yields

eXp —2 ds'l p —~(s') —) k,g(s, —s')
l

rl=z

ol

S

exp
~

—i "s'[p —~]'
I
exp

I

+2i ) sipkt —2z ) ki
) l

(ds'n(')
~

exp~ -') k, k ~(s„s ) ~,) &, - ) (A2)

where h(s~, s ) = f~' ds'0(si —s')8(s —s') = 2(si + s —~si —s ~). As in Ref. [2], the heart of this representation
is the replacement of 2 ~s~

—s
~

by the "sawtooth" Fourier series formula below. In the exact representation of ~x~,

7r2 ¹ q 2
(A3)

valid for 0 & ~x~ & 1, set x = (st —s~)/s. Because 0 & s; & s, the expaiision is valid and we obtain the required exact
representation

s 4s ., 1 (K~(si —s ))
2 vr2 ¹ ( s )N

(A4)

where the prime indicates summation over all positive, odd integers, N.
The contribution of i Pi k~ k —h(si, s ) may then be written as

-x ) k(s, ) k + —) k(
7n l

(A5)

Again, it is convenient to introduce the variables K = Pi k~, z = g& kissy,

(A6)

and to rewrite the exponential of (AG), under the J' ds~ of (A2), in the form

(
(2~)4

exp iP.
~

z —) s(kt
~

—iz) ki
d4Kd4

exp iQ
(

K —) ki [+i K—
(~7rsi l

exp iP~ C~ —) ki cos
~ ~

—
~
C~2m. 4 s ) ~'¹)

N l

(A7)

No perturbative index n is needed for any of these auxiliary integrals K, Q, z, P, C~, Qiv, Siv, P~, for exactly
the same integrals, and their weights are needed for every n The first line of (. A7) reproduces the contribution
—(1/2) Q krak (s( + s ) of what was called in Refs. [1] and [2] the "phase-averaged" (ph) approximation, while the
remaining terms of (A7) generate all the corrections.

With (A7) inserted under the integrals of (Al), the "factorized" sum over n may be performed, yielding
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G, (x, ylA) =i dse *' dpe'" ~ "& JP d[O] d[P](m —ip. [p —O(s)]}

( '. ) (x exp
I
i 0 . P I

exp
I

—i ds'[p —A(s')]'
I

xff, exp]iQ ie+ EC*—]ff, e'*'

N
s B

x expl ig —ds'P„(s')A„(:-)
I I

exp +g ds'o .E(:-)
o ) E o

(A8)

I

where = = y —z —Q + s'(2p —P) —2 f ds"O(s") —p'N pN(s'), and pN(s') = PN cos(Nvrs'/s) + QN sin(Nns'/s).
Now, the CN and SN integrations may be performed. , yielding, for each N,

(i7rsN4'] i~2N2

which suggests that a rescaling of all eight components is appropriate

QN-+
I N IQN

(2~s) (2~s)
q~N) q~N)

and leads to

G, (x, ylA) = i
2asm dp e'&(~ w)~' O. P —i [p —~l]'

I

x(m —iy. ]y —ii]e)])f
(—i)'

"-- (2x)4
N

B

x exp
l g ds'cr E(:-)

I)

d4Kd4~
Q K —K

I

d d P
s

d'PNd'QN e»l (PN +-QN)
I
e»I -ig ds'&~(s')A~(=-)

I

(A9)

I

where = = y —z —Q+ s'(2p —P) —gN RN(s') —2 fo 0, with RN = (2+8/AN)pN. Note that if any of the PN, QN
dependence inside A is dropped, the normalization of those PN, QN integrals gives exactly multiplicative factors of
+1.

It is convenient to reflect the variables z + —z, P + P, and then —to make the translation z + z —y+ Q, so
that all y and Q dependence is removed from =. Integrations over Q and K are then easily performed. In momentum
space using

(y]G. ]A]]y') = f dee 'e' dye+*e'eG. ]e, y]A)

one Ands

OO B

(plG. [A]lp') = i dse " JP d[O] d[P]expl i 0 P I(m —ip [p —A(s)]}
0 )

x ' d PNd QNexpl —(PN + QN) I expl
I

d ze

x expl ig ds'P„(s')A„(:-)
I I

—exp g ds'o .E(:-)(
o

" " )& o )+ (AXO)

I

where, now, =~(s') = (~(s') —2 f ds"A„(s"),with ((s') = z + s'P —gN RN(s'), 'P = p + p', q = p —p', and
RN (s') = (2~s/wN) [PN cos(Nms'/s) + QNsin(¹rs'/s)].

Finally, we return to the remaining s-dependent functional integrals, and note that JV f d[P] can be easily performed,
generating
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b O(s') —gA~ ((s') —2

I8

ds"O
i

(A11)

We evaluate this b functional as a product of b(f(O;)), each defined at the mesh point s;, with O; = O(s, ) and

f; = f(O;) = O; —gA[((s;) —2g,' o AsOt]:

dO, b(f;) = df, b(f, ) det
~

(b
qbO) n=n«)

and where O~ ) is the solution of the equation

0( )(s') = gAp I
C(s') —2 (A12)

If there is more than one solution O( ) to (A12), a summation must be made over all such solutions. The product of
all such 8 functions then generates

&bf l
exp —Tr ln~

ibO)
(A13)

in which we suppress the superscript ' ' of 0„,and where(o) (0)

II S

= b„b(s'—s") + 2gg(s' —s") A„i
((s') —2 ds"O(s")

i
. (A14)

Because of the 0(s' —s") factors of (A14), and the corresponding requirement of "retardedness, " the
Trln[bf/bO] factor of (A13) may be replaced by its lowest-order term (which vanishes in the Lorentz gauge),
exp ( —2gg(0) f ds'(8/Bz&)A„[((s') —2 J' O]), leading to the final result stated in (2.6) of the text.
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