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A study of two-dimensional QCD on a spatial circle with Majorana fermions in the adjoint rep-
resentation of the gauge groups SU(2) and SU(3) is performed. The main emphasis is put on the
symmetry properties related to the homotopically nontrivial gauge transformations and the discrete
axial symmetry of this model. Within a gauge-fixed canonical framework, the delicate interplay of
topology on the one hand and 3acobians and boundary conditions arising in the course of resolving
the Gauss law on the other hand is exhibited. As a result, a consistent description of the residual Z~
gauge symmetry [for SU(N)] and the "axial anomaly" emerges. For i11ustrative purposes, the vacuum
of the model is determined analytically in the limit of a small circle. There, the Born-Oppenheimer
approximation is justified and reduces the vacuum problem to simple quantum mechanics. The issue
of fermion condensates is addressed and residual discrepancies with other approaches are pointed
out.
PACS number(s): 11.15.Tk, 11.10.Kk, 11.15.Kc, 11.30.—j

I. INTR.ODU OTIC)N

After the discovery of instantons [1] it became clear
that quantum mechanics of the vacuum state in non-
Abelian gauge theories is nontrivial. Thus, in QCD it
was shown that a noncontractible path in the space of
fields exists; i.e. , one of the directions in the (infinitely
dimensional) functional space is a closed circle. Corre-
spondingly, quantuIn mechanics of the vacuum state is
analogous to that of a particle living on a circle. This
fact results in a wave function of Bloch-type and in the
occurrence of the vacuum angle 8 [2, 3].

At the same time evidence has been mounting that
the simple picture suggested in Refs. [2, 3] is not quite
complete, and a variety of distinct situations can take
place in diferent theories; in particular, the presence of
fermions may a6'ect the underlying quantum mechanics.
Thus, chiral Ward identities in QCD [4] imply that cor-
relation functions in QCD with massless quarks are peri-
odic in 0 with a period, which seemingly depends on the
number of massless quarks considered and is not equal
to 2', as one would expect in the problem of a particle
on the circle. Another indication of a more complicated
vacuum structure comes &om the four-dimensional su-
persyrnrnetric Yang-Mills (SUSYM) theories. Indeed, in
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such theories the gaugino condensate (AA} is nonvanisn-
ing and, moreover, exactly calculable [5]. The calculation
is based on a theorem establishing the holomorphic de-
pendence of (AA) on certain parameters in the SUSYM
Lagrangian [6] (for a brief review see the reprint volume
cited in [1]). While the direct calculation [5] proves that
(AA) g 0 the standard pattern [2, 3] with one circle of unit
length in the K direction (K is the Chem-Simons charge;
see Fig. 1) gives no hint whatsoever on the condensation
of AA, since the number of the gaugino zero modes in the
tunneling transition with ~AK~ = 1 is larger than two for
any gauge group.

If for the unitary groups one can at least hope that
torons [7] resolve the paradox by reducing the length of
the noncontractible contour from 1 to 1/N for SU(N) [7,
8), for the orthogonal and exceptional groups such a way
out is absent, since the torons do not exist in this case.
Moreover, the tentative toron solution of the problem for
the unitary groups does not seem to be appealing, since
the phenomenon of condensation of AA is quite universal
and the condensate (AA) g 0 is present in the SUSYM
theories with arbitrary gauge group.

Thus, it is clear that the existing ideas of quantum
mechanics of the vacuum state in the non-Abelian gauge
theories are incomplete. The possibility of more sophis-
ticated dynamical patterns remains open. Quite recently
it was shown [9], for instance, that in a "twisted" two-
dimensional Schwinger model with two Qavors the stan-
dard picture of Fig. 1(a) valid in the one-flavor model
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FIG. 1. Topology in the space of gauge fields in QCD. (a)
A circle in the space of the gauge fields in the K direction.
The length of the circle is 1. The vertical lines indicate the
strength of a potential acting on the effective degree of free-
dom living on the circle. If we unwind the circle onto a line
we get the picture of (b).

(for a review see, e.g. , [10]) gives place to that of Fig. 2.
For each given value of 0 there are two vacuum states.
The twofold degeneracy and the possibility for the system
to live in the second well, "half way around the circle, "
results in the occurrence of a bilinear fermion conden-
sate, which is not generated in the two-Havor model oth-
erwise. In a sense, the standard gauge principle can be
extended in the two-Havor model at a price of incorporat-
ing an additional symmetry, which reduces the length of
the noncontractible circle in the space of fields by 1/2.

In summary, it appears that the standard topological
considerations may not be sufBcient to account for all
relevant symmetry aspects of gauge theories; as a conse-
quence the theoretical analysis has to be performed on
a more detailed level for achieving a complete overview
of the underlying symmetries. Such detailed analyses are
possible for a few model theories only. Two-dimensional
QCD with fermions in the adjoint representation of the
SU(N) group (QCD~ ~) represents such a model. It is
suKciently simple —transverse degrees of &eedom of the
gauge fields are absent, and we are left with a nontrivial
topological structure in its pure form, not overshadowed
by dynamics of "perturbative gluons. " Moreover, if the
model is considered on a spatial circle of a small size
(as we shall do in most parts of this paper) all interest-
ing phenomena take place in the weak-coupling regime,
so that quasiclassical methods are fully applicable. This

0
a

Such an interpretation of the results referring to the twisted
Schwinger model was emphasized by A. Vainshtein.

FIG. 2. An effective potential energy for the degree of
freedom living on a circle in the twisted two-Qavor Schwinger
model. The point 0' is not the gauge image of O. The true
vacuum state is the symmetric or antisymmetric linear com-
bination of the states concentrated near 0 and O'.

makes the problem solvable. On the other hand, the
model is suKciently rich and some of the dynamical phe-
nomena to be discussed are hopefully relevant also for
four-dimensional QCD. Most importantly, with all fields
in the adjoint representation, this model exhibits non-
trivial topological properties [11,37]; the gauge group is
SU( N)/Z~ and not SU(N) as is the case for fermions
in the fundamental representation. Subtle difFerences in
topology of the configurational space can be the source
of qualitative di8'erences in the quantum mechanics of
systems that are similar otherwise. This is well known
from other branches of physics; an example is provided,
for instance, by the so-called nematic systems. The dif-
ference in topological properties of the magnetic and
nematic systems leads to distinct quantum mechanics.
The configurational spaces in these two cases are S and
S /Z2 RP, respectively; this "small" distinction gives
rise to macroscopically diferent properties such as the
stability of certain singularities (line singularities) in the
nematic but not in the magnetic substances [12].

Related to the nontrivial topological properties
(7ri[SU(N)/Z~] = Z~) instantons and bilinear fermion
condensates appear in QCD2 ~ [ll] much in the same way
as in QCD4. The fact that QCD2 with adjoint fermions
has a kind of 0 vacuum was noted in Ref. [13], where
it was also found that the SU(N) theory has N vacuum
states. Some other general features of four-dimensional
QCD also find parallels in this two-dimensional gauge
theory, as follows &om the recent analysis of the large N
limit of the model [14].

In this work we deal mainly with the gauge groups
SU(2) and SU(3). It will be shown that the quantum-
mechanical structure of the vacuum state in these two
cases difFers significantly.

We shall investigate QCD2 within the canoiiical
"gauge-Axed" formalism, which is easily derived &om the
axial-gauge representation of (3+1)-dimensional QCD
[15]. Within this formalism, the dynamics is described
exclusively in terms of unconstrained degrees of &eedom.
As a consequence of the elimination of redundant gauge
degrees of &eedom the topological structure in the space
of gauge fields is implemented in a peculiar although
quite explicit form. This is generally the case whenever
gauge theories are formulated in terms of physical vari-
ables only. One actually 6nds in such unconstrained for-
mulations residual symmetries, i.e., symmetries that are
not associated with small gauge transformations. The
generators of these residual symmetries in both Abelian
and non-Abelian gauge theories have been completely
specified [15—17] and play a key role in our analysis of
quantum mechanics emerging in QCD2

The questions of gauge Axing and quantization in two-
dimensional QCD were discussed in the literature more
than once [18—25]. As we will see below, some of the con-
clusions and results obtained previously are incorporated
in our analysis, while we disagree with others.

In this work we take up the issue of residual symmetries
(as formulated in [15]) in the specific context of QCD2 '.
Consideration of this model helps us understand, in the
language of quantum mechanics, implications of the topo-
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logical properties. Furthermore, our analysis demon-
strates a possibility of revealing symxnetries in the pro-
cess of elimination of redundant variables —symmetries
which are seen in the &amework of unconstrained degrees
of &eedom but are implicit in the original formulation.

We work within the Hamiltonian formalism, which pro-
vides a particularly convenient &amework for eliminat-
ing the redundant gauge degrees of freedom along the
lines suggested in Ref. [15] for QCD4., in turn, the re-
sults of the present detailed investigation of QCDz will
shed light on general properties of such a gauge-fixed
formalism. Technically, the fermions are assumed to be
described by real Majorana fields. Then QCD2 ' is for-
mulated on a finite-size interval (spatial circle), with the
requirement

gI ((1,
where g is the gauge coupling constant and L is the size of
the interval. This additional condition ensures that the
quantum-mechanical reduction of the problem emerging
in this way belongs to the weak-coupling regime, and the
structure of the vacuum state can be treated quasiclas-
sically. The general strategy is very close in spirit to
that accepted previously [10] in the Hamiltonian anal-
ysis of the Schwinger model on a circle (cf. also [26]).
Among other more technical issues, the spectral How of
the fermion levels is considered, and the topological rea-
sons for the occurrence of the fermion zero modes [ll]
are explained.

As we will see, the residual symmetries of the theory
can manifest themselves in fermion condensates form-
ing in the corresponding ground state. The fermion
condensates serve as a convenient indicator of a vac-
uum structure. The question of the fermion conden-
sates in QCD2 ~ and a related interpretation of the
structure of the vacuum state were discussed recently
in Ref. [11] within the Euclidean (path integral) for-
mulation. If QCD2 is treated on a cylinder S B, it
has instantons —trajectories interpolating between gauge
equivalent points in the space of fields corresponding to
minima of the eBective potential energy. These points
are connected by gauge transformations that are not con-
tinuously deformable to unity (although in this case the
situation is more complicated than just a simple circle
of QCD4). The instantons generate fermion zero modes.
If the gauge group is SU(2) the number of zero modes
is two, exactly what is needed to produce the bilinear
fermion condensate. For higher gauge groups, however,
the number of the fermion zero modes in the instanton
transition is larger than two, so that the bilinear con-
densate does not appear within the standard instanton
calculus. On the other hand, an independent solution
of the model based on bosonization seems to show that
the bilinear fermion condensate develops irrespectively of
what particular gauge group is considered. This paradox,
mentioned in Ref. [11],is obviously perfectly identical to
the one we face in the four-dimensional SUSYM theory.

In our explicit construction of the vacuum wave func-
tion, the symmetry properties and related tunneling phe-
nomena are realized explicitly, in the familiar context of

the quantum mechanics of few dynamical degrees of free-
dom. Thereby an intuitive picture of dynamics emerges,
which may be useful in future attempts to resolve the
"condensate paradox. "

The paper is organized as follows. In Sec. II we re-
view the Hamiltonian approach to QCD2 ~. The canon-
ical quantization is carried out, and the remaining (un-
constrained) gauge variables are specified. The topology
of the corresponding fundamental domains is discussed
in detail. Section III is devoted to the structure of the
vacuum state. The vacuum wave function is explicitly
built in the limit gL (( 1. The analysis is conducted
separately for SU(2) and SU(3) theories. The vacuum
wave function is then used for calculating the fermion
condensates. We also derive anomaly relations ar d in-
dex theorems relevant to QCD2 '. Finally we extend our
symmetry considerations beyond the weak-coupling ap-
proximation. Section IV contains our conclusions and an
outlook.

II. HAMILTONIAN APPROACH TO QCD2

A. Formulation of the problem

The Lagrangian of (1+1)-dimensional QCD coupled to
Majorana fermions @ in the adjoint representation is

2 = tr ——I'""E„+z D„p" 2P 5'

with the Beld strength tensor E„= 0&A —6 A„+
ig [A„,A„]. The standard matrix notation is used so that

F„—= F„t and v/r=g t,
where t are the generators of the group, and [t, t~] =
if 't' [t = (I/2)o for SU(2) and t = (I/2)A for
SU(3)]. Moreover, the covariant derivative acts as

D„=8„+ig[A„, ] .

With the following choice of the p matrices,

0 5= o.2, p = zoi, p = o.3,

the Majorana spinors can be chosen real. In this "chiral"
representation the right-handed fermion Beld is the upper
component of g, w'hile the left-handed fermion field is the
lower component.

The theory is considered on a Bnite-size spatial inter-
val )

compactiBed to a circle by imposing periodic boundary
conditions on the gauge fields,

If T is the generator of the gauge group in the adjoint
representation, (T ) = if, then the covariant deriva-
tive can be written as iD„= iB~ —gA„T . Correspondingly,
F~„=B„A„—B„A„—gf 'A„A'„. The definitions of the left-
and right-handed fields and p5 below follow Bjorken and Drell
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A„(x = 0) = A„(x = L) .

As for the fermion fields, it is slightly more convenient to
impose antiperiodic boundary conditions:

Before we proceed to quantization let us discuss some
general topological properties [11, 13] of the theory de-
fined by the Lagrangian (2). First of all, since all fields
considered are in the adjoint representation of the gauge
group, the elements of the center of the group act on
them trivially. In other words, the gauge group of the
model is not SU(K), but, rather, SU(K)/Z~. This fact
is very important, since it leads to a nontrivial topology
in the space of the gauge fields. Indeed, vri[SU(K)] is
trivial, while vri[SU(N)/Ziv] = Ziv. The latter aspect
reminds us of four-dimensional QCD. The parallel is not
perfect, though. Indeed in QCD4 it is mrs[SU(N)] = Z
that counts, and we arrive at one noncontractible contour
with the topology of a circle (Fig. 1). In other words,
if U(x) is a gauge inatrix corresponding to the winding
number K = 1 (one full rotation over the circle), U will

represent two rotations, Us three, etc. In QCD2 i, say
with the SU(2) gauge group, the analogous matrix U(x)
is nontrivial, but U is already continuously deformable
to the unit matrix, so that two rotations have the same
efFect as no rotation at all. Correspondingly, the two-
instanton configuration [the N instanton configuration
in SU(N)] is topologically trivial.

Graphically the topology of the manifold of an ana-
logue quantum-mechanical system might be depicted as
in Fig. 3 [for SU(2)]. The two circles are actually equiva-
lent to each other, but to make both of them visible they
are split in two and slightly distorted. The analogue par-
ticle moves, starting from the point 0, along the larger
circle in the direction indicated by the arrow, approaches
0 and then moves along the smaller circle in the oppo-
site direction, "unwinding" the path. At the point 0
we, clearly, deal with a singularity whose presence seems
to invalidate the whole picture. The general topologi-
cal arguments do not indicate how these properties can
actually be realized. in the quantum mechanical context
of the relevant gauge degree of &eedom. Our detailed
calculation will unravel the solution to this problem.

From the general properties of the canonical formal-
ism the wave function will be shown to vanish at this
point independently of any details of dynamics. There-
fore, the particle motion can be considered only on one
of the two circles of Fig. 3; the configurational space of
the problem is a manifold with boundaries. This mani-
fold will be referred to as the fundamental domain and
will be discussed in more detail in Sec. IIC. Here we
only note that dynamics on the second circle of Fig. 3 is

FIG. 3. Topology in the space of fields in @CD~ " with
the gauge group SU(2).

not independent and is just a gauge replica of that of the
fundamental domain.

If a single Majorana 6eld in the adjoint representa-
tion is considered, as we shall do here, such a theory has
no continuous fermion symmetries whatsoever. Indeed
the real fermion field does not allow any phase rotation,
neither for the left-handed nor for the right-handed corn-
ponents. There exist no conserved gauge-invariant (col-
orless) fermion currents, since

tr(@p„g)—:0 and tr(vga„ps@) = 0 .

We shall see later, however, that one can define a colored
vector fermion current which, in a certain gauge, is con-
served in the normal sense —its regular, not covariant,
divergence vanishes. The divergence of its p~p5 partner
has an anomaly looking similar to the axial anomaly in
the Schwinger model (in the limit gL && 1).

With n Majorana 6elds the Lagrangian of the model
would possess a global O(n) x O(n) symmetry. Any bilin-
ear fermion condensate would necessarily break a part of
this symmetry spontaneously. Since in two dimensions
spontaneous breaking of continuous symmetries cannot
take place, such a model would be protected &om the
generation of bilinear condensates and, although essen-
tial features of the dynamics remain intact, the analysis
would become more involved. This is the reason why for
the time being we focus on the one-Qavor case. Our model
is engineered to be a prototype of QCD4 with one mass-
less quark. Multi8avor generalizations would be closer to
QCD4 with two or more massless quarks.

B. Canonical quantization

We now proceed to the quantization of the system de-
scribed above. Since, as in any gauge theory, we deal here
with a large number of redundant (gauge) degrees of free-
dom, two alternative aproaches might be applied. One
possibility is eliminating the gauge degrees of IIreedom
at the classical level and then quantizing the remaining
physical degrees of &eedom. This is the most commonly
used procedure, which, however, seems to be &aught with
certain ambiguities concerning the kinetic energy of the
gauge-fixed degrees of freedom (cf. Refs. [19,27] versus
Ref. [15]). The other possibility is to quantize the system
in the Weyl gauge,

Ap ——0,

with part of the redundant variables (the space compo-
nents of A„) subject to constraints, and to resolve the
constraints at the quantum level. This second alternative
has the attractive feature that the quantization is com-
pletely straightforward. We shall explain in detail how
this works in the present case and how we deal with the
constraints. Our final results will shed light on the conse-
quences associated with the ambiguities of the "classical"
gauge-fixing procedure and thereby help to resolve these
issues.

In the Weyl gauge, the Gauss law is not an equation
of motion but has to be imposed "by hand. " Canonical
quantization is straightforward, yielding N —1 gauge
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field variables A& and their conjugate variables, the elec-
tric fields E . The Hamiltonian for QCDz ' is

I 1 2EI = dx tr E ——hP~sD&g j0 2

The Gauss law is implemented as a constraint on the
physical states:

(a,E(~) —'g A'(~), E(x) —gp(x)) le)

= [D E( ) —gp(*)] le) = o .

Here p is the fermion color charge density in the matrix
representation:

Note that here and throughout this paper, we shall use
the letters a, b, etc. , belonging to the beginning of the al-
phabet for the A —1 generators of the algebra, while
those of the Cartan subalgebra will be denoted by p,
q, . . . . The corresponding summation conventions are im-
plied in equations such as Eq. (9).

At this stage, the Hamiltonian still contains the full
gauge field A . However, one can construct a unitary
transformation, which eliminates all modes of A except
for 2V —1 spatially constant quantum-mechanical vari-
ables a", related to the eigenvalues of the path ordered
exponential winding around the circle:

L
Texp ig dxA x = Ve'g Vt a = a tP

pij — u(ta) (qikykj @kj @ik)
1

(8)
(1o)

where the summation over the I orentz indices of @ is
implied. From now on, we always have in mind Eq. (7)
when talking about physical states or the physical sector
of Hilbert space.

In this &amework, the technically demanding part is
not the quantization but the resolution of the Gauss law.
In two-dimensional QCD, this issue is particularly cru-
cial, since the dynamics of the gauge field is almost ex-
clusively governed by the Gauss law constraint. Vari-
ous techniques to resolve the Gauss law have been ad-
vocated in the literature. Recently, a method based on
unitary transformations in the Hilbert space (rather than
on a change of variables in the Schrodinger representa-
tion [28]) has been developed [16, 17) and successfully
applied to four-dimensional QCD on a torus, in a mod-
ified axial gauge [15]. Since the axial gauge singles out
one space direction, the results of Ref. [15] can easily
be adapted for QCD2. Without repeating all details, we
brieBy sketch this gauge-fixing procedure and collect the
pertinent results.

In the first step, one tries to resolve the Gauss law con-
straint (7) for E(x) and to substitute the corresponding
expression for E(x) in the Hamiltonian (6), restricting
oneself from the outset to the physical sector. This re-
quires inversion of the covariant derivative Dz viewed as
operator in color and configuration space, which is most
conveniently done after diagonalization. One finds that
Di has generically (i.e., for arbitrary A ) K —1 zero
modes. The projections of E onto these zero modes, de-
noted by Le",p = 1, . . . , N —1, are obviously not con-
strained by the Gauss law and remain as physical vari-
ables in the Hamiltonian; however, because of the use of
a dynamical basis the eigenfunctions of Dq depend on
the gauge field A they are non-Hermitian quantum-
rnechanical operators. The projections of E onto the
nonzero modes of Dq on the other hand can be elimi-
nated in the space of physical states in favor of the (mat-
ter) color charge density, p, and Ai (through the inverse
of the operator D&, where the prime means that zero
modes are emitted); schematically:

This procedure is satisfactory because one can show
that the constant electric fields e" (projection of E onto
the zero modes of Di), and the zero mode "gluons" a&

(closely related to the eigenvalues of Di) are conjugate
variables satisfying standard commutation relations

Q~~@) = / dT/(T))C) = 0

(12)
One characteristic feature of this method is the fact that
e" is not Hermitian, although the Harniltonian is. This is
completely analogous to the transition &om Cartesian to
polar coordinates in quantum mechanics, where e" would
correspond to the non-Hermitian radial momentum op-
erator r V'/i. In both cases, a Hermiticity defect arises
when projecting the momentum operator on a dynami-
cal, i.e., coordinate-dependent (A and r, respectively),
basis. As in the familiar case of the polar coordinates,
the kinetic energy can be rewritten with the help of an
appropriate 3acobian in the form

1 1 1 8 (9ePt eP J a
21 21 J [a] Ba& (9ai'

The Jacobian J[a], in turn, can be readily deduced from
the non-Hermitian part of e". In the SU(N) case one
finds that J[a] is just the Haar measure of this group,

J[a] = sin
l

gI(a; —a, ) l, —') '

(no summation over i), ) a; = 0,

[e",a i] = —.b„~ p, q = 1, . . . , N —1 .
Z

"'
The resulting theory still has global constraints: The pro-
jection of the Gauss law onto the zero modes of Dq yields
N —1 residual, x-independent constraints, which, after
the gauge-fixing unitary transformation, are reduced to
the condition that the neutral fermion charges vanish:

reQecting the transition &om elements of the algebra
(vector potentials) to elements of the group (path or-
dered exponentials) in the gauge-fixing process.
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Eventually, we arrive at the following Hamiltonian de-
scribing the dynamics of the gauge variables a" and the
fermion degrees of &eedom in the space of physical states:

H =K +H~+Hg„

K is the kinetic energy of the gauge degrees of &eedom,
Eq. (13). Hc is the color electrostatic energy ("Coulomb
energy") appearing in the elimination of the electric field
by means of the Gauss law; cf. the second term on the
right-hand side of Eq. (9):

s" (u) &'(~) 2' ( — )/L
o o ('~" + g (a; —a, ))'

The fermionic part of the Hamiltonian has the form where [cf. Eqs. (8) and (19)]

Hr„= i dx —tr (/os (Big —ig[a, @])).
0

The fermion degrees of freedom are quantized in a stan-
dard way via

where the b function h~ ~(x —y) is the one appropriate
for an interval of length L and antiperiodic boundary
conditions.

It is convenient to classify all fermion fields with re-
spect to color degrees of &eedom in the following way.
First, we single out the "neutral" components of the
fermion field, Q", p = 1, ..., N —1. It is obvious that
they are not coupled to the gauge degrees of freedom a".
They only take part in the Coulomb interaction, which
is suppressed in the small interval limit.

The off-diagonal components of the fermions are
charged with respect to the neutral zero-mode gluons a".
We introduce 2N(K —1) charged fields

q'= &p = f d
I )v' v' )w v'

0 0 A)i A:&i

(no summation over i).
The appearance of the Jacobian [cf. Eqs. (13) and

(14)] in the kinetic energy of the quantuin-mechanical
gauge degrees of &eedom will turn out to be vital for
the self-consistency of our quantum-mechanical solution
of the problem. The eigenvalue problem with the Hamil-
tonian H defined in Eqs. (13), (15), (16), (22), and (23)
has the form

Hj@) = Ei@),

where ~4) denotes a state vector in the physical space.
We can perform a similarity transformation and proceed
to a different wave function, which, for brevity, will be
referred to as "radial":

In the space of the radial wave functions, the kinetic en-
ergy operator acts as

y" = v2$", p"t = v 2@" (for i (j), (19)

, p ~
y =b pbgbrb~) —y (2O)

With these definitions the fermion part of the Hamilto-
nian takes the form

satisfying the standard canonical anticommutation rela-
tions [cf. Eq. (18)] (27)

(with the notation oj„= 8/Ba"), i.e. , as the standard
Laplace operator supplemented by an "effective poten-
tial. " In the present case, this effective potential turns
out to be a constant

Hg„= Hg + H~(a),

where

(21)
(8~8pV J) = — N(N —lj, (28)

and

L

Hy = —. dx@"osBi@",
2x 0

(22)
which can simply be dropped, since it merely shifts all
energy eigenvalues by the same amount. The only remi-
niscence of the Jacobian will then be the boundary con-
dition for the radial wave function,

(a) = ) dxp"to. s
~

—.Bi —g(a, —a, ) ~

y".
gi )

The theory is supplemented by the neutrality conditions
(12), which in our present notation read

(24)

@[a]= 0 if J[a] = 0,
analogous to the condition that the radial wave function
vanishes at r = 0 when working with polar coordinates.

We also note the correspondence between the electro-
static field energy H~ and the centrifugal barrier in the
conventional radial Schrodinger equation. Both are sin-
gular at the points where the respective Jacobians have
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zeros. Indeed, the Coulomb interaction part H~, Eq.
(16), is formally ill defined whenever o,; —az ——2vrn/gl, ,
exactly where the Jacobian (14) vanishes.

Before discussing the symmetries of this theory, let us
brieHy comment on the alternative quantization scheme
mentioxied at the beginxung of this section ("complete"
classical gauge fixing followed by quantization). Here one
starts &om the observation that all nonconstant modes of
A car. be "gauged away. " The remaining constant modes
of A, by global rotations in the color space, can be re-
duced to a diagonal matrix. Thus, the physical degrees
of freedom in A are the constant modes of A '" [where
the index p runs again over N —1 values correspond-
ing to the Cartan subalgebra of SU(%)]. Moreover, Ao,
the time component of the gauge potential, enters the
Lagrangian without time derivatives. This means that
it is not dynamical and can be eliminated altogether by
means of the equations of motion. In this process, the
Coulomb interaction is generated.

This scheme has been followed, for example, in Ref.
[27] (in light-cone coordinates, but this is immaterial for
the present discussion of gauge fixing). For the Schwinger
model, the resulting formulation is indistinguishable from
the one derived via the Weyl gauge. For QCD2, however,
the Jacobian was missed, so that the Hamiltonian looks
exactly like the one above (after going to the radial wave
function and the standard form of the kinetic energy),
but without the boundary condition (29) and the eKec-
tive potential. We conclude that this &amework is not
yet completely defined, unless one is able to recover the
3acobian &om some other source.

The origin of this discrepancy can easily be singled out:
In QED2, the physical (gauge-invariant) variable on the
circle is the zero mode of A (x):

so tangible that it seems the most natural method within
the canonical &amework. Moreover, the technique of re-
solving the Gauss law via unitary transformations has
already proven to be helpful in clarifying the physical
meaning of the residual gauge symmetries in the case of
Abelian theories [16, 17].

It is in order to note that the Hamiltonian emerging in
this way in SU(2) QCD2 after the transformation (25)
is locally indistinguishable &om the Hamiltonian one gets
in the Schwinger model after the gauge-Axing procedure
(provided that we neglect, for the time being, the term
IIc, which is inessential in the limit gI (( 1). The "ana-
log" Schwinger model we end up with is the model of
one Dirac fermion with unit charge coupled to a neutral
"photon" a. Similarly, the SU(3) case looks locally like a
generalization of the Schwinger model to the gauge group
U(l) xU(l); here, two neutral "photons" a and a are
coupled to three Dirac fermions:

(p ) p ) and p

The as charges of these fermions are 1, 1/2, and —1/2,
respectively, while the as charges are 0, i/3/2, and i/3/2.
The distinction between QCD2 ~ and the Schwinger
model, which is absolutely crucial, shows up only in the
global properties, namely, the domain where the vari-
ables a live, how diferent points on the corresponding
manifolds are glued, etc. We proceed to a discussion of
this issue.

C. Fundaxnental doxnain, residual syxnxnetries,
and large gauge transforxnations

Therefore, it is suIIIicient to simply discard the nonzero
modes of A as one would do in naively fixing the gauge
to BA /Bx = 0. In QCD2, the correct gauge-invariant
variables are not the standard zero modes of A, but
rather the elements of the diagonal matrix a de6ned as
[cf. Eq. (10)]

ln ~V 'Pexp ig
xgI (31)

One cannot keep track of the difFerence between Eqs.
(30) and (31), which is responsible for the nontrivial Ja-
cobian in the QCD case, if one simply drops certain color
and Fourier components of the A field at the classical
level. In order to do it correctly, one presumably would
have to implement the gauge condition classically as a
change of variables, in a Hamiltonian &amework, and
then quantize the theory in curvilinear coordinates. The
fact that at least in the present example one only misses
a boundary condition suggests that there might be some
shortcut, but we are not aware of it (some discussion rel-
evant for this issue can be found in Refs. [22—25]). In
any case, the conceptual advantage of the Weyl gauge is

In the preceding section the dynamics of the gauge
fields was reduced to that of the residual gauge variables
c" by resolving the Gauss law. Let us first discuss the
range of values these variables can take on. In the pro-
cess of gauge fixing, the a" are only defined via group
elements, namely, the eigenvalues of the path ordered in-
tegral around the circle; cf. Eq. (10). Therefore, gLa,
are angular variables, which are only defined modulo 2m.
If we impose the two conditions that the parametriza-
tion is one to one and permutations of the eigenvalues do
not lead out of the domain, then the definition of such a
domain for the variables a" is unique. We will call this
domain the elementary celL For SU(2), it is the interval

with the end points identified [Fig. 4(a)]. The points
where two eigenvalues of the matrix Eq. (10) cross are
0 and + &, therefore, exchanging aq with a2 maps the
two half intervals onto each other: o,s —+ —as (recall that
ox = as/2, a2 ——as/2).

For SU(3), the corresponding construction can easily
be found with the help of the standard Gell-Mann ma-
trices A and A, which yield
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gLa3
2
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FIG. 4. Elementary cell and fundamental domain of the
gauge field variables a" as defined in the text. (a) SU(2) and

(b) SU(3) gauge group. The thick lines delimit the funda-
mental domains. The dashed lines in (b) and the midpoint
of the interval [0, m] in (a) separate regions within the fun-

damental domain, which are gauge copies under large gauge
transformations.

hexagon should be identified, since they correspond to
angles di6'ering by 2m.

Construction of the elementary cell is not the end of the
story, however. We could have factorized it with respect
to the Weyl group. In other words, wi still have the free-
dom of performing (topologically trivial) gauge transfor-
mations, which will order the eigenvalues. For instance,
in the SU(2) case, if a is negative, we can perform a
global rotation in the color space by vr around the erst
axis. This rotation maps the interval 27r/—(gl ) ( a ( 0
onto the interval 0 ( a ( 2~/(gI) (simultaneously,
p m p ). In this way we arrive at the notion of fun-
damental domain, a domain of variation of a's emerging
after we use all gauge &eedom residing in the topologi-
cally trivial gauge transformations. Further reduction of
this domain (identification of points that are gauge im-
ages of one another) is possible oiily by invoking "large"
(topologically nontrivial) gauge transformations.

Generically, if we specify the gauge by prescribing the
ordering of the eigenvalues, we restrict ourselves to the
fundamental domain smaller than the elementary cell by
a factor of (I/K!), namely, half the interval in SU(2)
and one equilateral triangle in SU(3). In fact, these fun-
dainental domains are separated by points [in SU(2)] or
lines [in SU(3)] of the vanishing Jacobian; hence, they are
dynamically decoupled anyway. This singles out these
smaller, fundamental domains as the relevant ones, and
we choose them as (see Fig. 4)

1&s 1 s, a=-[ a+ a
2

1 s 1
a, = — —a+ a

2 3
1 8a3 = — a (33)

Here, two out of the three eigenvalues of the matrix equa-
tioii (10) cross along the lin. es

gI a3 gL a3 gL a8

2
' 2

—=n7r, + +v3 -=2n~ (ncZ).
2

At the points of intersection of these lines, all three eigen-
values are equal. The resulting elementary cell is the
hexagon shown in Fig. 4(b) in the (a, a ) plane. If
we tile the plane with such hexagons, then shifting any
of the three angles gLai by 2' maps this domain onto
another such hexagon. Our choice is singled out by the
condition that permutations of the eigenvalues just map
the diferent subtriangles onto each other, so that the
full domain is invariant. Note that opposing sides of the

in SU(2) and SU(3),

in SU(3). (35)

a, -+ a; + k, ) k; =—0, k, C Z
g1i

27ri(k; —k~)x//L ij I,p ~ „(,p

Central conjugations Tc (n):

The fact that these fundamental domains are a closed
interval or triangle guarantees the existence of discrete
spectra and normalizable wave functions, in contrast with
the case of polar coordinates.

We now turn to the formal symmetries of our Hamil-
tonian. For this discussion it is actually advantageous
not to restrict the range of variables as described above
but rather work with variables of the covering space. As
shown in Ref. [15], these symmetries are the leftovers of
the original local gauge symmetry in a gauge-fixed for-
mulation. Since these residual symmetries can easily be
verified in the present case, we only summarize the re-
sults.

Displacements TD (k):

2'
a, ~a, + v; [v, =n(1/K —b'av), n=1, . . . , 1V —1],

gL
ij ~ 2+i(v; —v~ )~/L ij,j,p ~ (,p (37)
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Permutations of the basis of color [P(l) . . P(N)]:

pic ~ @P(i)P(j)

Global, color diagonal transformations:

v" ~ "" "v",

(38)

(39)

U(x) = e' ~ (40)

More generally, all U(x) can be classified according to
the relation

U~(L) = +Up(0) .

All transformations U are topologically nontrivial, but
can be deformed into each other by small gauge trans-
formations U+. The square of any U clearly belongs to
the topologically trivial class.

It is obvious how to generalize this to SU(N): The
gauge group is SU(N)/Z~. Topologically nontrivial

where P, are real numbers. The permutations (38) are
awkward to write down in the basis of v/r", y'~ for general
%, so that we have used here the original fermion fields
@'~ instead. For SU(2) and SU(3), the conversion can
easily be made if needed. The global symmetry (39) re-
flects the fact that the residual neutrality condition (24),
the remnant of the original Gauss law constraint, has not
yet been implemented, and trivially reduces to 1 in the
space of physical states.

It is instructive to confront these formal symmetries
of the system when using variables in the covering space
with the choice of the fundamental domain. The displace-
ments (36) shift the fundamental domain to some other
possible domain, since an angle gLa; gets shifted by 2m.
The permutations have already been discussed. The cen-
tral conjugations amount to a shift of a by 2vr/(gL) (half
the length of the eleinentary cell) for SU(2), and to a shift
of a by 4m/(i/3gL) (half the "diameter" of the hexagon)
for SU(3). Clearly, restriction of the variables to the fun-
damental domain renders most of these symmetries not
very useful at this stage. How this is resolved can best be
explained with the help of the concrete examples below.

As a last item, we discuss the large gauge transfor-
mations and their relation to the symmetries of our
Hamiltonian. First consider SU(2). As discussed in Sec.
II A, the elements of the center of the group act triv-
iaHy if the fermions are in the adjoint representation of
the group. The gauge group is actually not SU(2) but,
rather, SU(2)/Z2 [or SO(3)]. Thus, we need to discuss
mappings of the (spatial) circle onto SU(2)/Z2. As is
well known, vri[SU(2)/Z2] = Z2, i.e., there exist matri-
ces U(x) defined on the circle and not continuously de-
formable to the unit matrix. It is easy to construct an
example of such a matrix. Indeed, the group space of
SU(2)/Z2 is the three-sphere S with the end points of
any diameter identified. A mapping of the circle starting
&om the south pole of the sphere, going along a merid-
ian and ending up at the north pole is, therefore, allowed,
and it obviously cannot be continuously deformed to the
trivial mapping: for example,

transformations are just the gauge transformations dif-

fering by a nontrivial center element if one goes around
the circle,

U, (L) = zU, (0), (42)

How does a behave under these gauge transforma-
tions'? lf we go back to the defining relation (10) and
perform a local gauge transformation U(x), we get

P exp ig dxA (x)
o )

I,
m U(L)P exp ig dxA (x) U(0)

= U(L)ve's VtU(0) .

Together with Eq. (41), this yields

Ve' Vt -+ +U (0)ve's V Ut (0)

(44)

(45)

where the plus sign holds for small and the minus sign
for large gauge transformations. It is tempting to con-
clude Rom this that a gets shifted by —or —.ThegL gL'
detailed transformation property depends on the precise
definition of the fundamental domain. Since one only
knows how the exponential transforms, one cannot infer
&om that how the exponent transforms, unless one fully
specifies how to take the logarithm. Furthermore, the or-
dering of the eigenvalues is involved. Fortunately, it will
turn out that the present formalism projects out the rele-
vant symmetry without the necessity of submerging into
these subtle issues. Moreover, the gauge transformations
gluing the points at the boundaries of the fundamental
domains are easily identifiable, both for SU(2) and SU(3).

Repeating a similar analysis for SU(N) yields the
transformation property

v.'"'vt ~ .U, (o)v.'"'vtUt(0)

ueder gauge transformations belonging to the homotopy
class labeled by the center element z. Because of the
restriction to the fundamental domain, it is again difEcult
to directly read o8' the transformation properties of the
a". The presence of the Jacobian allows us to proceed
without detailed knowledge of this.

The preceding discussion refers to the Weyl gauge,
where we still have the &eedom of local, time-
independent gauge transformations. The question arises
what happens to the gauge transformations after resolu-
tion of the Gauss law, and how they are connected to the
formal symmetries of the gauge-fixed Hamiltonian.

On general grounds, one would expect the following:
Topologically trivial gauge transformations can be gen-
erated by the Gauss law operator and should be reduced
to 1 in the physical space. All nontrivial transforma-
tions U, (x) belonging to a given z are deformable into

where z is the nth root of unity (g 1):

z = —1 for SU(2), z = e' ~, e' for SU(3) .
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each other and therefore equivalent in the physical space.
Thus, after gauge fixing, we expect a global residual sym-
metry with Z~ group structure as the only remnant of
the original local gauge symmetry, directly exhibiting the
topology of the large gauge transformations.

How do the local gauge transformations U(z) behave
under gauge fixing? In QED4 or the Schwinger model,
it is indeed easy to follow this explicitly [16, 17]. It was
found that the residual symmetry [here only a U(1) dis-
placement symmetry] corresponds directly to the homo-
topically nontrivial gauge transformations. In QCD, the
situation is less clear [15]. One can show that any gauge
transformation is reduced in the process of gauge fixing to
a residual symmetry transformation, but the connection
between the original gauge function and the particular
residual symmetry transformation could not be estab-
lished in all details due to technical difBculties. In addi-
tion, the large number of formal symmetries of the type
(36)—(39) does not seem to match the expected group
structure (Z for the case of QCD4, Z~ for the case of
QCD2 ~). The present model will enable us to clarify
this issue. Rather than trying to do it formally, we pro-
ceed to concrete applications to SU(2) and SU(3), where
the general theoretical expectations will indeed be con-
firmed.

A. SU(2): Vacuum, symmetries,
and fermion condensate

The physics content of the preceding formal devel-
opments is first exhibited by application to the techni-
cally simple case of SU(2) QCD2 ' on a small interval
(gL « 1). In this limit, the relevant part of the Hamilto-
nian is that of the charged fermion, neutral gluon system
of Eqs. (13) and (23):

fl ~ 1 B'
H(p = 8x(p os

l

—.Bi —ga
p (i ) 2L Bo (47)

the fundamental domain, the Dirac sea must be restruc-
tured correspondingly. Hence, in different sectors of the
fundamental domain the fermion component of the wave
function is different, and the effective potential energy for
the a"'s is also different. The full vacuum wave function
is a linear combination of the wave functions in different
sectors. We shall explicitly construct the fermion com-
ponent in each of the sectors, find the effective potential,
and solve the Schrodinger equation in the variables a".
Two specific cases, SU(2) and SU(3), will be considered
separately.

III. THE STRUCTURE OF THE VACUUM STATE

Once the quantum-mechanical reduction of QCD2 ~ is
completed we can proceed. to determine the wave function
of the vacuum state. The construction can be carried out
in the Born-Oppenheimer approximation: We first freeze
the variables a" and calculate the effective potential en-
ergy as a function of a" by "integrating out the fermion
degrees of &eedom. " Then we study quantum mechanics
of the variables a" living on the manifolds specified above.
At this point the boundary conditions on C, the vanish-
ing of the "radial" wave function at zeros of the Jacobian,
become important. The use of the Born-Oppenheimer
approximation is justified a posteriori, since the typical
&equencies of the quantum-mechanical variables a" are of
order g, while those characteristic of the fermion degrees
of freedom are of order 1/L, (almost) everywhere inside
the fundamental domain. If gL (( 1, as we shall assume,
the fermion &equencies are much larger than those refer-
ring to a". The Born-Oppenheimer approximation and
the effective quantum-mechanical description in terms
Gf a" may fail only near exceptional points where the
fermion levels cross the zero-energy mark. These points
exist and play their role in our analysis. They will be
discussed in due course.

The general strategy in calculating the effective a&-

dependent potential is the same as the one usually ap-
plied in the Hamiltonian approach to the Schwinger
model; see, e.g. , Ref. [10]. For each given value of o,"
we fill the Dirac sea appropriately, so that all negative
energy levels are occupied and all positive energy lev-
els are &ee, and then we find the energy of the Dirac
sea thus constructed. Since some of the fermion levels
cross the zero-energy mark at certain values of a" inside

where we have denoted the fermion and gauge-field de-
grees of &eedom by

3a=a =ai —a2 (48)

to ease the notation. This Hamiltonian acts on the space
of radial wave functions satisfying the constraint

4 (a = 2nvr/gL) = 0 .

The iieutrality condition [cf. Eq. (24)] reads

0'l~) =(&.—&2) l~) = d*~'~lc') =o (5o)

The formal symmetry transformations leaving the Hamil-
tonian invariant [cf. Eqs. (36)—(39)] can be reduced here
to shifts of the gauge degrees of &eedom accompanied by
phase changes of the charged ferrnions (central conjuga-
tions),

&c(n): 27maMa+
gI.

and refiections accompanied by charge conjugations (in-
terchange of color labels 1,2):

[we ignore the global gauge transformations (33), which
play no role in the physical sector; displacement s
T~(n, n), on the o—ther hand, are the same as Tc(2n)
for SU(2)]. We now proceed to determine in the small in-
terval limit the ground state of this system. The normal
mode expansion
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2' f 1&pg= —
/
k+ —

f Q = ) (a„ua + b~4) (55)

(53)

yields, for the Hamiltoiiian II~ [Eq. (47)] and the
charge Qs [Eq. (50)],

1 8
(» k v&) 2I Ba~

In the adiabatic approximation, the ground state of the
fast fermion degrees of freedom for a fixed value of the
slow gauge degree of freedom is obtained by filling the
fermion negative energy states. Assuming the a modes
to be filled for k ( M and the 6 modes for A: & M' the
(heat kernel regularized) charge of such a state is given
by

q'~M, M') = l;m )- e"& -"}+) e "(~ "} ~M, M') =(M —M') ~M, M') .
Ic=—ao Ic=M'

Neutrahty (50) requires the Fermi levels to satisfy

The regularized energy of such a neutral state is

5 (~,g,„e"~" "~ —b'„s„e "")(p, —gu) lMM) = vM, (a) lM, M),

2vr gl a')
U~(u) =-

L 27r J

As is well known &om similar treatments of the
Schwinger model or of @CD with fermions in the fun-
damental representation [27] the adiabatic ground state
of the system is obtained by adjusting the occupation of
the fermionic neutral states to the variations in the gauge
degree of freedom. Obviously UM (a) is minimal vrith the
following choice of M:

0&gLa&2m. (62)

" Lj(a)

Then, the k = 0 fermion a and 6 modes cross zero energy
in the middle, at gLa = m.

As the characteristic property of QCD2 with fermions

gI aM (a)—
27K 2

2L

The occupation changes whenever a pair of fermion levels
crosses zero energy:

gIa = 2' n+-
2p

(60)

In this way, a periodic potential energy of the gauge de-
grees of &eedom,

U (u):= UM( } ((i)

[where M(a) is defined implicitly via Eq. (59)] is ob-
tained (Fig. 5). The analogy with the Schwinger model
with its discrete translational symmetry generated by
large gauge transformations (topology of a circle) is only
superficial. Physics consequences are very diferent due
to the presence of the constraint (49) on the radial wave
function of @CD. This constraint requires solution of the
Schrodinger equation in one fundamental interval defined
by two consecutive zeros of the wave function. Because of
the translational symmetry of U, we therefore can restrict
the calculations to the fundamental domain discussed in
Sec. IIC:

gLa
2

FIG. 5. Adiabatic potential for the gauge degree of free-
dom in the SU(2) case; cf. Eq. (61). Also shown is the
ground-state wave function C&(a), Eq. (63), in one of the
classical minima, for the value gl = 1/3 (arbitrary units).
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in the adjoint representation, we note the reflection sym-
metry of U(a) around gLa = vr. The double-well struc-
ture yields a twofold degenerate ground state in the semi-
classical limit with ground-state wave functions given by

2(«)"or (a) = a exp — a
7r' 2 7r

/2~c'» (&) = c'~
I ) ' (63)

corresponding to localization close to one of the two min-
ima of the potential energy (see Fig. 5). As a further
consequence of the Jacobian in the kinetic energy of a,
we note the vanishing of the wave function at the minima
of the potential energy. The ground-state energy is

ggo— (64)

It is instructive to compare this result with the one
obtained for fermions in the fundamental representation.
The result for the potential energy in the corresponding
adiabatic approximation is

2

4~r ' (65)

U
~

a+.
~

= U(o.),gL )
and the reflection symmetry

while the constraint (49) remains unchanged. The effec-
tive reduction in the coupling constant by a factor of 2
follows directly &om the difference in the minimal sub-
stitution, which couples fermions and gauge degrees of
&eedom via a q and a2 ———aq for fundamental and via
a2 —aq for adjoint fermions. As a consequence of this re-
duced coupling U~ (a) depends on u monotonically in the
fundamental interval and no degeneracy in the ground
state occurs.

At this point the origin of the symmetry of the adi-
abatic potential energy in one fundamental interval re-
mains to be understood. The discrete translational sym-
metry of the potential energy U (a) of Eq. (61),

U( o) = U(a) (67)

around a = 0 are of no direct relevance, since they relate
wave functions in dynamically decoupled intervals. These
symmetries taken together, however, entail

+~
I
=U

I

) ~ l t' vr

«~ )' (68)

2i mx/L

connects states with the gauge degrees of &eedom re-
stricted to the fundamental interval and therefore repre-
sents a relevant symmetry of the system. This operator
can be chosen to satisfy

S =1 and [S,II]=0, (70)

and the stationary states can be classifi. ed generally as
symmetric and antisymmetric ones. S transforms the
wave functions C y(a) and 4'»(a) into each other; cf. Eq.
(63). The action of S on the fermionic states ~M, M) [cf.
Eq. (57)] can easily be calculated:

S~M, M) = ™e~ —M + 1, —M + 1) .

Here, the phase e™is not determined by the above
properties of S, except for the condition

~~M e
—~~ —M+ jL (72)

which follows &om S = 1. Using only the fermionic part
of S, this implies the reflection symmetry of the adiabatic
potential:

i.e., a reflection symmetry around the center of the fun-
damental interval. Although derived in the adiabatic ap-
proximation, it is straightforward to generalize this ar-
gument and to identify an exact and relevant symmetry
for the system under consideration. We start with the
formal and, in the above sense, irrelevant symmetries of
Eqs. (51) and (52). The particular combination of a
central conjugation and a reHection,

2'S = Tc(1)R: SaSt = —a+
gLr

(M, M~II~(a) ~M, M) = (—M+I, —M+ I~II,
~

—o+
~ ~

—M+I, M+I) . —f 2~)
~LJ (73)

le+) = —— (lo, o)los) +,* 'lz z)loa)), (74)

For fermions in the fundamental representation, also both
types of formal symmetries are present but the displace-
ments in the gauge variable a occur in twice as large
steps a ~ a+ —.As a consequence no relevant symme-gL
try can be constructed by combining displacements and
reflections.

Finally we are able to write down the full vacuum state
vector, which we take to be an eigenstate of the symmetry
operator S with eigenvalue +1:

where o.o is the phase introduced in Eq. (71).
Thus, we arrive at two vacua: one is described by ~4'+),

the other by ~@ ). The two linear conbinations in Eq.
(74) are the Z2 analog of the 8 vacua of QCD4, where the
relevant symmetry is Z. The necessity of superimposing
the states I and II in the vacuum wave function, Eq.
(74), is due to the fact that only under this choice the
property of the cluster decomposition will be satisfIed.
Moreover, if a ferrnion mass term m@g is introduced as
a small perturbation, physics will be smooth in vn under
the choice (74). On the contrary, had we chosen the
states I and II as the vacuum states, introducing a small
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mass term would result in a drastic restructuring.
With these considerations we have succeeded in clari-

fying the symmetry properties of [SU(2)] QCD2 ' in the
canonical formulation with the unconstrained degrees of
freedom. The crucial element in the construction, valid
beyond this particular model, is the emergence of rele-
vant symmetry transformations by combining a sequence
of irrelevant ones.

Using the above expression for the vacuum it is
straightforward to calculate the fermion condensate
(g g ). The contribution f'rom the charged fermions to
the condensate operator is

B. Corrections to the adiabatic approximation

We discuss here the corrections to the small interval
limit. The Coulomb energy [Eq. (16)] acts as a centrifu-
gal barrier on the gauge degrees of freedom, which, in
general, are therefore prevented, beyond the efkct of the
Jacobian, to approach the points gLa = 2nvr. The rel-
evant part of the Coulomb energy is determined by the
oK-diagonal color charge densities, which in turn contain
both charged and neutral fermion fields. In the adia-
batic, small interval limit the ground state of the neutral
fermions is that of the noninteracting system. The nor-
mal mode expansion of the Hermitian neutral field is

(75)

(the neutral fermions g do not contribute in this ap-
proximation). This yields the condensate

+ d '"" + dte (0
&1)

(4~ @ @ l@~) = +—sin no(4i l@ir)L (76)
The &ee field Hamiltonian (22) reads, in terms of these
creation and annihilation operators,

with the overlap of the two localized wave functions of
the gauge degree of &eedom given by

Hd = ) pk kcadcada)
k)o

(so)

dab( (a) C ii (a) =
gI ( gL)exp l—

(77)

and therefore the ground state satisfies

c, lo~) = o, dtlo~) = o, k & o.

In addition to the expected nonperturbative exponen-
tial suppression (gL « 1) the overlap (77) is actually en-
hanced by an inverse power of gI in the prefactor. This
is a direct consequence of the fact that 4 has nodes at
the boundaries of the fundamental domain. As a conse-
quence of the constraint (49) on the radial wave function,
the system is pushed away from the minima of the po-
tential energy into the classically forbidden region of the
potential barrier. The result in Eq. (77) agrees with the
result obtained previously in Ref. [11]by functional inte-
gration in the Euclidean formulation of QCD2 i as far as
the exponent and the gL dependence of the prefactor are
concerned. Without the Jacobian, we would have missed
the factor (gL)

The value of the condensate depends explicitly on the
choice of phases. To clarify this dependence we ob-
serve that in addition to the scalar condensate one might
also use the pseudoscalar condensate to characterize the
ground state. The value of this condensate is

(ilr~l@ p g lilI~) = +—cosno(4'ilhii),L
which therefore can be combined with the scalar conden-
sate to form a complex quantity with the modulus being
independent of the phase o.o. The arbitrariness in the
phase can be removed by adding a weak disturbance to
the Hamiltonian, which will lift the twofold degeneracy
[Eq. (74)]. Choosing this disturbance to be proportional
to a scalar (mass) term (oc @ g ) or a pseudoscalar term
(oc @ p ajar ) fixes no to be +or/2 and vr, respectively.

With the choice (62) of the fundamental interval, the
Coulomb energy becomes singular if, for n = 0, 1, or —1,
certain elements of the matrix

p" (n) = 2irrnx/L ij
(

are nonvanishing when acting on the ground state. For
the case of SU(2) in particular, the relevant part of the
Coulomb energy is

g
2 .p2'(n)p'2( —n) + p'2( —n)p2'(n)

L (2am/L —ga)
' (s3)

so that the potentially dangerous terms are P (0),
p21 (0) pl2 ( 1) and p21 (1 )

Using the normal mode expansions [Eqs. (53) and
(79)], the oB'-diagonal charge is given by

P" (0) = ) (a „,c„+a„c'„+b c,da + dt)b
k&o

(s4)

p" (o) lo, o;0~) = p" (o) lo, o;0„) = o; (85)

with p (0) = IP (0)] . Explicit calculation shows the
direct product of the neutral states, lM, M) with M = 0
[cf. Eqs. (56) and (57)] and lo@) of Eq. (81) to be
an eigenstate of the oK-diagonal charge with a vanishing
eigenvalue:
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i.e. , the adiabatic ground state is a singlet state with
respect to the fermionic color charge. Under reflections
generated by S, the off-diagonal charges transform as

Sp" (o) S'=-p"'(I),
SP (0)S = p ( 1)

which, together with the transformation properties of the
states [cf. Eq. (71)], yield

p (1) ~1, 1;0@)= p (—1) ~1, 1;Oq) =0. (87)

Thus in the evaluation of the adiabatic ground-state ex-
pectation value of the color electrostatic energy (16),

g(~ gl ) (0 0 0OIHcl0 0'0@) +0(g~a ~) (1 1'0OIHcl1 1 0@)

the residues of the singularities in the Laurent expansion in gI0, are zero and the contribution to the energy is oc g I
and therefore negligible in the small interval limit. For finite interval length, vanishing fermionic color charges are no
longer energetically favored, and, as a result of the electrostatic centrifugal barrier, (radial) wave function components
will be admixed, which vanish faster than required by the Jacobian (this effect has been demonstrated to actually
occur for static color charges in the fundamental representation [29]).

C. The vacuum in the SU(3) case

The calculation of the vacuum structure in the adiabatic approximation described above for the SU(2) case can be
generalized to SU(N). We start from the N(N ——1) charged fermion 6elds p'~(i ( j) introduced in Eq. (19) and
the normal mode expansion analogous to Eq. (53):

2~ (
2Jpl = —/&+ —

I

~

The adiabatic fermion ground state is assumed to have the "a'~ modes" filled for k ( M,~ and the "6'~ modes" filled
for k ) M,'. -. These states are eigenstates of H~(a), Eq. (23), with regularized eigenvalues

H~ (a) ~M, M') = —) ~
M,~—I, .

gl l ( , gI
(a; —a, ) ~

+
~

M — (a; —a ) ~
~M, M')2' ) ( 2' j (90)

(M, M' denote [N(N —I)/2]-dimensional vectors with components Mz, M, i ( j). For given values of the gauge
variables a;, the choice

M~ =M. ,
gL 1

M,, (a) — (a; —a, ) & —, i & j (91)

yields the lowest eigenvalue, i.e., the effective potential. Of course, we have to verify that these states satisfy the
neutrality condition (24). Exactly as in the SU(2) case, one first shows that (after regularization)

L
dxy'~tp'~iM, M') = (M;,. —M ) iM, M'),

0
(92)

where the indices (i, j) are kept fixed. For the state of lowest energy, the right-hand side vanishes. Hence, in the
expression (25) for the neutral charge operators q;, each term in the sum vanishes separately when acting on the
adiabatic ground state, so that this latter is indeed a physical state.

Although this part of the calculation can be done trivially for arbitrary N, the following step, namely, solving the
Schrodinger equation in the gauge variables and discussing in detail the symmetries, condensates, spectral fIow, etc. ,
quickly becomes complicated due to the increasing number of variables and the geometrical intricacies associated with
the fundamental domain. For our purpose it is more useful to exhibit in detail the results for SU(3). Together with
the SU(2) case, this provides enough understanding to be able to foresee what will happen for larger N, at least
qualitatively.

For the explicit calculation in SU(3), it is preferable to change f'rom the diagonal matrix elements a; of the gauge
degrees of freedom to the neutral amplitudes a, a [cf. Eq. (33)], which are the natural variables for the kinetic
energy term of the gauge field. and, more importantly, the independent ones. The Schrodinger equation in the radial
form now corresponds to a quantum-mechanical problem on a plane,

t92 02
~

+ U,s(a, a ) C(as, a ) = Ek (a, a ),
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with the condition that C vanishes along the boundary
of the fundamental triangle [cf. Fig. 4 and Eq. (35)].
The efFective potential is given by

U, (a, u ) =U(a ) +U
~

—(u + v3a ) ~

rl

+U
~

—(—o.
' + Ksa')) (94)

with U(a) defined in Eqs. (59)—(61). As indicated in
Fig. 6, we can further subdivide the fundamental domain
into four congruent triangles, in each of which the adi-
abatic potential is that of an isotropic, two-dimensional
harmonic oscillator:

UI (
3 8) ( 3)2+ ( 8)23 8 3&L- 32 (95)

rU.II
(

3 8) U.I
~

3

~ttl( 3 I) ~t
(

3

UIV
(

3 8) U.I 3r

8
gL'
271

)a +
gL

3gl ' )

2~

~angl, )
'

2~

~angl, ) '

+3I, (96)

Generalizing the reflection symmetry of the SU(2) case,
this potential also exhibits discrete symmetries: It is in-
variant under rotations around the center of the funda-
mental triangle by 120 or 240, as well as under re8ec-
tions with respect to three lines joining its center with
each corner (see Figs. 7 and 8).

As in the SU(2) case, the discrete rotational symmetry
is a property of the exact theory, valid beyond the adi-
abatic approximation. We can follow the analysis of the
SU(2) case. As emphasized above, the formal residual

FIG. 7. Contour plot of the adiabatic potential U(a, u )
for SU(3), Eqs. (94)—(96). The axes are the same as in Fig. 6.
This figure is complemented by Fig. 8 for the sake of clarity.

symmetries are separately irrelevant, since they do not
respect the fundamental domain. Guided by the obser-
vation that we are dealing with a discrete subgroup of the
two-dimensional Euclidean group E2 in the a, a plane,
it is easy to identify the particular combination of the
symmetries that does not lead out of the fundamental
domain: The cyclic permutation

of the color labels rotates the triangle by 120 around
the origin of the (a, u ) plane into another fundamental
domain (see Fig. 4). It can be shifted back into the orig-
inal domain by combining a displacement (ki ——0, k2 ——

—1, k3 ——1) with a central conjugation (n = 1):

S = Ti, (0, —1, 1)Tc (1)C .

The operator S acts as follows on our variables:

U (a,a6)

c)

gla
2

2L

I

P3

I

2II II

2/3
II p

2/3

FIC. 6. Fundamental domain of the gauge 6eld variables
in SU(3). The four subtriangles I-IV are the regions in which
the Dirac sea has a particular fiHing. The numbers in paren-
theses stand for (Mi2, Mis, M23), the corresponding Fermi
levels.

~3 ((&((3L) I (gn. 'L cg((' L ()o,3 I

FIG. 8. Adiabatic potential U(u, u ) for SU(3), Eqs.
(94)—(96). Shown are cuts through the potential s;surface along
the dashed lines denoted by e, 6, and e in Fig. 7.
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1 3 8 27K
Sa Sf = a ' = —— a + v 3a

2 gL

Sa'St = a' ' = — ~3a' —a'
~angl,

'

12St i 2m'/I 13$ S 23St —i2vrx/L 12

x3Sf 33f (99)
gLa

2
= pcosP,

gLa8
2

= psing

2 )32 'q",
4r(a, a ) =

l

—
l p cos(3@)eg« ~ )

with plane polar coordinates defined as

(104)

Sfa S=a "=—— a —V3 +
2 gL'

3 8 2R'SfasS = a' " = —— ~3a3 + a'
~angl.

(100)

This is the quantum-mechanical formulation of the Z3
symmetry of rotations of the fundamental triangle. Since
any residual symmetry transformation can be written as
a permutation followed by a shift, it is easy to see that
this exhausts the exact symmetries of the model. The ad-
ditional reflection symmetries exhibited by the efFective
potential are not symmetries of the full Hamiltonian. Ge-
ometrically, the reason is the following: These reflections
involve noncyclic permutations of the color indices. Such
permutations change the orientation of the basic triangle
in the plane by + 60, so that it cannot be mapped back
onto the fundamental domain by a subsequent transla-
tion.

Let us now again build the vacuum state vector. First
consider the fermions. The occupation of the Dirac sea
changes across the boundary of the internal triangle (IV)
in Fig. 6, where pairs of fermion levels cross zero en-

ergy, one pair at each boundary. We denote the adiabatic
fermionic states by lMq3, Mq3, M33) (the M are redun-
dant owing to the neutrality condition). In Fig. 6, we
also display the "Fermi levels" M;z in the four difFerent
sectors of the fundamental domain. The action of S on
these states in general is

SlMg3, Mgs, M33) = lM33 + 1, —Mg3 + 1, —Mj 3),
(lol)

where we have made a definite choice of the phases.
Specifically, for the case at hand,

slo, o, o) = ll I o), sl1 I o) = sll o —1)
sll, o, —1) = lo, o, o), sll, o, o) = ll, o, o), (lo2)

in accordance with the discrete rotational symmetry. The
Schrodinger equation for 4 clearly has a threefold degen-
eracy with wave functions localized near the three corners
related by actions of S:

3 8) S@ (
3 8) @ (

31/ 811)

4&rc(a', a') = SC „(a',a') = 4~ (a' ', a")
with the primed and double-primed arguments defined in
Eqs. (99) and (100). The ground state wave function in
particular corresponds to an n = 3, f wave excited -state
of the two-dimensional isotropic harmonic oscillator, due
to the boundary condition that it has two nodal lines
subtending an angle of 60,

S is the inverse operator of S, so that S = 1. For later
convenience we also note the inverse relations

and

with

+z~~ 1, 0, —1 )~~4rrr) ) (lo7)

S~@,) =z~C, ), zC (l, e ', e '
) (108)

Since the fermionic components difFer in the occupation
of two pairs of levels, the bilinear condensate vanishes
in this approximation. On the other hand, one could
construct an operator of fourth order in the fermion
fields with nonzero matrix elements between the adia-
batic fermion states in sectors I, II, and III but vanishing
contribution within one sector. In this case, a quartic
condensate

't Y(1 —~.)@@(1 ~.)4)
or

i tr (g (1 + ps) @g(1 + ps) @}
appears, being determined by the overlap of the bosonic
wave functions. The relevant (bosonic) matrix element
is again calculable (for gl «1) and yields

(@ l@ ) 2 4 2 —2rzn /3

The efFect discussed above for SU(2), enhancement of the
overlap due to the Jacobian, is even more pronounced in
SU(3), where it forces us into higher harmoruc oscillator
states; it yields a prefactor (gl)

D. Anoxnalies and. spectral Qovr of ferrnion levels

Up to this point, the charge operators relevant for con-
structing the vacuum state vectors were those that enter
the neutrality condition; cf. Eqs. (24) and (25). I et us
now consider the corresponding axial charges

q.; =) (q.),, —) (q.)„ (»0)
kgi k(i

3g 1
Ep ——4(d, cd =, v =

2~ ' gI
It is then easy to construct, with the above choice of
phases, simultaneous eigenstates of H and S:

I@*)= (IO O O)lor) + z Ir I O)lorr)
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gL
(Qs)'~ = (qs)V + (a' —a~)

27r
(113)

and the corresonding combinations [Qs;, Qs, cf. Eq.
(110)],which by construction are not invariant under dis-
placements or central conjugations. However, the charges
Q~s are conserved in the small interval limit. On the other
hand, the invariant axial charges Qs do not commute
with the small interval Hamiltonian [cf. Eq. (15)], but
yield the "anomalous" result

I
(QS);~ = — «V '"'V'V *".

2 0

They provide the most direct access to the issue of axial
anomalies in our framework (see also Ref. [21]). Exactly
like the ordinary charges Q;, the axial charges Qs; will
be regularized in a way that is invariant under the dis-
placements and central conjugations [cf. Eqs. (36) and
(37)]. Heat kernel regularization yields

(Qs);, ~M, M) =
~

M; — (a, —a~)
~

~M, M) .( gL
2m' j

(112)

The presence of p (= 03) introduces a minus sign
between the contributions &om right- and left-handed
fermions, so that two terms, which cancel in the ordi-
nary charge [cf. Eqs. (50) and (92)], add up in the ax-
ial charge, leading to a dependence of Qs; on the gauge
variables a;. It is convenient to define purely fermionic
operators by

ial charges Qs, Qs [cf. Eqs. (112) and (113)]are invariant
[nor is the charge Q, cf. Eqs. (55) and (56)]. The above
regularization, however, guarantees that Qs transforms
covariantly under the residual gauge transformation

SqsSt = —Qs. (117)

The axial charge Q35, on the other hand, transforms in-
homogeneously:

SqsSt = —Qs + 2. (118)

8"J"5 = (e" + e"t)Ng
4~L (120)

For SU(3) similar arguments apply and corresponding
relations can be derived easily on the basis of the trans-
fomation properties

+(q.)-+' = -(Q.)-, +(q.) .~' = -(q.)-+1
~(QS) 13~' = —(QS)23, ~(QS)ised' = —(QS)23,

~(QS)23~ (QS)12 1 ~(QS)23~ (QS)12
(119)

The gauge-variant charges Qs commute with the small
interval Hamiltonian (K + II~„)of the system. There-
fore, in the small interval limit, all eigenstates can be
classified with respect to the values of the Q~s charges.
Moreover, in the SU(3) theory Qs and Qs commute with
each other. The states corresponding to difFerent eigen-
values of Q~s are necessarily orthogonal to each other.

It is also possible to formulate in the small interval
limit the axial anomaly in a "local" form,

[K + II~„,Q~s] = i (e" + e"t) (114) with the neutral components of the axial vector current:

We note in passing the explicit expressions for the rele-
vant axial charges in SU(2) and SU(3):

p 1 5 pJ„"5 = 24wov„v T"@ (121)

SU(2) . q3 d 12$ 5 12

0
(115)

This should be compared to the nonanomalous vector
current J" = &@pop„T"Q, the neutral components of
which are conserved in the ordinary sense,

0"Jp = Q,P (122)
SU(3): Qs —— «y p y + &p—

0 2

23t 5 23

qs d (
13$ 5 13 + 23$ 5 23)

0 2

(116)

At this point a comparison with the Schwinger model
reveals the essential structures underlying these defi-
nitions. In the Schwinger model, the residual gauge
symmetry is that of the displacements [similar to (36)].
Therefore, the above regularization renders both the cor-
responding vector charge Q and axial charge Qs gauge
invariant, i.e., invariant under the residual gauge symme-
try transformations. In SU(2) QCD, the residual symme-
try transformation S of Eq. (69) consists of a combined
reflection and central conjugation. Neither of the two ax-

since in our specific gauge the only remnants of the gauge
fields are the neutral variables ap.

In the canonical framework, Eq. (120) is obtained by
evaluating the commutator of the axial charge density
with the small interval Hamiltonian. The relevant Hamil-
tonian H~(a) of Eq. (23) can be equally well interpreted
as the weak-coupling Harniltonian of N(N 1)/2 charged—
particles coupled to N —1 difFerent photons. Therefore, in
the gauge-fixed formulation and the weak-coupling limit,
the non-Abelian anomaly of SU(N) QCD2 is identical to
the anomaly of an Abelian U(l) gauge theory.

By and large, the analysis of the anomaly of the
Schwinger model can be repeated with minor modifica-
tions to establish in the weak-coupling-limit index theo-
rems, to classify the wave functions in difFerent sectors,
and to address the issue of the spectral fIow.

Let us first discuss this last point. As usual the prob-
lem is formulated as follows. One adiabatically varies the
gauge field along a certain trajectory starting at (a");
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at t = T—and arriving at (ai')y at t = T (assuming
T -+ oo). At each given value of t, i.e. , for a given gauge
field, the energy eigenvalues of relevant fermion degrees
of &eedom in the Grst-quantized eigenvalue problem are
found. In our case this is a particularly simple excercise,
since the Coulomb interaction has been neglected, the
background gauge field configuration reduces to spatial
constants a", and then each fermion mode is the eigen-
function of the one-particle equation

q~ = s""
~
E„„k E„„~d x,3g „„( s 1

16'

~3g
X )

Svr

subject to a constraint

v+ —v —= v-

(124)

~s((I/&) ~i —g(~* —~~) jV g' = &I V g',

where k numbers the fermion modes.
At the next stage one studies the evolution of Ey vs

t. If some of the levels cross zero, this phenomenon is in
one-to-one correspondence with the anomalous noncon-
servation of some of the fermion charges, see, e.g. , [10].
Moreover, using arguments similar to those of Ref. [30]
one can relate the fact of the crossover to the occurrence
of the zero modes in the two-dimensional Dirac opera-
tor in background fields interpolating between (a"); and

Since the SU(2) and SU(3) theories difFer in important
technical details, it is convenient to consider them sepa-
rately. In the SU(2) theory we have only one gauge-field
variable a and hence one topological charge

q = — e""F „d x = (a (+T) —a (—T)) .
8~

(123)

The interval of variation of the variable a to be consid-
ered is the fundamental interval [0, 2vr/(gL)]. Two end
points of this interval are gauge equivalent. The gauge
transformation gluing the end points is a large gauge
transformation, see Eq. (40). Any trajectory connect-
ing thein is characterized by ~q~

= l. Equation (120)
shows then that, in this transition,

EQs =2;
i.e., two fermion levels, one right handed and one left
handed, cross the zero in the opposite directions when
we adiabatically proceed Rom the origin to a = L . IngL'
agreement with our general remarks above, it does not
come as a surprise that in this weak-coupling limit the
spectral flow of SU(2) @CD is identical to that in the
Schwinger model with one fermion field, see Fig. 1 in
[10], restricted to the interval 0 ( a (

Proceeding to the SU(3) case, we observe that the
fundamental domain where the spectral flow is to be
analyzed is given by the triangle of Fig. 6. The
three vertices of the triangle are gauge equivalent. The
corresponding large gauge transformations gluing them
are U = exp (+(2mix/L~3)t + (2zix/L)t ) [remember
that t = A /2 in the SU(3) theory]. Although one can
consider any trajectory running inside the fundamental
domain and the associated spectral flow, of special inter-
est are the trajectories starting at one vertex at t = —T
and ending up at another at t = +T.

Now we can introduce three topological charges,

AL —AR —g ) AR —AL —g (125)

where nL R and nL R are the numbers of the correspond-

ing zero modes for @ and @t, respectively. Equation (125)
explains why for any field trajectory interpolating be-
tween a = 0 and a = L, not necessarily the instantongL)
solution, the zero modes will persist.

E. Symmetries beyond weak coupling

So far our analysis has been performed in the small
interval or weak-coupling limit. For the case of the

On each of the three trajectories connecting difFerent ver-
tices, the absolute value of one of the topological charges
is 1, while for the two others we have 1/2. The one with
the maximal absolute value is relevant for the given tra-
jectory.

For instance, if the trajectory runs along the upper
side of the triangle o. = o, /~3, and the elfective color
current coupled to the "gluon field" is proportional to
J„+J„/~3, from Eq. (116) we see that the correspond-
ing axial charge is that of the two-flavor Schwinger model

(p and y ). The spectral flow along this trajectory co-
incides with that of the two-flavor Schwinger model, with
two pairs of levels crossing the zero-energy mark. The
trajectories running along two other sides of the funda-
mental triangle have the same properties modulo cyclic
permutations of y ) p ) and p . Generically, with the
antiperiodic boundary conditions on the fermion fields,
the lines where a pair of the fermion levels crosses zero
form an equilateral triangle inside the fundamental do-
main; see Fig. 6.

In Ref. [11] the instanton solutions were found in

QCD2 trajectories interpolating between the vertices
of the fundamental triangle. It was shown that these so-
lutions are accompanied by 2(N —1) fermion zero modes
for SU(K). Usually the fermion zero modes are associ-
ated with index theorems of the Atiyah-Singer type. The
latter relate the difference in the numbers of the left-
handed and right-handed zero modes to the topological
charge of the given background field. There is obviously
a close kinship between the index theorems, anomaly re-
lations, and the issue of the topological charge. In QCD4
the index theorem was established in Ref. [31]; see also
[32] for a thorough discussion. We understand now that
analogous index theorems exist in QCD2 ', but they nec-
essarily involve a topological charge whose definition is
given in a particular gauge. For instance, in the SU(2)
theory
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Schwinger model or the U(l) anomaly in QCD4, cor-
rections to the weak-coupling limit do not afFect the
anomaly. This is different in the case of QCDz ~.

The symmetry of the weak-coupling limit is significantly
higher than that of the full theory. The full theory does
not exhibit any continuous axial symmetry. Before gauge
fixing, the only continuous symmetries are gauge sym-
metries. After gauge fixing no continuous symmetry sur-
vives; the axial symmetries of the weak-coupling limit
are manifestly broken by the Coulomb interaction II~ [cf.
Eqs. (15) and (16)]. Beyond the weak-coupling limit, the
theory still exhibits a discrete axial symmetry. The full
Hamiltonian (15) remains invariant under changes of sign
of either all the right- (upper components) or all the left-
handed (lower components) fermion fields. The unitary
transformation, generating sign changes of right-handed.
fields,

B= exp x7l 5 ik+
i,k(i&k)

iv i-
+ Q 'r. 4'4

is a discrete symmetry transformation of QCDz ' beyond
the weak-coupling limit [the vector charges Q;i, are de-
fined in analogy to Eq. (111)]:

(127)

We can define sixnilarly left-handed transformations. No
new structures, however, are encountered, since the
transformation reversing the sign of all fermion fields
comxnutes with all other symmetry transformations.
Here it is not convenient to define a corresponding trans-
formation generated by the axial charge only. This would
involve a redefinition of the phase of all fermion fields,
which have been assumed to be real. We nevertheless
will refer to B as a discrete axial charge transformation.

The operators c&t, d~&t create neutral fermions and are
defined in analogy with the SU(2) operators of Eq. (79).
To characterize how this symmetry is realized, we intro-
duce the condensate operators

I'0, (5) = Q V*'"'~'(~') V'"+ P 0"~'(~') @",

= i tr fg(l 6 p5)gent(1+ p )@)-, (131)

and therefore nonvanishing vacuum expectation values of
these quartic fermion operators may develop irrespective
of the realization of the discrete axial symmetry B. In
turn, such condensates cannot be used as order paraxn-
eters to characterize the diferent phases of the discrete
axial syxnmetry.

In addition to this discrete axial symmetry, the full
system exhibits the discrete residual gauge symmetry
S, which has been explicitly constructed for SU(2) [Eq.
(69)] and SU(3) [Eq. (98)]. Using the results (118) and
(119) as well as the invariance of the neutral fermions
under displacements [Eq. (36)] and central conjugations
[Eq. (37)] and the transformation properties under per-
mutations of the color basis [Eq. (38)] we obtain

SU(2): SRSt = —R,
SU(3): SRSt = R . (132)

In SU(2), the discrete axial symmetry R is "anomalous";
i.e. , this symxnetry cannot be realized simultaneously
with the discrete residual gauge symmetry (this is an
example of the global anomaly). "Gauge invariant, " sta-
tionary states are therefore twofold degenerate with B
connecting these states. Furthermore, the condensate op-
erators develop in general nonvanishing expectation val-
ues. By contrast, in SU(3), the discrete residual gauge
symmetry and axial symmetry can be realized simultane-
ously; i.e., stationary states can be labeled by two quan-
tum numbers characteristic for these two symmetries. In
general, the systexn does not exhibit degeneracies, and
condensates (of operators quadratic in the fermion fields)
are not present. As in the case of anomalous contin-
uous symmetries, the anomaly of the discrete B trans-
formation can be cured by supplementing the fermionic
operators by appropriate gauge field operators. This is
achieved easi, y by replacing the axial charges (Q5),~ in
the definition of R by (Qs), A,, [cf. Eqs. (112) and (113)]

not constrained by these symxnetry properties. We obvi-
ously have

Ri tr (g(1+ 75)@@(l+ ps)@) Rt

i,k(i&k)

(128)

and it is easy to verify that these condensate operators
are odd under the discrete axial transformations

B=exp x'1| 5 'k +
i,k(i&k)

+) ) &'4
p=l k)0

(133)

BI p (5)B ——I p (5)
t— (129)

A nonvanishing scalar or pseudoscalar condensate associ-
ated with these bilinear fermion operators can therefore
develop only if the system is not in an eigenstate of B:

(O~Pp (s}~4) g 0 only if R~@) g +~O). (130)

The appearance of quartic condensates on the other
hand, as considered above in connection with SU(3), is

By construction, R is invariant under displacements (36)
and central conjugations (37)

Tii(k)RT~t(k) = R, Tc (n)RT~t(n) = R . (134)

(135)

As in the case of anomalous continuous symmetries, in-
clusion of gauge degrees of freedom via b in the definition
of B results in a nonvanishing commutator
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(136)

Given the invariance of B [Eq. (134)] and the invari-
ance of R under permutations of the color basis (38), the
appropriate relevant SU(N) symmetry transformation S
constructed with these building blocks transforms R as

Thus, our result derived in detail for SU(3) is generally
valid for SU(N) with W odd. In these systems residual
gauge symmetries and the discrete axial symmetry are
simultaneously realized by the stationary states. No de-
generacy occurs as a result of a confIict between discrete
residual gauge and axial symmetries and, in general, no
condensates are formed. For even N, in general, the ax-
ial symmetry is anomalous unless the construction of the
"relevant" symmetry S would not involve the "elemen-
tary" choice n = 1 (or more generally n odd) of the
parameter specifying the central conjugations. (We can-
not rule out this possibility at present, since we have not
yet constructed the symmetry operator S for N & 3.)
Assuming for the moment that S does involve an odd
value of n, we conclude that the stationary states are
degenerate. The transformation property

(138)

implies that the stationary state ~E, z) with

S~E, z) = z]E, z) (139)

is degenerate with ~E, —z). Thus, in SU(N) with N even,
all the stationary states might be twofold degenerate and

I

and therefore R is not a symmetry transformation of
SU(N) @CD' ~. This operator is nevertheless useful in
clarifying the general symmetry properties for SU(N).
An elementary calculation shows that the operator b act-
ing on the gauge degrees of &eedom transforms as

correspondingly develop condensates. This result also
shows that the relation (138) cannot be true for odd N,
where z and —z cannot both belong to the spectrum of
S.

Obviously these general results encompass those of the
weak coupling limit. In particular, we confirm the de-
generacy of the SU(2) ground state with the concomi-
tant formation of a condensate beyond weak coupling,
while the threefold degeneracy of the ground state in
SU(3) [cf. Eqs. (107) and (108)] is revealed as being
due to symmetries that do not persist beyond weak cou-
pling. The residual gauge symmetry S is still present
and realized and allows one to characterize stationary
states by the corresponding eigenvalue z. However, as a
result of the Coulomb interaction these states must be
expected to split energetically. Concerning the issue of
a possibility of an SU(3) condensate, our discussion only
rules out an anomalous symmetry as the origin for a con-
densate associated with the fermionic bilinear operators
(128). Such condensates nevertheless may appear "dy-
namically, " as does the chiral condensate in QCD4. As
emphasized above, the appearance of the quartic conden-
sate [cf. Eq. (131)] in the weak-coupling limit of SU(3)
is not associated with a particular realization of the dis-
crete axial symmetry. For reasons of continuity, we can
conclude that this "quartic" condensate persists beyond
the weak-coupling limit.

We Anally comment on extensions of the local sym-
metry considerations beyond the weak-coupling limit.
Strictly speaking, there is no continuous axial symmetry,
which would be broken by efFects of regularization of as-
sociated currents. Unlike the axial anomaly of @CD or of
the Schwinger model, the local axial anomaly of QCD2 '
is a valid concept only in the weak-coupling limit. It is
of interest to repeat the calculation leading to Eq. (120)
when including the Coulomb interaction. The structure
of the additional term, which arises when commuting the
axial charge with JI~, suggests introducing for SU(2) the
"time component" of the vector potential:

(140)

With the help of o.o, the time derivative in the continuity equation is replaced by a covariant derivative

(141)

Here we have extended the definition (121) to currents
that have ofF-diagonal color components. In accordance
with our above discussion, this result displays the two
difFerent sources for the nonconservation of the axial vec-
tor current. In addition to the nonvanishing divergence
of the axial vector current arising &om the anomaly (the
electric field term es), the current is manifestly not con-
served by the appearence of a "covariant" time derivative

IV. SUMMARY

Our investigation of QCDz i has focused on symmetry
properties of this model Geld theory and their implica-

I

tions for the vacuum structure of these models. General
topological arguments exhibit the center symmetries, i.e.,
Ziv symmetries in SU(N) to be the only relevant gauge-
related symmetries. These residual gauge symmetries are
present only if the Yang-Mills field is coupled to fermions
in the adjoint representation. The difFerence in homo-
topy properties of SU(N)/Ziv, the manifold relevant if
fermions are in the adjoint representation, and SU(N)
in the case of fundamental fermions reveals the presence
or absence of these residual symmetries. The nature of
the realization of the symmetries and consequences for
the vacuum structure such as the possible formation of
condensates remain unspecified by such general topologi-
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cal reasoning. In gauge theories, the connection between
general symmetry properties and their dynamical imple-
mentation is a remote one. Topological properties are
most easily discussed in a formalism involving redundant
gauge Gelds; the dynamics on the other hand may be
more conveniently described in terms of unconstrained,
physical degrees of &eedom. It has been the purpose of
this work to investigate this rather intricate connection
between general topological properties and specific dy-
namical realizations in the context of QCD2 ~.

We have chosen to perform the detailed dynamical
study in the canonical &amework of the Weyl gauge.
We have imposed, furthermore, periodic boundary con-
ditions, i.e., gauge and matter Gelds live on a spatial
circle. In this way, the singular in&ared properties are
kept under control. In the canonical formalism, the re-
dundant gauge Gelds are eliminated by explicitly imple-
menting the Gauss law constraint. The unconstrained. ,
physical degrees of &eedom are the fermion Gelds and,
for SU(N), N —1 gauge degrees of freedom, which can
be interpreted as zero momentum neutral gluons. Most
important with regard to the topological properties is the
peculiar form of the electric field energy of these leftover
gluons. In the course of eliminating the gauge fields the
kinetic energy of these gluons acquires a nontrivial Ja-
cobian in much the same way as the kinetic energy of a
quantum-mechanical particle moving on the surface of a
sphere does. By appropriate definition of a "radial" wave
function the kinetic energy can be transformed to the
standard Cartesian form supplemented, however, by the
constraint on the wave function to vanish wherever the
Jacobian vanishes. In this way, the configuration space
of the gauge degrees of &eedom becomes a manifold with
boundaries. For SU(2), this manifold is a compact in-
terval, and an equilateral triangle for SU(3). Along the
boundaries, the radial wave function and Jacobian van-
ish. Much of the characteristics of the dynamics of QCD2
is due to these topological properties. For instance, the
diB'erent dynamics of SU(2) QCD2 and the Schwinger
model, with their common one-dimensional configuration
space of the residual gauge degree of &eedom, can be
traced back to a large extent to the topological difference
between a compact interval and a circle. (In electrody-
namics, the electric Geld energy appears without further
redefinition of the wave function in Cartesian form. ) The
physics of a quantum mechanical particle moving on a
circle or in a periodic potential is significantly diferent
&om that of a particle enclosed, e.g. , in an infinite square
well. This difference is indicative of what happens in
two-dimensional electrodynamics and SU(2) chroinody-
namics, respectively.

The definition of the configuration space of the gauge
degrees of freedom of QCD2 is independent of the char-
acteristics of the matter fields. The color structure of
the matter Gelds is, however, relevant as far as the ex-
istence of symmetries acting on the combined configura-
tion space of fermion fields and gauge degrees of freedom
is concerned. %'e have analyzed in detail these symme-
tries. As one of the main results of our studies we have
explicitly constructed the residual gauge symmetries for
QCD& ~. For SU(2), these symmetry transformations are

re8ections of the gauge variable at the midpoint of the
interval defined by the zeros of the Jacobian accompanied
by a charge conjugation of the fermion fields. In SU(3),
the symmetry transformations consist of a rotation of the
fundamental equilateral triangle by 2vr/3 with concomi-
tant color rotations of the fermions. The mere presence
of these residual gauge symmetries would have very few
consequences as far as the spectrum or the structure of
the vacuum is concerned were it not for the presence of
yet another symmetry in this class of theories. QCD2 '
exhibits, in addition to the gauge symmetries, a discrete
axial symmetry; i.e., the Hamiltonian is invariant under
a separate change of sign of the totality of right- or of
left-"handed" fermions. The interplay of these two dis-
crete symmetries is reHected in spectrum and ground-
state properties. In particular, these systems provide
an example of an anomaly in discrete symmetries. For
SU(2N), there is the possibility that the reHection sym-
metry is anomalous, in which case the stationary states
cannot be simultaneously "gauge invariant" and of def-
inite chirality. As a consequence, the ground state is
expected in general to be degenerate and to develop a
condensate associated with the standard scalar or pseu-
doscalar density. For SU(2N+ 1) no conflict between the
two symmetries arises, and, in general, neither do degen-
eracies occur nar scalar or pseudoscalar densities develop
expectation values.

A more specific characterization of the dynamics is
possible in the small interval or equivalently the weak-
coupling limit. Most of our detailed investigations, which
Gnally have led to the general results discussed above,
have been performed in this limit. For weak coupling an
adiabatic treatment with the gauge degrees of &eedom
representing the slow and the fermions representing the
fast degrees of &eedom is possible. This adiabatic ap-
proximation has allowed us to study very explicitly the
symmetry properties incorporated in the adiabatic po-
tentials. The reflection symmetry in the SU(2) case or the
threefold discrete rotational symmetry of SU(3) QCD2 '
is manifestly exhibited by the corresponding adiabatic
potential. This explicit construction reQects, in particu-
lar, in a very intuitive way, the difference in symmetry
arising if the gauge degrees of &eedom are coupled to
fermions in either the fundamental or the adjoint repre-
sentation.

In the adiabatic picture the formation of condensates is
connected with the overlap of wave functions of the gauge
degrees of &eedom associated with di8'erent fermionic
vacua. The study of this overlap has revealed another
interesting consequence of the presence of the Jacobian
in the electric Geld energy. The vanishing of the Jacobian
and the radial wave function occurs when the values of
gauge degrees describe pure gauges and therefore coincide
with the minima of the potential energy. As a conse-
quence, the modified kinetic energy farces the system ofF
the classical equilibrium position and thereby enhances
the tunneling" probability to other configurations. In
general, the calculations in the adiabatic, weak-coupling
limit are in full agreement with the e~act results and il-
lustrate the rather surprising odd-even eBect of conden-
sate formation in SU(N). Finally, we have shown that in
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the weak-coupling limit, the axial symmetry is extended
to a continuous symmetry. The presence of continuous
symmetries opens the possibility of studying properties
associated with the anomaly using the classical tools. In
particular, we have formulated index theorems associated
with the spectral flow of fermion levels and could thereby
provide further qualitative insights into the symmetry
properties of QCDz '.

The analysis of the quantum mechanics of the vacuum
state of the model at hand carried out above gives us a
new understanding of the "condensate" problem. How-
ever, the discrepancy between fermionic approaches like
the present one and bosonization techniques remains to
be c1arified. Our results yield no hint on the bilinear
condensate in the SU(3) case, while the bosonization ar-
guments seemingly indicate that it develops. If this is
indeed true, such a condensate must have a dynamical
origin not directly related to the gauge symmetry or the
discrete chiral symmetry of the theory and should not be
present in the limit gL (( 1; only then would there be no
obvious contradiction with our investigation.

We conclude by emphasizing those issues, which be-
yond the particular structure of QCD2 might be of rel-
evance for gauge theories in higher dimensions. The ap-
pearence of Jacobians and centrifugal barriers, which has
been of such crucial importance for the structure of the
gauge fixed. theory, is clearly not limited to gauge the-
ories in one spatial dimension. Physical and unphysi-
cal degrees of freedom in non-Abelian theories cannot
be expected to simply factorize as in QED, and this
complication does not depend on the number of space
dimensions. Indeed the corresponding modifications of
the electric field energy have been found in a variety of
gauges [28, 33—35]. In most cases, an explicit evaluation
of the corresponding Jacobian is missing. However, irre-
spective of the detailed structure of the Jacobians, their
zeros e8ectively introduce boundaries into the infinite di-
mensional configuration space of the corresponding the-
ory. Therefore, the issue of realization of symmetries in

the presence of constraints on the wave functional must
come up also in gauge theories in higher dimensions. Fur-
thermore, in the axial gauge representation of QCD4, in
which the Jacobian can be evaluated explicitly, the pure
gauges, i.e., gauge field configurations corresponding to
vanishing magnetic fields, are seen to be located on the
"hyperplanes" of vanishing Jacobians. Thus, an appro-
priately defined radial wave functional is forced to vanish
at the classical equilibrium points and the mechanism of
enhanced tunneling processes, which we found in the one-
dimensional case, will be eAective in higher dimensions
too. Finally, our discussion of anomalies and associated
index theorems should be relevant for gauge theories in
higher dimensions. In the context of QCDz x our discus-
sion was necessarily restricted to the weak-coupling limit.
In QCD4 on the other hand, the corresponding contin-
uous axial symmetries and therefore the phenomenon of
"non-Abelian" anomalies (cf. [36]) persist beyond the
small volume limit. In particular it appears promising
to extend to higher dimensions our method of express-
ing, within a gauge-fixed formulation, these non-Abelian
anomalies as Abelian anomalies of the color neutral axial
vector currents, i.e., axial vector currents associated with
the SU(N) Cartan subalgebra.
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