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Mare on scattering of Chem-Simans vortices
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I derive a general formalism for finding kinetic terms of the effective Lagrangian for slowly moving
Chem-Simons vortices. Deformations of fields linear in velocities are taken into account. From the
equations they must satisfy I extract the kinetic term in the limit of coincident vortices. For vortices
passing one over the other there is locally right-angle scattering. The method is based on the analysis
of field equations instead of the action functional so it may be useful also for nonvariational equations
in nonrelativistic models of condensed matter physics.

PACS number(s): 11.15.Kc, 11.27.+d

I. INTR.OI3U CTION

There is quite a large family of field-theoretical models
both relativistic [1—8] and nonrelativistic [9—12] with soli-
tons which possess a Bogomol'nyi [13] limit. In this limit
static field equations in a given topological sector can be
reduced for a minimal energy configuration to first-order
difFerential equations. Thyrse equations generically admit
static multisoliton solutions characterized by a finite set
of parameters such as positions of solitons and. their in-
ternal orientations. The configurations are static; if we
think about solitons as we do about particles, there are
no net static forces between them.

It was an idea of Manton [14] that low-energy scatter-
ing of monopoles in the Bogomol'nyi-Prasad-Sommerfield
model [13,6] can be modeled by reduction of the dy-
namics to a finite-dimensional manifold of parameters
of static multisoliton solutions. The kinetic part of the
Lagrangian of the original theory after integrating out
the spatial dependence of the fields with by now time-
dependent parameters yields the kinetic part of the ef-
fective Lagrangian quadratic in time derivatives of pa-
rameters. A metric on moduli space can be read out of
it. A fundamental idea in this approach is that config-
urations satisfying the Bogomol'nyi lower bound are at
the bottom of a potential well. A slow motion of solitons
can lead only to small deformations of fields with respect
to static configurations.

The idea was succesfully applied to scattering of
monopoles, vortices in the Abelian Higgs model [4,15—
17] and CP solitons [18,5]. Recently also extensions of
the method to the case of Chem-Simons vortices both rel-
ativistic and nonrelativistic were done [19—24]. However,
as was first pointed out in [20] in these cases a new prob-
lem arises. Lagrangians of these models contain terms
linear in time derivatives such as the Chem-Simons term
and/or Schrodinger action. By just promoting parame-
ters to the role of collective coordinates one can reliably
calculate only terms in the efFective Lagrangian linear in
velocities. To compute the kinetic part one has to take
into account small deformations of the fields with respect

*Electronic address: ufjacekdztc386a. if.uj.edu. pl

to static configurations. It is enough to consider only de-
formations linear in velocities. Such deformations can be
in principle calculated from full field equations linearized
in deformations and terms linear in velocities. However,
also terms linear in accelerations and third time deriva-
tives arise and as I have discussed in [22] there is no
apparent reason why they should be negligible as com-
pared to velocities. Such an "approximation" can lead to
serious inconsistencies.

In this paper I put the problem on a slightly difFer-
ent footing. The acceleration terms are not neglected.
There are no net static forces between vortices and so
their accelerations must be zero for vanishing velocities.
Thus we can assume that the acceleration vector is at
least linear in velocities. We can expect this linear term
to be nonzero because there are charge-fIux interactions
by Lorenz-like forces. Thus acceleration is not neglected
but replaced by a position-dependent matrix ~ times ve-
locity. The same procedure can be applied iteratively to
the third time derivative. Finally in a special limit of
coincid. ing vortices such a unique form of the w matrix
is extracted which ad.mits regular deformations of fields.
Knowledge of w is enough to establish the form of mod-
uli space metrics. A brief comment on how this approach
works in the Abelian Higgs model is added.

XX. MODEL, ZERO MODES,
AND USEFUL NOTATIONS

We take the Lagrangian of the self-dual Chem-Simons-
Higgs model in the form

A„O„A + D„P*D"P—V(I P I)

wher«(l & I) = —.'
I & I' (I & I' —1)' Dp& = ~p&-

iA~Q, the signature of the fiat (2+1)-dimensional metrics
is (+, —,—), and the Levi-Civita symbol is chosen so that

= —1. A variation of the action with respect to Ao
leads to Gauss' law constraint

(2)

where we have introduced P =I P I

e*~ and the magnetic
field is B = —Ei2. When one takes into account Gauss'
law one can efFectively rewrite the original Lagrangian in
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a new form:

I = f + KBBgy+ s—'~A;Bt, A~
2

—B*fB'f + f'(B'x —A')'

K2B2
+ + —f'(f' —1)'

4f2 ~2

= [B;f- f,.(B.~- A.)]'
1 KB f'(1 —f')+— +2 2 K

—B (4)

We have just introduced f =~ P ~

and s'~ such that s
1. The energy density for a static configuration with a
positive topological index is

A's are complex coefBcients of the n-th degree polynomial
with roots z and W is a positive real function. Although
the parametrizations are equivalent, it will later appear
that A's are more eKcient in the description of vortices
passing one over another.

Each of these multivortex solutions possesses 2n zero
modes:

bf(z, A) = (z, A)bA„:—f(z, A)h„(z, A)bA„
B

BA~

I,"z&
by(z, A) = ~HA = —Im

~ ~
bA„qz" —A, z y

bf f' By
bAg = Baby+ sA, (B( =

~
Bi, ~ + si,(Bih„~ bA„

bAo ——— f h„bA„

The magnetic flux is quantized as 2vrn with n being the
winding number. Thus energy is bounded from below by
this value of the magnetic flux. If K ) 0, this Bogomol'nyi
lower bound is saturated by static configurations being
solutions to first-order differential equations:

4V' h„+ p(1 —2p)h„= 0 (12)

where A~ = A„+iA„and i = (l, i). Equation (8) lin-
earized in fluctuations becomes

B'f = fs'i (Bi x —Ai.),
s;, B;A~= f (1 —f )

1 —f
Ao =

(5)

(6)

p denotes moduli squared f . From the asymptotics of f
close to its zeros we can extract the leading term in the
fluctuations:

l"z&

8

These equations admit static multivortex solutions
parametrized by a set of 2n real parameters. In the
Coulomb gauge one can take A' = g i Arg(z —z„),
where the sum runs over vortices labeled by v's and com-
plex coordinates on the plane are used. In this gauge
there is only one second-order differential equation to
solve:

n

&'ln f = , f'(f' ——1)+2~) b
' (z —z„)

v=1
(8)

P = (z —zi) . (z —z )W(z, z, z )

z" —) Agz" W(z, z, z„) (9)

Once f is known, other fields can be obtained from
Eqs. (2),(5). The singular sources on the right-hand side
(RHS) of the above equation enforce the modulus f in a
close vicinity of the p-fold zero zo to behave like

~

z —zo ~"

(it is a leading term of the expansion). This equation in
particular admits a cylindrically symmetric vortex. solu-
tion with winding number n: P = f (r) exp(inc). We will
parametrize multivortex solutions in the equivalent forms

as (z —A, z') —0. This is the only singular term in the
expansion around the actual zero of the Higgs field. This
singularity is fine-tuned by the singularity in by to yield
regular hAy [see (11)].

Now because of future applications let us take a
closer look at the coincident n-vortex solution
f (r) exp(ino) with f (r ) satisfying

(14)

with boundary conditions f (0) = 0 and f (oo) = 1. Close
3

to zero it behaves like f for —,,
~

' i, rs +2 +
Fluctuations for small A's can be written as

h(r, 0) = h (r, 0)A„= H„„[A„„cos—(n —p) 0

+A sin(n —p) 8] . (15)

H's satisfy the equations

+ ——„— i
H„„+—p(1 —2p)H„„

fd' 1 d (n —p)') 4
(dr2 r dr r2 ) v2

= 0, (16)

with a normalization that, close to zero, H —and
it asymptotically vanishes at infinity.

—ln
~1=0

(10)

III. SLOWLY MOVING VORTICES

For more clarity in this paragraph and in what follows
we will rescale the gauge fields A~ ~ v A~ and co-
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ordinates x~ —+ Kx". On the level of field equations it
amounts to fixing v = +1.

The aim of this paper is to investigate the slow mo-
tion of vortices in the adiabatic approximation. In the
case of Chem-Simons solitons a new diKculty arises be-
cause there are terms linear in time derivatives in the
Lagrangian of the theory. Only terms linear in veloci-
ties can be correctly calculated by direct application of
former methods. As pointed out in [20], to obtain the
kinetic term one has not only to make the static fields
time dependent by time variation of their 2n parame-
ters, but one also has to take into account deformations
of the "static" fields up to terms linear in velocities. It is
something like a generalized Lorenz transformation. In
this paragraph we will develop a general formalism for
calculating such corrections. It will appear that to have
regular solutions one cannot neglect terms proportional
to accelerations as vras anticipated in [22].

Let us make the fields time dependent by variation
of the parameters and add to them deformations linear
in velocities, say, f(z, A) -+ f [z, A(t)] + Kf [z, A(t), A(t)],
etc. Evaluation of the effective Lagrangian is accom-
plished by substitution of such Acids into Lagrangian (3)
and integrating out their planar dependence. The only
terms which can contribute to the part of the effective

Lagrangian linear in velocities are

I,&
—— d x By+ 2e'~A, A~ (17)

and one needs to take into account only eKects of pro-
moting parameters to the role of collective coordinates.
All the other terms are quadratic in velocities. The con-
tribution of the second term in Eq. (17) vanishes in the
Coulomb gauge. For fairly separated vortices one can
approximate under the integral B = —2vr +„Si i(z —z„)
to obtain

L = —2vr —) Arg(z„—z )
(i)

dt

I.."= -2~) x*.A, (z„),

where z = x„+ix„.
The second-order term of the effective Lagrangian is

(in the gauge AX = 0)

With the explicit form of the phase (10) and some inte-
gration by parts one can rewrite the linear Lagrangian
as

L.' ' = f'+»(&f) + (&f) (&f) —(~*&f)' —-V"(f)(&f)'+ f'(& —&A )' —f'(&A')'+ (&f)'Ao'

—(Z f)'(0;y —A;)'+ DAp&B+ s(2A;E—A + (EAi) EA )

4fA fA p (—jj —KAp) + 4fZf (B,y —A;) ZA; (20)

The small corrections to the fields have to be calculated from following equations obtained by linearization of the full
field equations:

~
+4P(2 —3P) I

~

+ (~~»P) ~I
I

—
~

+ «~(&A~ —@&a) —2(P —1)(&Ap —~), fzf) (Af1 Zfl'
= —+ 2(p —1)&y+

~ ~

Zf

l( DfV'Z ~ —a, Z A, —2(2p —i) —+ (O, ln p) ~

s„a, + a, Z ~ —WA„~f f
sy)By 2 A( —4f (1 —p) Ef + 2p(y —EAp)

&f&
o~+Ap + 2ct~p + 2ps~~(~I +X —+Ak) —~~X —samoa

~ ~= jj —EAp + Ay —2(1 —p)

= —~o&x

= LA„ (21)

The equations were simplified with a use of static field equations satisfied by background fields. Now the crucial
observation is that in the Bogomol nyi limit any forces exerted on vortices must be zero for vanishing velocities, and
so accelerations are at least linear in velocities,

W~ = ~„",B(W)WB . (22)

w for a given A is a matrix in the pair of indices (A, p) and (B,q). This relation can be iterated to give

g~AH
pA AB(p)jB + pQ jBjC AB BCj C

dg3 s s~ ~ pic ~ ~ J ~

where once again we have preserved only terms linear in velocities. We can also make the following definitions and
approximations
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~ ~

yhApA Ji fhA Aaj a

p

With these formulas and with the gauge Ay = 0, Eqs. (21) can be rewritten as

A„V's„+4p(2 —3p)s„+ (BI, l p)(Bg „"+sg,(A, ") —2(p —1) l
a„—-

~

= 6„„,A, + s„

[
—BgA„" —2(2p —1)h„+ (Bp lnp)(sA, (B)s„—A„")]=

P I gAA.
A 2(1 )

A Raga

—4p(1 —p)s, +2p l B»
( By

P ]
A„B„a„+2B„ps„—2ps„I,A„) —

l
B„~+ s„i.Bah„ l

gAp ABAB
n pq q (25)

AA ABAB
p pq (26)

Since we know the linear part of the effective Lagrangian
(18), knowledge of these equations enables us to restore
also its quadratic part up to total derivatives. The gen-
eral form of the Lagrangian is

They should yield field deformations in approximations
up to terms linear in velocities. In the limit of very small
velocities field deformations become small as compared
to background fields, and so our linearizations of Beld
equations with respect to deformations are justified. Be-
cause full Beld deformations are regular functions, in the
limit of slow motion also Eqs. (25) must have regular so-
lutions, being good approximations to full deformations.
With this in mind we can take for granted the existence
of regular solutions and derive the necessary conditions
for the regularity. The unknown parameters in Eqs. (25)
are elements of the matrices w„(A). Our strategy &om
now on is to adjust such unique values of these parame-
ters which allow solutions to be regular. Once we know
the parameters, we will also know the equations of mo-
tion for A's linearized in velocities:

ac a~ ~a a~ ~~ ~u

B W,,+ —5 —$ + — A 0

(30)

This is a system of 2n x 2n linear inhomogenous equa-
tions. The basic condition for the system to have a unique
solution is that the matrix u be invertible in pairs of
indices (A, p) and (C, r), detw g 0. This means [see
Eq. (26)] that, whatever the small velocity is, it is alw'ays
a source of acceleration already in linear terms. It should
be a quite generic case except for some anomalous sets
of measure zero in a model with magnetic interaction.
The metrics can be extended to these exceptional points
by continuity. One such point is certainly the limit of
infinitely separated vortices where magnetic interaction
degenerates to a purely topological term [Eq. (18)]. But
in this limit the effective Lagrangian can be accurately
calculated with the help of the product ansatz of inde-
pendently Lorenz-boosted vortices. The quadratic term
reads

(27)

(
—1)Aa ac (Ac(

The equations of motion linearized in velocities are

(28)

(Bl Aa
&aj& + (g&a ba&)j & +PQ P PQ QP P

l
BPDS

BtAD )
BA~ )

(29)

The metric tensor on the moduli space, g, must be sym-
metric under exchange of pairs of indices (A, p) and (B,q)
and invertible:

The second and third terms in Eq. (30) are explicitly an-
tisymmetric under exchange of pairs (A, p) and (B,q),
and so the first term also has to be antisymmetric,

g = —gu. This condition means that to leading order
acceleration is orthogonal to velocity with respect to the
metric g. Once again it should be so for forces due to
magnetic interactions and they are the only forces linear
in velocities. If this condition is satisfied, we are left with
2n —n independent equations necessary to establish the
same number of metric tensor components.

IV. TVPO VORTICES
IN THE CENTER-OF-MASS FRAME

The components of the metric tensor must solve the equa-
tions

We will consider the by now classic example of two
vortices in the c.m. frame. The system is well described.
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Ai ——Ap, A2 ——Ap (32)

The Higgs field is P = (z —A) W(z, z, A). Equations (25)
are on both sides linear in velocities, and so they can be

by two parameters Ai and A2 which can be identified with
the former notation:

cast in a form of a velocity-independent matrix multiply-
ing a vector of velocities. For the product to be always
zero any velocity vector must belong to kernels of the ma-
trices. A matrix is zero if and only if it annihilates any
vector from the basis spanning the space of velocities. If
we choose Ai g 0, and A2 ——0, Eqs. (25) reduce to

~x & h(A) Al + (B) BA Ai
BA(') )

Bi,A—„—2(2p —l)h(') + (c)i, lnp)(si, iBis ') —A„) = —a ) —2(1 —p)s(

„c)A —4p(l —p) ()+2p~ — ()
~

=0,(i) i t ~X
(BAi

(33)

On the other hand, for the choice Ai ——0 and A2 g 0 we obtain

h(x) x2 + (a) ax
BA(') )~

—Bi,A& —2(2p —l)h + (c)qlnp)(sq~B~s —Az ) =
~&)

—a( ) —2(1 —p)s(

„,B„A, —4 (1 —p) ()+2p~(2) 2 ( Bg

( c)A2 )
(34)

These two sets of equations have to be satisfied simultaneously.
Now let us consider the limit of coincident vortices. Such a configuration is rotationally symmetric and the direction

in which it is split should make no difference. This motivates the limiting form of the effective Lagrangian:

(35)

with the coefBcient ho and the power ( to be determined. go can be extracted with the help of Eq. (17) and fluctuations
(11),(15):

d,p
p(1 —2p) H2 (r)

(36)

The value of gp was estimated numerically to be gp 0.0194.
Motivated by null powers of A's in Eqs. (33),(34) and by

sin 20 x
BA2

cos 20
r2 (37)

in the limit of vanishing A's we can restrict the Geld deformations to the following forms in the polar coordinates r, 0:

s(') = s(r) sin 20,
a(') = a(r) sin 20,

A( ) = b(r) cos 20

A,"= c(r) sin 20,

s ) = s(r) cos20—
(') = —(.) -.20,

A( ) = b(r) sin 20

As ) ———c(r) cos 20 (38)

together with a form of the matrix w+ = &us . Equations (33) and (34) reduce to
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(I
8' 48 P Cs" + ———,+ ~'s + 4p(2 —3p) s + —(s' + c) —2(p —1)

I
a ——,

Ir r P "')
6 2c p' f' 2slb'+ + 2(2p —1)II + —

i
b ——

ir r
I c 26 /1c'+ + 4p(1 —p)s+2p ~

—,—a
~r r )

= uH2

(d= ——+ (ua —2(u(p —1)sr2

2 2H2a'+ 2p'8 —2pc+ ~6 = ——+--
r3 r

2a 2—+ 2p6 —~c = —+ H2r r3

u is an adjustable parameter we have to choose in such a way that solutions are regular. A short inspection shows
that the fourth equation in the above set of equations can be derived from the fifth, second, and third equations.
Regularity of A f means that s cannot be more divergent than O(r ). Thus we can expand the regular solution
around r = 0 as

s(r) = ) sr,r", a(r) = ) akr", b(r) = ) bqr", c(r) = )
k= —2 k=O k=1 k=1

(40)

Substitution of the first few terms in the expansions to
Eqs. (39) shows that they are in contradiction unless w =
—2. If we adopt this value of u the following leading
terms will be obtained:

s = (-v —()r2

a = (—v —2()r 2

b = (—2v —2()r +
c = (2v + 2$)r, (41)

In the generic case of two vortices in the c.m. frame
at (R, O) and (R, O + m) the eff'ective Lagrangian must
take the form

L,& ——E(R)Rz + 2G(R)RRO+ H(R)R202+ B(R)RO.

where v 1387000 is a coefIicient in the expansion
82 ——r + vr + . and ( is a free parameter com-
ing &om the "homogenous" part of the solution. For the
solution regular at infinity numerical analysis has given
( = —1 387017.5.

With the value of u = —2 we can conclude that the
limiting form of the efFective Lagrangian for A ~ 0 is

LA~0
(

lgAHP P AHP j )

l

ation is indeed to leading order orthogonal to velocity. I
have attempted to calculate cu, but because there is less
symmetry (less constraints) in the problem for generic
R, then for B = 0 it cannot be extracted just &om the
asymptotices close to zeros of the Higgs field. Matching
with asymptotics at infinity would be necessary.

Finally a comment on analogous scattering of vortices
in the Abelian Higgs model (AHM) is in order. In this
model G(R) = 0 and also B(R) = 0. Similar considera-
tions as above lead to a conclusion that u = 0. Thus
in the AHM accelerations are at least quadratic in ve-
locities. In equations analogous to (21) terms linear in
acceleration and its time derivative can be neglected as
compared to those linear in velocities. These terms were
indeed neglected in Appendix B of Ref. [20] and it was
shown that rearrangement of the efFective Lagrangian
analogous to (20) with the help of equations fulfilled by
deformation leads to the same expression as that derived
by Samols [15]. Here we have shown the justification of
these steps when performed in the AHM.

Let us consider a general Bogomol'nyi theory and try
to decide what are the conditions for the efFective La-
grangian to be purely quadratic in time derivatives. A
Lagrangian of the theory can be written as

(43) L = G-b[0]4-A+ ~ [0]0 —s[@] (45)

AH dR [ ( )) i —1~AC CH
(d 2B (g ) 8'

J (R)
(

—1)AC CB
g 8'

)

(44)

with J(R) being the total spin of two vortices separated
by a distance 2B. It is an invertible matrix and. acceler-

The functions E, G, H are to be determined. It is a gen-
eral form of the metric tensor invariant with respect to
rotations. The function G is in general nonzero since the
Chem-Simons term breaks parity invariance. Equation
(20) also contains terms which break parity and there
does not seem to be any reason why these terms should
vanish. In polar coordinates the w matrix reads

where g's are a set of fields, e'[Q] is a static energy density
functional, and G b[@] is an invertible, symmetric, and
positively definite tensor. The only contribution to the
linear part of the efFective Lagrangian is

L~~~ = K [@]g (46)

where, as in the rest of this paper @'s are the fields of
the static self-dual background and the time d.erivative
means a total derivative with respect to time-dependent
parameters. This term certainly vanishes if K [ttr] = 0
for the given background. A more subtle possibility is
that the whole expression (46) can yield a zero result
when its spatial dependence is integrated out. Relativis-
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where we have introduced time derivatives of background
fields and deformations of fields. Now we restrict our-
selves to the case of I &

——0. This means that acceler-(1)

ations are at least quadratic in velocities and the above
formula can be reduced to

62~
[W]&W &Ma,

a b

We can linearize the field equations with respect to ve-
locities. The field deformations must satisfy a simple
equation

bs 6K
(49)

tic gauge theory contains linear terms as in Eq. (45).
In the Abelian Higgs model such a term is equal to

B—,AoA, + eg*vtrAoy but the self-dual background has
the property that Ao ——0 and that is why there is no
linear term in the efFective Lagrangian. An interesting
example of the Maxwell-Higgs self-dual model with rel-
ativistic kinetics can be found in [7]. A uniform back-
ground charge density forces a nonzero Ao. Vortices in
this model feel both Magnus force and mutual magnetic
interactions.

The quadratic term of the general efFective Lagrangian

V. CONCLUSIONS

The limiting form of the term quadratic in velocities
of the effective Lagrangian for two Chem-Simons vor-
tices was extracted from equations satisfied by deforma-
tions of the fields with respect to a static background.
This form shows that as we trace, locally, trajectories
of vortices passing one over another there is the cele-
brated right-angle scattering. Globally, if two vortices
were pushed from a large distance one against the other
with a zero impact parameter, they would avoid direct
collision, their trajectories being curved by charge-Aux
interactions. The diff'erence between the total spin of the
pair of vortices when they are infinitely separated and
vrhen they sit on top of one another is —27r (for r = 1).
Thus the necessary condition for the zeros to meet and.
the right-angle scattering to occur is that an impact pa-
rarneter d with respect to the center of mass and an ini-
tial velocity v satisfy dn = 2. This condition can become
sufFicient only for d small enough because vortex-vortex
magnetic interactions are falling exponentially with a dis-
tance.

The local right-angle scattering is a hint that the mod-
uli space manifold is siInilar to a smoothed cone. The
missing volume can show itself in a thermodynamics of a
vortex gas by an excluded volume in a van der Waals
state equation similarly as for the vortex gas in the
Abelian Higgs model [25].

Finally let me stress that problem. s partially overcome
in this paper are not at all special to relativistic Chern-
Simons models. They can also appear in nonrelativis-
tic and nonvariational models so celebrated in condensed
matter physics because Schrodinger or difFusion terms
are linear in time derivatives on the one hand and on the
other hand. the efI'ective action method may not be able
to describe the whole variety of dynamical phenomena. I
would like to address such problems in the near future.

This relation enables us to simplify Eq. (48) to the com-
pact form

plus higher-order terms negligible in t,he adiabatic ap-
proximation.

Thus whenever there is no linear term in the effective
Lagrangian the quadratic term can be correctly calcu-
lated with the help of background fields with their pa-
rameters promoted to the role of collective coordinates.
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