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We investigate conservation laws in the quantum mechanics of closed systems and begin by
reviewing an argument that exact decoherence implies the exact conservation of quantities that
commute with the Hamiltonian. However, we also show that decoherence limits the alternatives
that can be included in sets of histories that assess the conservation of these quantities. In the case
of charge and energy, these limitations would be severe were these quantities not coupled to a gauge
field. However, for the realistic cases of electric charge coupled to the electromagnetic field and mass
coupled to spacetime curvature, we show that when alternative values of charge and mass decohere
they always decohere exactly and are exactly conserved. Further, while decohering histories that
describe possible changes in time of the total charge and mass are also subject to the limitations
mentioned above, we show that these do not, in fact, restrict physical alternatives and are therefore
not really limitations at all.

PACS number(s): 03.65.Bz, 03.65.Ca, 03.65.Db, 98.80.Bp

I. INTRODUCTION

Energy is conserved during the unitary evolution

of a quantum state of an isolated subsystem of the uni-
verse because the Hamiltonian h, of that subsystem com-
mutes with the unitary time evolution operator. How-
ever, energy is not generally conserved by the "second
law" of quantum evolution that describes how the state
of a subsystem evolves when an "ideal" measurement of
it is carried out. If I@) is the state before an ideal mea-
surement, the state afterwards is "reduced" to

(1.2)

where 8 is a Schrodinger-picture projection operator
corresponding to the measurement outcome, one of a set
of such operators (s ), n = 1, 2, . . . describing different
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possible outcomes. Even if I@) is an energy eigenstate,
the reduced state vector will generally not be an energy
eigenstate except in the special case that 8 commutes
with the Hamiltonian of the subsystem h.

More generally, if a sequence of measurements is car-
ried out on the subsystem at times tz, . . . , t, with out-
comes represented by Heisenberg-picture projection op-
erators (s"„(tg)), k = 1, . . . , n, the joint probability of a
particular sequence of outcomes n = (nq, . . . , cr„) is

Energy is conserved if the joint probability vanishes
whenever measurements of the energy at two times dis-
agree. However, if measurements of quantities that do
not commute with h intervene between the two deter-
minations of the energy, then that joint probability will
not be zero. More precisely, if (s",(tt)) and (s" (t ))
project to the same set of ranges of 6 eigenvalues, the
joint probability has nonzero entries for nt g n when
the intervening projections do not commute with h. En-
ergy is thus not necessarily conserved in a sequence of
measurements.

The conservation of energy by the unitary evolution
and the general nonconservation by the reduction of the
state vector are not surprising. The unitary law (1.1)
describes the evolution of a subsystem in isolation. The
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PA:

(1.4)

showing that they represent a mutually exclusive, ex-
haustive set of alternatives. An individual history cor-
responds to a particular sequence of alternatives o.
(nq, ..., n ) and is represented by the corresponding chain
of projections. When the theory assigns probabilities to
a set of such alternative histories, the probabilities of the
individual histories are given by

(1.5)

assuming (for simplicity) that the initial condition of the
closed system I@) is pure.

Equation (1.5), giving the probability of a history of a
closed system, has the same form as Eq. (1.3) giving the
probability of a history of measurements of a subsystem.
The only difference between the expressions is that in
(1.3) states operators, etc. , all act on the Hilbert space
of the measured subsystem, while in (1.5) they act on the
Hilbert space of a closed system including both the mea-
sured subsystem and any measurement apparatus. Thus,
if (P, (t&) ) and (P (t )j are projectors onto the same
sets of ranges of the total energy H at two different times
there is no reason to believe that the probability of his-
tories with n~ g n will vanish if the intervening projec-
tions do not commute with the Hamiltonian. Equation
(1.5) no more conserves energy than does (1.3). However,
in the quantum mechanics of a closed system there is
nothing "external" to cause a change in the total energy.
Does this mean that the quantum mechanics of closed
systems predicts nonzero probabilities for violations of
energy conservation' Further, not only conservation of
energy is at stake. Similar remarks hold for any other
quantity that commutes with the Hamiltonian such as

For example, as in [4], Sec. 11.10.

reduction law (1.2) describes the evolution of a subsys-
tem interacting with another system that is measuring
it. Energy may be exchanged between the measuring
apparatus and the measured subsystem.

The familiar "Copenhagen" quantum mechanics of
measured subsystems sketched above is an approxima-
tion to a more general quantum mechanics of closed sys-
tems [1—3], most generally the universe as a whole. It is
an approximation that is appropriate when certain ap-
proximate features of realistic measurement situations
may be idealized as exact. The most general predictions
of quantum mechanics are the probabilities for individual
members of sets of alternative histories of a closed sys-
tem. One kind of alternative history set may be specified
by giving exhaustive sets of exclusive alternatives at a se-
quence of times tq, . . . , t . The alternatives at one time
are represented by a set of Heisenberg-picture projection
operators (P"„(tA,.)j satisfying

the total electric charge. In the following, we shall show
that no such violations are in fact predicted.

In posing the question of possible violations of fun-
damental conservation laws in the quantum mechanics
of closed systems we should stress that we do not mean
violations that might be revealed by successive measure-
ments of a subsystem. The probabilities of the outcomes
of ideal measurements on a subsystem are described by
(1.3) to an accuracy far beyond the precision available in
any experimental check of a conservation law. A sequence
of two measurements that determines whether the value
of a quantity a that commutes with 6 is in one of a set of
ranges (A ) is represented by the string of projections

(1.6)

The Heisenberg equations of motion

a (t) iht/s a (0)
—iht/s

together with the analogue of (1.4) show that, when a
commutes with the Hamiltonian h, the operator string
(1.6) is proportional to b, , The probabilities (1.5) of
a measured change in the value of a quantity commuting
with h, , including the energy itself, are therefore zero.

However, the quantum mechanics of closed systems
does not only predict probabilities for the outcomes of
measurements of a subsystem. We may consider, if we
wish, the probabilities of histories that describe alterna-
tive values of the total value of a quantity commuting
with the total Hamiltonian H for the whole closed sys-
tem at various moments of time. Such total quantities
are unlikely to be accessible to experiment, but their con-
servation, or lack of it, is still of theoretical interest, and
it is this question that is the subject of this paper.

The expression (1.5) for the probabilities of the his-
tories of a closed system would seem to allow nonzero
probabilities for changes in a quantity commuting with
the Hamiltonian if projections that appear between two
projections associated with this conserved quantity do
not commute with it. However, in the quantum mechan-
ics of closed systems, probabilities are not predicted for
an arbitrary set of alternative histories. They are pre-
dicted only for those sets for which there is negligible
quantum mechanical interference between the individual
histories in the set [1—3]. Such sets of histories are said
to decohere. It would be inconsistent to assign proba-
bilities to sets of histories that did not decohere because
the correct probability sum rules would not be obeyed.
Decoherence of histories implies the validity of the prob-
ability sum rules so that decoherent sets of histories are
consistent.

Following the usual terminology, when no confusion should
result, we shall often refer to quantities that commute with
the Hamiltonian as "conserved quantities" even though it is
their conservation that is being investigated.

This is true for any two times tz and t2 despite common mis-
conceptions concerning the energy-time uncertainty principle.
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Conservation laws are obeyed by consistent sets of his-
tories. In Sec. II we review an argument of GrifIiths
[5] that exact decoherence implies exact conservation of
quantities that commute with the Hamiltonian. How-
ever, as we also show in Sec. II, there are limits on the
exactly decohering sets of histories through which the
probabilities of changes in such a quantity, A, could even
be defined. For a set of histories that test the conserva-
tion of A in some fixed way to some given accuracy, there
is an associated "smeared" version A of the conserved
operator A. The only alternatives permitted. in such his-
tories are of the values of quantities that effectively com-
mute with A; i.e. , commute when acting on the initial
condition of the closed system. That limitation would
prohibit, for instance, the exact decoherence of a set of
histories that, in addition to describing the outcomes of
our everyday observations, also specifies alternative val-
ues of the total energy to arbitrary precision. That is
because the total Hamiltonian does not commute with
the crudely specified positions, momenta, etc. , necessary
to describe typical experimental situations. (Recall that
as observers we are part of this closed system. )

However, an important feature of the two Inost impor-
tant absolutely conserved quantities, electric charge and
mass, is that they are coupled to gauge fields. This fact
has two consequences: (1) It allows decoherent histories
that describe possible changes in charge or mass together
with other realistic, everyday alternatives, as the above
condition is satisfied for al/ quasilocal operators. (2) It
ensures the exact decoherence of the alternative values
of these changes, and that the probability is zero for
any nonvanishing value of such a change. That is, to-
tal charge and total energy are exactly conserved. The
simplest case of electric charge is discussed in Sec. III.
Section IV discusses the conservation of total energy.

Heisenberg-picture projections onto them. The same set
of intervals will be used at every time so that the (PA (t) j
obey (1.4).

Consider a set of histories (consisting of alternatives
at a sequence of times) in which sets of projections onto
ranges of A occur at two different times tI and t . We
will use such histories to test the conservation of A to a
degree determined by the choice of intervals (E~ j. Note
that the argument below may easily be generalized to test
conservation between more than two moments of time.

The individual histories in such a set are represented
by chains of projections operators,

C = C' P (t )C,P.
, (ti)C (2.2)

D(a', a) = Tr(C pCt), (2.3)

where p is the density matrix representing the initial con-
dition of the closed system. When Re(D) vanishes for
n' g n the set of histories exactly (weakly) decoheres,
and the probabilities are given by the diagonal elements,
as summarized in the equation

ReD(n', n) = b p(a) . (2 4)

where the (C j, (C, j, (C' j are chains of projec-
tions representing alternatives before tI, between tI and

and after t, respectively. More generally theC,C, , C could be sums of chains of projections cor-
responding to alternative histories defined by partitions
of the chains into exclusive classes, and they could be
branch dependent in the sense of [14] without affecting
the subsequent simple argument.

The decoherence functional whose off-diagonal ele-
ments measure quantum interference between parts of
histories is

II. EXACT DECOHERENCE AND EXACT
CONSERVATION

[A, R] = 0 (2.1)

In this section we review GrifIiths' demonstration that
the probabilities for changes in the values of quantities
that exactly commute with the Hamiltonian are exactly
zero for exactly decohering sets of alternative histories
of a closed system. We also show that, given a quantity
A that commutes with the Hamiltonian, the only alter-
natives that can occur in an exactly decohering set of
histories describing possible changes of A are values of
operators which effectively commute with A when acting
on the initial condition of the system.

Let A be any quantity satisfying

): p(n-, j-,nb, j i, a-) = p(j,ii) .
aa, ag, ac

(2.5)

The p(j, ji) are the probabilities for the set of histories
represented by the chain

PA (t )PA(t ) (2.6)

But the individual operators in the chain are in fact in-
dependent of t because A is conserved. Specifically, the
Heisenberg equations of motion show that

We can now proceed with GriKths' argument.
Consider the probabilities p(n„j, nb, ji, a ) of the set

of histories represented by (2.2). Exact weak decoherence
implies that these probabilities are consistent. That is,
they must obey the probability sum rules and. , in partic-
ular,

including the Hamiltonian itself. Let (b,z j,
1, 2, . . . be an exhaustive set of nonoverlapping ranges
of the eigenvalues of A, and let (P (t)j be the set of

PA (t) iHt/hPA(0) —iHt/s PA(0)

because A commutes with H. Thus

(2.7)

PA (t )PA(t ) g PA(t ) (2.8)
The argument appears well known to a number of people.

We learned it from GrifBths. and the probabilities p(j, ji) which follow from (2.4)
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vanish if j g jt. Since the left-hand side of (2.5) is the
sum of positive numbers, they must vanish individually.
We have

now holding for all values of j and ji. Consider the
"smeared" operator

A(t;(b, , a, })—= ) a, P.,~ (2.17)

and the probability is zero for any nonvanishing change
in the value of a quantity that commutes with the Hamil-
tonian. Energy in particular is conserved.

While exact decoherence ensures exact conservation of
the quantities commuting with the Hamiltonian, the fol-
lowing argument shows that it also limits the alternatives
that can be included in a set of histories defining that
conservation. Suppose the set of histories represented by
(2.2) exactly decoheres. Then every coarse graining Gf

it must also exactly decohere and, in particular, the set
represented by

(2.10)

is exactly decoherent. According to the result of GriKths
derived above, the probability of a change in the value of
A is zero:

(2.1i)

Write the density matrix p in the basis in which it is
diagonal as

p = ) lA)~), (Al (2.12)

for positive probabilities 7rp. In that basis, (2.11) reads

so that

C~ ~b~r I&) = »f j~ P j& and ~& 8 0 . (2.i4)

Thus, C~,~, for j g jl must vanish on the subspace
S~ of initial states with nonvanishing probabilities in the
initial density matrix. In particular,

(2.15)

The result (2.14) can be used to show that C, must
commute (at least on the subspace S~) with an operator
A formed from A by smearing over the ranges (A~}. To
do so, choose IIrom each range L~ some value a~. From
(2.14) and (2.10) we can write

(a, —a, , )P, (t )C P,. (ti)lA) = 0, when ~p g 0

(2.16)

The argument for conservation depends only on the consis-
tency of the set of histories. Although we introduced it by
discussing weak decoherence which implies consistency, the
argument could proceed directly from (2.5).

where the notation indicates that the smearing depends
on the choice of intervals (b,~ }.This operator is actually
time independent and, for simplicity, we drop all labels
on A below.

By summing (2.16) over j and jt we have

[A, Cb, ]lA) = 0, when. erg g 0 (2.is)

and, in particular,

[A, Cb, ]p = 0 . (2.i9)

C.', = PB(t,)PB(t, ) . (2.20)

From (2.19) we conclude

[H, P, (t )]l=p0 and [II,P (t2)P, (tl)]p = 0 . (2.21)

Equation (2.21) and the Heisenberg equation of motion

PB (t) iHt/hPB (0) iHt/h—(2.22)

The result (2.19) shows that, given [A, H] = 0, the only
operators permitted in an exactly decohering set of his-
tories that test the conservation of A in the manner spec-
ified by the choice of intervals (A~ }must commute with
an operator A(t; (A~, a~}) formed by smearing A over
these intervals. There are thus a variety of constraints,
depending on how these ranges are chosen.

When A has a point spectrum with no accumulation
points, the intervals (Az} are naturally taken to contain
only one eigenvalue. Then, A = A. When the spectrum
of A has accumulation points, we may investigate histo-
ries in which its value is de6ned with arbitrary precision
by using small intervals (A~ }.In the limit of infinitesimal
intervals, we may again replace A in (2.19) with A itself.
In this limit, the only permissible alternatives C, in a
set of exactly decohering histories of the form (2.2) that
test the conservation of A are alternatives of quantities
that electively commute with A in the initial condition
P-

For some conserved quantities, the limitations of the
condition (2.19) are of little consequence. For example, if
the conserved quantity is the total number of particles in
a nonrelativistic system, then many interesting operators
commute with it and (2.19) is easily satisfied. However,
in other cases, the restriction is more severe. Consider,
in particular, the case of the total energy.

The Hamiltonian corresponding to the total energy of
course commutes with itself. In the limit of infinitesimal
spectral intervals, the result (2.19) is sufficient to show
that histories of the form (2.2) that test conservation of
energy can only exhibit trivial dynamics. Consider the
case when {Cb,}is a set of histories of alternative ranges
of values of a quantity B at two times ti, t2 such that
ti & tg, t2 ( t . Then,
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are enough to show that, for t~ & tq ( t2 ( t

P (t2)P (tg)p = 0, ng g n2, (2.23)

(2.24)

always exactly decohere. That is because the PH(t)'s
are constant in time [cf. (2.7)] so that the {C ) are a
set of orthogonal projections. The cyclic property of the
trace in (2.3) shows that histories consisting of orthogonal
projections always decohere exactly. I'urther, as a con-
sequence of the orthogonality of the projections in (2.24)
for difFerent ranges of the total energy, the C repre-
senting nonvanishing changes in the total energy vanish
identically. The probability of a change in the total en-
ergy is exactly zero. However, the result (2.23) shows
that it is not possible to fine-grain the histories (2.24) to
include alternatives of any quantity other than the total
energy without the values of that quantity being constant
in time with probability one. Thus, were we part of such
a closed system, we could not consider a set of histories
that describe the changes in our everyday lives and at
the same time describe the changes in time of the precise
values of the total energy.

The above discussion considered tests of conservation
laws in exactly decohering sets of histories. It is true that
it might be more realistic to consider approximately de-
cohering sets of histories and the approximate violations
of conservation laws that could be expected to occur.
This is an interesting problem. However, more impor-
tant consequences can be derived for quantities such as
electric charge and mass by including their couplings to
the gauge Gelds that we have so far neglected. This cou-
pling provides a natural mechanism to guarantee that
every interesting operator will satisfy (2.19). We show
this in the next two sections.

and this implies that there is zero probability of any
change in the value of B for the histories in which changes
in the energy can be deGned.

If only Gnite-sized energy intervals are considered,
some change of B with time will be allowed. A descrip-
tion of the operators satisfying (2.19) would then depend
on the details of the dynamics of the system and the
choice of the intervals 4 . However, the allowed change
must vanish in the limit in which either the intervals be-
come small or we require (2.19) to hold independently of
the choice of intervals 4

To appreciate the strength of this result, imagine a
model universe consisting of a large box of nonrelativis-
tic particles interacting by potentials. Sets of histories
describing just changes in the total energy of the model
universe, say,

sets of decoherent histories that can describe changes in
quantities that comxnute with the Hamiltonian and the
values of the probabilities of these changes. The simplest
case is electric charge which we discuss in this section.

The quantum theory of the electromagnetic Geld can
be conveniently studied in temporal, Ao(x) = 0, gauge
where A„(x) are the components of the potential. The
states may be represented by vectors in the fermion Fock
space with components that are functionals of the vector
potential A(x). Thus formulated on. a space that contains
electromagnetic degrees of &eedom beyond the true phys-
ical ones, the theory has a constraint represented by the
operator

t.'(A) = f d xA(x)[v E(x) —p(~)], (3.1)

where p(x) is the charge density and x denotes the three
spatial coordinate of some particular Lorentz kame. The
function A(x) is the parameter of the gauge transforma-
tion which is generated by C(A) via

bA;(x) = ——[C(A), A;(x)] = 0;A(x) . (3.2)

bQ = ——[C(A), O] . (3.3)

Physical, gauge-invariant, quasilocal operators must
commute with the constraint

[C(A), @ply.] = 0, (3.4)

and physical, gauge-invariant states are annihilated by
the constraint.

As a particular case of (3.4) we may take A = const.
Then Gauss' law may be applied to reduce the V' E term
in (3.1) to a surface term with spacelike separation from
the efFective support of Qphys yielding the result

(3.5)

where

o = jd'xp(x) (3.6)

is the total charge operator. Quasilocal physical quanti-
ties therefore commute with the total charge.

More generally, C(A) generates gauge transformations for
an arbitrary quasilocal (see, e.g. , [6]) operator Q that
vanishes sufFiciently fast outside some bounded region of
space (which we will call the effective support) according
to

III. ELECTRIC CHANCE

The Inost Grmly established examples of absolutely
conserved quantities are electric charge and total energy.
Both are coupled to gauge fields, and the conservation
of each is connected with a fundamental symmetry prin-
ciple. These fundamental symmetry principles limit the

This derivation is naive from a rigorous point of view. For
a better one see [7].

In representing physical quantities by operators in this way
we are considering, as usual, quantities defined at one moment
of time. For more general spacetime alternatives see [8], Chap.
VI.
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An exhaustive set (4 ), n = 1, 2, . . . , of ranges of a
gauge-invariant quantity 0 defines a set of alternatives
for a closed system at a moment of time. These are rep-
resented by a set of Heisenberg-picture projection opera-
tors (P+(t) ). Sets of histories for the closed system may
be defined by giving a series of such sets at a sequence
of times t,q, . . . , t . The individual histories correspond
to particular sequences of alternatives (o.i, . . . , n„) and
are represented by the corresponding chains of projec-
tars as in (1.5). More general examples of histories can
be obtained by partitioning such sequences into classes
(c ) represented by a set of class operators (C ) that are
sums of the chains in the class. Thus, a gauge-invariant
set of histories is generally represented by a set of class
operators of the form

(+1 ~ ~ «Q )QQ

P~-(t„)".P~'(t, ) . (3.7)

When electromagnetism is formulated in this way, with
redundant as well as true physical degrees of &eedom, the
decoherence functional is not given by a formula such as
(2.3) in which the Hilbert space is a space of wave func-

tionals of the vector potential A(x). Rather, it is given
I

by that formula utilizing the Hilbert space of function-
als of the true physical degrees of &eedom; that is, just
the transverse part AT(x) of the vector potential. The
class operators (3.7) must first be reduced to class op-
erators (C ) on the Hilbert space of physical degrees
of &eedom by integrating their matrix elements over the
redundant (longitudinal) degrees of freedom with appro
priate gauge-fixing conditions. The details of this process
are not important for us; it suKces to note that the de-
coherence functional may be written

D(o.', n) = TrT(C, pCT ), (3.8)

where p is a density matrix in the Hilbert space of the
matter degrees of &eedom and the true physical degrees
of freedom of the electromagnetic Geld.

We next consider fine-graining a set of histories (3.7) by
including alternative values of the total electric charge Q
at a sequence of times t'I„k = 1, . . . , m. We consider, for
simplicity, the same set of ranges (Ap}, P = 1, 2, 3, . . .
of Q at each of these tixnes and let (P& (tI, )j be the
projections of the total charge operator onto them. The
class operators for such a finer-grained set are

Cap =
{a"a„)qn

P.„-(&-)."&p (t' ) ".&p, (ti) ".P.,'(ti) (3.9)

where the Pg (t&) have been inserted at the positions
dictated by time ordering.

The projections (P&~(t') ) have two important proper-
ties: First, they commute with all gauge-invariant quan-
tities as a consequence of (3.5), and therefore, in partic-
ular,

[P „'(t ), P~(t', )] =0. (3.10)

Second, they are conserved,

[II,Pp~(t', )] = 0, (3.11)

and therefore are independent of the times t&. Equation
(3.10) means all P~'s may be commuted to the right or
left in (3.9), and (3.11) means that the class operator is
zero unless all the Pi are the same:

C-n = S.r3. " S.r3. Pp, C-Q

Q= bp p, . . . bp, p, C I'p (3.12)

The construction is standard. , but for more details in the
present notation see [8].

The first of the relationships (3.12) shows that, for any
set of histories, the alternative values of the charge al-
ways decohere exactly. That is because, as a consequence
of the cyclic property of the trace, the decoherence func-
tional D(n', P'; n, P) is always proportional to hp~ g, . The
h' functions in (3.12) thus ensure that histories in which

the total charge fluctuates have a probability of zero. To-
tal charge decoheres exactly and is exactly conserved. Al-
lowing approximate decoherence does not permit nonzero
probabilities for changes in Q.

The restrictions derived in Sec. II on histories that in-
clude alternative values of the total charge are still valid.
The alternatives in a decohering set of histories must
commute with the total charge. However, all quasilo-
cal physical alternatives satisfy this condition as a conse-
quence of gauge invariance. It is therefore no restriction
at all.

In general, if a set of histories (C ) decoheres, then the
finer-grained set (3.9) that includes alternative values of
the charge does not necessarily decohere. However, it
does in one interesting and natural case. That is when
the initial condition has a definite, Axed total charge q,

(3.13)

Then when C p, in the form of the second of (3.12), acts
on p there will be a nonzero result only for that inter-
val Ars, which contains q. D(a.'P', nP) is thus nonzero
only when both Pi and Pi have this value and is there-
fore diagonal. The finer-grained set jC p) decoheres if
the set (C ) does. It follows that, when the universe
has a definite value of the total charge, we may always

As it does for instance iu the "uo-boundary" [9] initial con-
dition where the total charge is zero because the Universe is
spatially closed.
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IV. TOTAL MASS

Energy universally couples to spacetime curvature,
which itself can carry energy in the form of gravitational
waves. As a consequence, a realistic classical discussion
of the total energy of a closed system, which in relativity
is the same thing as its total mass, must be carried out
in the context of general relativity and a discussion of
possible quantum fluctuations in the total energy in the
context of quantum gravity.

There is no local definition of mass-energy in general
relativity because a general spacetime does not exhibit
a time-translation symmetry. Neither is it possible to
deGne the total mass of a spatially closed cosmology ex-
cept by assigning it the value zero in which case its con-
servation is trivial. Conservation of energy becomes an
interesting issue in asymptotically flat spacetimes pos-
sessing asymptotic time translation symmetries enabling
the total mass of the system to be defined.

For asymptotically flat spacetimes, the mass on the
spacelike surface can be determined &om the asymp-
totic behavior of the spatial metric on that surface. Us-
ing coordinates which asymptotically become rectangular
Minkowski coordinates at spatial infinity the deviations
&om flat space must, at the very least, fall ofF as

M p(t, e, p) f 1 i
gnp —gap + +r &r J

(4 1)

Here, g p is the flat metric in rectangular Minkowski
coordinates, rI p = diag( —1, 1, 1, 1), t = xo, and the po-

fine-grain any set of decoherent histories to ask about the
total charge without disturbing decoherence and receive
from the quantum mechanics of closed systems the reas-
suring answer that it is conserved with a probability of
one.

Finally, note that all of our results follow directly &om
(3.5). Any operator with the property satisfied by q in
this equation is said to be superselected (see, e.g. , [6]).
In speciGc restricted models, this occurs for quantities
such as baryon number, lepton number, and non-Abelian
charges as well as electric charge. Thus, alternative val-
ues of superselected charges always decohere exactly and
are exactly conserved. Furthermore, when the total state
has a deGnite value of such a charge, projections onto its
eigenvalues may be added to any set of histories without
afI'ecting decoherence.

lar coordinates (r, e, P) are connected to the rectangu-
lar coordinates (xi, x, xs) by the usual relations, e.g. ,
x = rsinecosg.

Consider a spacelike surface that asymptotically is
a surface of constant t. The Arnowitt-Deser-Misner
(ADM) total mass [10] is defined by evaluating the fol-
lowing integral on a two-surface at large r:

1
M(t) = lim dS, (Bkgy~ —Oi. gi, j, ) .

]6m r~&m
(4.2)

Here 0; is the flat-space gradient, and we have followed
the usual convention of indicating a summation in asymp-
totic expressions by repeated lower indices. The asymp-
totic behavior of the metric (4.1) ensures that M(t) is
finite.

Whether total mass-energy is conserved in a quan-
tum theory of asymptotically fIat spacetimes depends
on the probabilities of decoherent histories that describe
difFering values of M(t) on difFerent spacelike surfaces.
There are, of course, a variety of approaches to a quan-
tum theory of spacetime. We shall analyze the question
in the sum-over-histories generalized quantum theory of
spacetime geometry. A generalized quantum theory is
specified by three elements. (1) The fine-grained histo-
ries, which here are a class of four-dimensional metrics
and matter field configurations. The metrics g p(z) are
asymptotically fiat at least in the sense of (4.1), but with
possibly more restrictive conditions to be discussed be-
low, and dwell on a manifold with two spacelike bound-
aries o' and 0" representing the "end points" of the his-
tory. To keep the notation manageable we shall indicate
only a single matter field P(x). (2) The allowed coarse-
grainings, which here are difjeomorphism invariant p-ar-

titions of the fine-grained histories into exclusive classes
(c ), n = 1, 2, . . . called coarse-grained histories. (3) A
decoherence functional deGning the measure of interfer-
ence between pairs of coarse-grained histories. The pre-
cise details of the construction of this decoherence func-
tional will not be important for us. Its form is similar
to (2.3) but with notions of p, Tr, etc. appropriate to
gravity. It is the form of the class operators correspond-
ing to coarse-grained histories that is important for the
present discussion of the conservation of the total mass.
These class operators act on the space of wave functionals
defined on the space of three-metrics 6;~ (x) and spatial
matter field configurations g(x) on a spacelike surface.
The matrix elements of the class operator corresponding
to a difI'eomorphism invariant class c of asymptotically
flat four geometries and field configurations are deGned
by the sum-over-fine-grained histories:

(h,", , y"
~~

C
~~ h,'-, , y') = 6ghgexp(iS[g(x), @(x)]/5) .

[(hr +I) & (hII +II)j

Here, h'; (x) and y'(x) are the induced metrics and mat-
ter field configurations on the boundary o'. There are
similar definitions on o". S[g, g] is the action for ge-
ometry coupled to matter fields. The sum is over four-
metrics g p(x) and four-dimensional field configurations

P(x) which are in the difFeomorphism invariant class c
and match the prescribed conditions on 0' and 0". Qf
course, the expression (4.3) is only formal and must
be augmented by gauge-fixing Inachinery, regularization
procedures, etc. to make sense, but its form will be suf-
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ficient for the level of argument we are able to give. Fur-
ther details can be found in, for example, [8].

With these preliminaries in hand we may return to
the issues of the conservation of total ADM mass at spa-
tial infinity and whether histories that define possible
changes in the total mass are limited to trivial dynam-
ics as they were in the simple model of Sec. II which
neglected gravitation. To calculate the probability of a
Huctuation in the mass, we must consider partitions of
the set of fine-grained histories into classes by ranges of
the value of the total mass M(o) on at least two difFer-
ent spacelike surfaces oq and o2, in addition to whatever
other alternatives define the classes under consideration.
Such histories are the analogue of those represented by
(2.2) when A is the total energy, II, in the nongravita-
tional case. When such sets decohere, the issue of con-
servation of ADM mass is then the question of whether
the probability is zero for those with M(o.i) g M(o2).
For this case, the arguments of Sec. III are not satisfac-
tory as quasilocal difFeomorphism-invariant operators are
dificult to construct —in fact, because there are no local
diKeomorphism-invariant operators for gravity, strict use
of the definition in [6] shows that there are no quasilocal
invariant operators at all. To find a more satisfying ar-
gument we must look more closely at what is meant by
"asymptotically Bat."

Penrose's notion of conformal completion [11,12] gives
a standard definition of a spacetime which is asymptot-
ically Bat. A consequence cf this definition is that
asymptotically Qat metrics have a more restricted asymp-
totic behavior than that given by (4.1). In particular the
Riemann tensor must decay at large r as

(4.4)

It is not difBcult to show that, in any 3+1 decomposition
of spacetime into space and time, this implies

M~ =0, (4 5)

For a lucid review see Ashtekar [13].

where a dot denotes a time derivative and Roman indices
range over spatial directions. This means that the ADM
mass as defined by (4.2) is constant in time. The con-
servation of ADM mass in this context does not follow
&om the equation of motion, but &om the definition of
an asymptotically Hat spacetime. Of course, the asymp-
totically Bat context would be uninteresting except that
solutions of this form do exist. The finite propagation ve-
locity of gravitational radiation ensures that any solution
with suitably localized initial data will be asymptotically
Bat.

The Penrose diagram for the conformally completed
asymptotically Bat spacetime makes the reason for this
"conservation" intuitively clear. Spacelike infinity is a
single two-sphere where all spacelike surfaces terminate.
A common value of the ADM mass is therefore shared by
all spacelike surfaces.

Were we to use conformal completion to define the
asymptotically Bat metrics which enter into the sum-
over-histories (4.3) the question of conservation of total
mass would be trivial. Only geometries with constant to-
tal mass contribute to the sum; therefore partitions into
classes with di8'erent masses on diQ'erent spacelike sur-
faces would be vacuous.

However, while the conservation of total mass at spa-
tial infinity is trivial, the dynamics permitted in histo-
ries that define this conservation is not. In the model
without gauge fields discussed in Sec. II, only alterna-
tives of quantities that electively commuted with the
total energy were permitted in exactly decohering sets
of histories which also described changes in the total en-
ergy. However, in the presence of the gravitational field,
the analogue of (2.16) which led to that result is triv-
ially satisfied for any diKeomorphism-invariant partition
of the fine-grained histories, regardless of whether it is as-
sociated with projections onto eigenvalues of quasilocal
operators. That is because there are no fine-grained his-
tories at all with changes in the total mass. We therefore
expect that in generalized quantum theory we are permit-
ted arbitrary sets of physical histories that also describe
changes in the total mass. If any set of alternatives de-
coheres, we may always consider the finer graining which
in addition describes changes in the total mass. If that
finer graining continues to decohere, the alternatives re-
ferring to the total mass decohere exactly. Total mass, or
total energy which is the same thing, is conserved with a
probability of one.

The above discussion was carried out using the confor-
mal completion definition of asymptotic Hatness. How-
ever, &om the perspective of quantum gravity it appears
more natural to define asymptotic Hatness &om a prop-
erty of the action rather than &om a notion of conformal
completion. We now show that if the sum-over-histories
in (4.3) is restricted to a class of metrics with the fallofF

(4.1) that (1) have finite action and (2) are invariant un-
der di8'eomorphisms, then the ADM mass is conserved.
To understand this it is sufBcient to look at the action
for pure gravity.

The action for gravity on a domain of spacetime M is

(16vr)sa)g] = f d xg gR+ 2 f d'z—&hK, (4.6)

where B is the scalar curvature and K is the extrinsic cur-
vature scalar of the boundary of M. In order to discuss
the properties of metrics at spatial infinity, it is useful to
consider a standard 3+1 decomposition of the metric

ds = Ndt + h,;, (dx'—+ N'dt)(. de~ + N'dt), (4.7)

which need only hold near spatial infinity for our pur-
poses. Consider the action for a region of spacetime lying
between two spacelike surfaces of constant t and bounded
by a timelike surface BM, near infinity. This may be
written as
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(16m)Sz[y] = j dt jrPx&h'~ [K;,EC*' —A~ + ~R]

dZ, ( 2K—N'+ 2D'N) + 2 d xVh(K —Ko),
8~, B~t

where K,~ is the extrinsic curvature of surfaces of con-
stant t,

1
K;~ = [ h;~ —+ D( N~)],2N

(4.9)

(I)
K;~ = ——M,~+0/—

2r (r2 )
(4.10)

If we evaluate the volume term in the action (4.8) out
to a large radius r~, the coeFicient of the leading term as
rI, M 001S

D, being the derivative in the surface, K;z is the extrinsic
curvature of t9Mq, and the tilde indicates that a quantity
is to be evaluated for a timelike surface.

The general form of the metric (4.1) is not sufficient to
ensure the convergence of the action (4.8). Equation (4.1)
implies that the asymptotic behavior of sR is O(1/rs),
but the asymptotic behavior of K;~ is

u-p(x) ~ a-p+ &(-(p)(x)

and in particular those which asymptotically correspond
to I.orentz boosts

(' = v*t + d'(t, 0, (t)) + O(1/r),

= v;x' + O(1) .

(4.14)

Lorentz boosts preserve the asymptotic behavior (4.1).
The supertranslations d', however, must be independent
of time to preserve (4.1), as substitution into (4.7) will
show. The covariant components of (,(x) relevant for the
transformation of the h,~ (x) are thus

v, t + d;(8, P) + N, (x)(v~x ) + O(l/r) (4.15)

displaying explicitly the O(r) and O(1) terms Sin. ce
N;(x) s;(t, 8, P)/r the third term is of O(1). The spa-
tial part of the metric important for the asymptotic form
of the metric thus transforms as

rl2 dt dn h;- 2 — hkk
2

h,, -+h;~+ ' +0(;(~)+0 ~—
r (4.16)

dt dO M,~
—Mkk, 4 11

where dO is an element of solid angle at infinity. Thus
metrics in the class (4.1) must be further restricted so
that the right-hand side of (4.11) vanishes in order to
ensure finite action. If we assume that this should hold
for any choice of the time interval between the boundary
surfaces we must have

ri2 dn h;2
2 —hkk

2 = dn M;2
2 —Mkk

2 =0.
(4.12)

This is not enough to show that the ADM mass is con-
stant in time, but when coupled with the requirements
of diffeomorphism invariance it will be.

The asymptotic behavior of (4.1) refers to a particu-
lar decomposition of the spacetime into space and time,
and the condition (4.12) ensures that there is no lin-
ear divergence of the action when evaluated between two
constant time surfaces in that decomposition. However,
since the class operators (4.3) are to be defined by in-

tegrals over diffeomorphism-invariant partitions, the no-
tion of asymptotic flatness and of finiteness of the action
must be independent of the 3+1 decomposition. In par-
ticular it must be invariant under diffeomorphisms which
Lorentz transform the asymptotic slices. This leads to
stronger conditions than (4.12) as we shall show.

Consider infinitesimal diffeomorphisms (gauge trans-
formations)

«(0 4')

r dr dOu;-xB; . x (4.17)

vanish. Here we have abbreviated

u,, (x) = h,, (x) —b;, hing(x), (4.18)

and assumed, as discussed above, that the O(l) part
of (;(x) is an arbitrary function of (t, o, P). Integrat-
ing (4.17) by parts and retaining only the leading terms
in large R in the resulting condition following from the
arbitrary form of (,(x) we have

with (~(x) of the form (4.15).
Diff eomorphism invariance requires that the condition

(4.11) be enforced for h;~. (x) of the form (4.16) with (,.(x)
given by (4.15). The first term in (4.15) does not change
the spatial metric. In determining the effect of the rest of
(4.15) on h;z(x) the boost parameter v, is arbitrary. But
it is also important to note that the s;(t, 0, P) determirung
N, (x) is arbitrary; s; merely defines how the spacetime
is sliced internally, consistent with a given asymptotic
slicing. We must therefore enforce the condition (4.12)
for h,~(x) of the form (4.16) with arbitrary (,(x) of O(1).
One further invariance should be enforced. In (4.11) we

evaluated the action inside spheres of constant rI and con-
sidered the limit r~ ~ oo. The same results should hold
for arbitrary shaped surfaces ri = ri(0, P) = Rf (0, P) as
R ~ oo. To first order in (,(x), the gauge-transformed
condition (4.12) becomes the condition that the linear
divergence in B of
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R[ B—f(e, $)cl;u;, (x) + n;(8, $)u;;(x)] = 0 (4.19)

for large B, where n, is the normal to the bounding sur-
face proportional to 0,f . S.ince f is arbitrary (4.19) can
be satisfied only if both terms vanish and, in particular,
if Bu;s(x) = 0. That implies

M~ = b,~MAA, . (4.20)

This condition together with (4.12) is enough to guaran-
tee

(4.21)

The result (4.21) is enough to guarantee that the Rie-
mann tensor falls off as O(l/r ) as in (4.4) and ensure
the conservation of the ADM mass. To see that, simply
note that from (4.2), the ADM mass is determined by
the coefBcients M;~ all of whose time derivatives vanish.

Thus, restricting attention to metrics with the minimal
asymptotic behavior (4.1) for which the action is finite
and difFeomorphism invariant means restricting to met-
rics for which the Riemann tensor falls off as O(1/rs) and
for which the ADM mass is constant. It is an interest-
ing question whether the above rather clumsy argument
could be pushed further and whether there is full equiv-
alence between asymptotic Qatness defined by Gniteness
and difFeomorphism invariance of the gravitational ac-
tion and asymptotic Hatness defined by conformal com-
pletion. It would be of special interest to investigate and

compare the conditions necessary to define total angular
momentum at spatial infinity, a quantity that we have
not touched upon.

Thus, whether asymptotic Hatness is defined by con-
formal completion or by the behavior (4.1), finiteness of
the action, and covariance, the result is the same for
the ADM mass. It is conserved in each history. The
set of fine-grained histories includes histories with diR'er-

ing values of the ADM mass but within each history it
does not vary. Arbitrary diKeomorphism-invariant alter-
natives may therefore be considered in addition to those
necessary to describe the conservation of total mass of
a closed system and, if all alternatives decohere, total
mass, which is the same as the total energy, is conserved.
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