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An effective field theory approach is developed for calculating the thermodynamic properties of a
field theory at high temperature T and weak coupling g. The effective theory is the three-dimensional
field theory obtained by dimensional reduction to the bosonic zero-frequency modes. The parameters
of the effective theory can be calculated as a perturbation series in the running coupling constant
g (T) Th.e free energy is separated into the contributions from the momentum scales T and gT,
respectively. The first term can be written as a perturbation series in g (T). If all forces are screened
at the scale gT, the second term can be calculated as a perturbation series in g(T) beginning at
order g . The parameters of the effective theory satisfy renormalization group equations that can be
used to sum up leading logarithms of T/(gT) We a.pply this method to a massless scalar field with
a 4 interaction, calculating the free energy to order g lng and the screening mass to order g lng.
PACS number(s): 11.10.Wx

I. INTRODUCTION

When matter is subjected to suKciently extreme tem-
perature or density, both quantum and relativistic effects
become important. Such conditions arise in astrophysics
and in cosmology and it may be possible to create them
experimentally using heavy-ion collisions. A system at
such an extreme temperature or density is most appro-
priately described by quantum Geld theory. The ther-
modynamic functions that describe the bulk equilibrium
properties of such a system are given by the free energy
density and its derivatives. If the temperature T is high
enough that all masses can be neglected, the &ee energy
density depends only on T and on the coupling constants
of the Geld theory.

In recent years, there have been signiGcant advances in
the perturbative calculation of the &ee energy for high-
temperature Geld theories. The &ee energy for a mass-
less scalar Geld with a 4' interaction was computed to
order g4 by Frenkel, Saa, and Taylor [1] in 1992, and the
order-g correction was recently calculated by Parwani
and Singh [2]. The free energy for high-temperature QED
was calculated to order e by Coriano and Parwani [3],
and extended to order es by Parwani [4]. The free en-

ergy for a quark-gluon plasma in the high-temperature
limit was recently calculated to order g by Arnold and
Zhai [5]. The importance of these calculations goes far
beyond simply determining one more term in the per-
turbation series. The leading term in the perturbation
series is just the &ee energy of an ideal gas. The order-g
correction takes into account imteractions between parti-
cles in the ideal gas. At order g3, there is a qualitatively
new contribution to the &ee energy. If the temperature
is large compared to the masses of the particles, the force
mediated by the exchange of a particle is long-range com-
pared to the typical separation of the particles, which
is of order 1/T. The system therefore behaves like a
plasma, screening the long-range interaction beyond the
scale 1/(gT). It is this screening that is responsible for
the g term in the &ee energy density. Because of renor-

malization effects, the corrections of order g and g are
also important. The coupling constant g(p, ) depends on
an arbitrary renormalization scale p. The resulting am-
biguity in the leading nontrivial term in a perturbative
expansion can only be reduced by a next-to-leading order
calculation. While it may be clear on physical grounds
that the scale p should be of order T, the difference be-
tween the choices g(T) and g(2mT) can be of great practi-
cal significance. Thus a calculation to order g is needed
in order to determine the appropriate scale p in the order-
g correction to the ideal gas term, while a calculation
to order g is required in order to determine the scale in
the order-g plasma term.

In the case of QCD, there is also a qualitatively
new effect that arises at order g . As pointed out by
l.inde [6, 7] in 1979, the loop expansion for the free en-

ergy breaks down at this order in g. Up to order g,
the &ee energy can be calculated using a resummation of
perturbation theory that takes into account the screening
of the chromoelectric force at distances of order 1/(gT).
However, the chromomagnetic force is not screened at the
scale gT, and this causes a breakdown in the resummed
perturbation expansion at order g . This breakdown has
been widely interpreted as implying that nonperturbative
effects enter in at this order, rendering the perturbation
series meaningless beyond order g5. This long-standing
problem was recently solved by constructing a sequence
of two effective Geld theories that are equivalent to ther-
mal QCD over successively longer length scales [8]. The
first effective theory reproduces the static gauge-invariant
correlators of thermal QCD at distances of order 1/(gT)
or larger, while the second effective theory reproduces the
correlators at distances of order 1/(g2T) or larger. Using
this construction, the &ee energy can be separated into
contributions &om the momentum scales T, gT, and g T,
with well-deGned weak coupling expansions that begin at
order g, g, and g, respectively. The contributions &om
the scales T and gT can be computed using perturbative
methods. For the contribution &om the scale g T, the
coef%cients in the weak-coupling expansion can be cal-
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culated using lattice simulations of pure-gauge QCD in
three Euclidean dimensions. This result demonstrates
the power of the effective-Geld-theory approach. This
power can also be brought to bear on. other fundamen-
tal problems in thermal Geld theory. For example, it
has also been used to determine the correct asymptotic
behavior of the correlator of Polyakov loop operators in
high-temperature QCD [9].

Effective 6eld theory provides an efFective method for
unraveling the efFects of various momentum scales that
arise in 6eld theory at high temperature. In additi, on to
providing insight into the qualitative behavior of the the-
ory, effective 6eld theory can also be used to streamline
perturbative calculations, such as those in Refs. [1—5].
In this paper, we use effective field theory to develop
a practical method for calculating the thermodynamic
functions of a field theory at high-temperature T and
weak coupling g. To illustrate the method, we apply it
to a massless scalar field theory with a 4 interaction. In
Sec. II, we explain how the effective Geld theory that de-
scribes distance scales of order 1/(gT) or larger is related
to dixnensional reduction to the bosonic zero-frequency
modes. In Sec. III, we show how the parameters of the
effective theory can be obtained by matching perturba-
tive calculations in the effective theory and in the full
theory. In Sec. IV, we use the effective theory for the
massless 4 theory to calculate the &ee energy to order
g and the screening mass to order g . The accuracy of
these calculations is improved. in Sec. V to order g lng
for the free energy and to order g lng for the screening
mass by using renormalization group equations for the
parameters of the effective theory. We conclude in Sec.
VI with a discussion of the application of our effective-
6eld-theory approach to gauge theories and with a brief
comparison with related work. In Appendices A and 8,
we collect all the necessary formulas for sum integrals in
the full theory and for integrals in the three-dimensional
effective theory. In Appendix C, we derive the renormal-
ization group equations for the parameters of the effective
theory.

II. DIMENSIONAL REDUCTION

In the limit of high temperature T, the static cor-
relation functions of a field theory in 3+1 dimensions
can be reproduced at long distances B )) 1/T by an
effective Geld theory in three dimensions. This idea,
which is called "dimensional reduction, " has a long
history [7, 10—12]. It has provided many insights into the
qualitative behavior of the Geld theory at high tempera-
ture. However, with the exception of recent work on the
electroweak phase transition by Farakos et al. [13],it has
never been fully exploited for quantitative calculations.

Dimensional reduction is based on the fact that static
correlation functions for a 6eld theory in thermal equilib-
rium can be expressed in terms of Euclidean functional
integrals. The partition function Z is defined by

Z(r) = tr(e-)'~),

where II is the Hamiltonian operator and P = 1/T. The

(2)

where 8 is the negative of the Lagrangian density for
the (3+1)-dimensional theory with the time t analytically
continued to i7. The—trace in (1) is implemented by
imposing boundary conditions on the fields:

4 (x, ~ = P) = + 4(x, ~ = 0), (3)

where the plus sign holds for bosonic 6elds and the minus
sign for fermionic fields. The correlator of two operators
O(0) and Q(R) is obtained by averaging their product
over fields C (x, w) with the exponential weighting factor
in (2).

Because of the periodicity conditions (3) on the fields,
they can be d.ecomposed into Fourier modes in 7., with
Matsubara frequencies u„= 2nvrT for bosons and u
(2n+ 1)nT for fermions. The contribution to a correla-
tor &om the exchange of a Fourier mode with frequency

falls off at large R like exp( —~~„~B). Thus the only
modes whose contributions do not fall off exponentially
at distances greater than 1/T are the n = 0 modes of the
bosons. This suggests the strategy of integrating out the
fermionic modes and the nonzero modes of the bosons to
get an effective theory for the bosonic zero modes. This
process is called "dimensional reduction. " It results in
a three-dimensional Euclidean Geld theory with bosonic
fields only which reproduces the static correlators of the
original theory at distances B )) I/T.

Constructing the dimensionally reduced effective the-
ory by actually integrating out degrees of freedom is cum-
bersome beyond leading order in the coupling constant.
Once the appropriate three-dimensional fields and their
symmetries have been identi6ed, a better strategy is to
use the methods of "effective field theory" [14]. One
writes down the most general Lagrangian l. ~ for the
three-dixnensional fields that respects the symmetries.
This effective Lagrangian has infinitely many parameters,
but they are not arbitrary. By computing static corre-
lators in the full theory, computing the corresponding
correlators in the effective theory, and. demanding that
they agree at distances R )) 1/T, one can determine the
parameters of l:,g in terms of T and the parameters of
the original theory. Note that this matching procedure
does not necessarily require the explicit determination of
the relation between the 6elds in the effective theory and
the fundamental 6elds.

The construction of the three-dimensional effective
theory is complicated by ultraviolet divergences. The
ultraviolet divergences associated with the original four-
dimensional theory are removed by the standard renor-

operator e ~H is the evolution operator that evolves a
state &om time t = 0 to the imaginary time t = i@-.
It can be represented as a functional integral over 6elds
4(x, t) defined on the time interval &om 0 to i—P I.t is
natural to change variables from t to the imaginary time
~ = it T.he partition function (1) is then given by the
Euclidean functional integral

(
S(T) = fV@(~,7) exp — dw d'x C

0
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malization procedure. However, the three-dimensional
effective theory also has ultraviolet divergences whose
origin can be traced to integrating out the nonzero-
&equency modes in the full theory. They must be reg-
ularized by introducing an ultraviolet cutofF A. The pa-
rameters in Z,g must therefore depend on A in such a
way as to cancel the A dependence of the regularized
loop integrals in the efFective theory. The natural scale
for the ultraviolet cutofF A is of order T, since this is the
scale at which the corresponding integrals are cut ofF by
the nonzero modes in the full theory. It is useful, how-
ever, to keep the cutoff A independent of T, so that the
only dependence on T in the effective theory comes &om

- the parameters in 8 g. From the point of view of the
full theory, the ultraviolet cutoff A of the effective theory
plays the role of an arbitrary factorization scale that is in-
troduced to separate the momentum scale T &om lower
momentum scales, such as gT, which can be described
within the effective theory.

The ultraviolet divergences of the effective theory in-
clude power ultraviolet divergences of the form A", p =
1, 2, 3, . . ., and logarithmic ultraviolet divergences of the
form 1n(A/m), where m is a mass scale in the effective
theory. The power divergences and logarithmic diver-
gences are quite different in character. The coefBcients of
the power divergences depend on the regularization pro-
cedure and are therefore simply regularization artifacts.
In particular, the coeFicient of A& in some observable cal-
culated in the efFective theory is independent of the coef-
ficient of T" for that observable in the full theory. There-
fore power divergences of the form A" Rom loop integrals
must be completely canceled by terms proportional to A"
in the parameters of Z,g. In contrast to the power di-
vergences, logarithmic ultraviolet divergences have coef-
Gcients that are independent of the regularization proce-
dure. The reason for this is that a logarithmic ultraviolet
divergence of the form 1n(A/m, ) from a loop integral must
match onto a ln(T/A) term in one of the parameters of
8 g in order for the A dependence to cancel. Thus the
logarithmic divergences in the effective theory are related
to logarithms of T in the full theory and therefore have
real physical significance. Because of the unphysical char-
acter of power ultraviolet divergences, it is convenient to
use a regularization procedure for the effective theory in
which power ultraviolet divergences are subtracted and
the remaining logarithmically divergent integrals are cut
off at the scale A. With such a regularization procedure,
only the logarithmic divergences need to be canceled by
the parameters of the effective theory. The subtraction
of power divergences can be implemented with any cut-
off procedure, including a momentum cutoff or lattice
regularization. For perturbative calculations, a partic-
ularly convenient cutoff procedure is dimensional regu-
larization, in which momentum integrals are analytically
continued to 3—2e spatial dimensions. Power divergences
are automatically subtracted with this method, because
integrals without any momentum scale are 0 by de6ni-
tion in dimensional regularization. The remaining loga-
rithmic ultraviolet divergences appear as poles in e, and
the renormalization procedure can be completed by sub-
tracting these poles. If A is the momentum scale intro-

duced by dimensional regularization, then this "minimal
subtraction" procedure is equivalent to cutting off the
logarithmic ultraviolet divergences at a momentum scale
of order A.

We turn now to the specific case of a massless scalar
field with a C interaction. In the partition function (2),
the Euclidean Lagrangian density is

z = -(o.e)' + -(v'c)' + —g'o'.
2 2 4t

The three-dimensional effective field theory obtained by
dimensional reduction describes a scalar Beld P(x) that
can be approximately identified with the zero-&equency
mode of the field in the original theory:

WT d7. 4(x, 7.) = p(x).
0

The symmetries of the effective theory are rotational
symmetry and the discrete symmetry P(x) ~ —P(x),
which follows Rom the symmetry 4 —+ —4 of the funda-
mental Lagrangian (4). The eB'ective Lagrangian has the
general form

C,g = —(V'P) + —m (A) P + —A(A) P4 + 8g,
e

(6)

where bd includes all other local terms that are consis-
tent with the symmetries. The parameters m, (A) and
A(A) and the infinitely many paraineters in (6) depend
on the ultraviolet cutoff A, the temperature T, and the
coupling constant g . The partition function (2) can
be expressed as a Euclidean functional integral over the
three-dimensional field P(x):

(w)

Z(T) = e DP(x) exp
~

— d z Z, ir
~

.

(7)

The parameter f (A) in the exponential prefactor is
the coeKcient of the unit operator in the effective La-
grangian, which was omitted from Z, ir in (6). In addi-
tion to depending on g and T, it also depends on A in
such a way as to cancel the A dependence of the func-
tional integral in (7). The correlator of operators O(0)
and D(K) in the full theory can be calculated at long
distances R )) 1/T by identifying the corresponding op-
erators in the effective theory and averaging their product
over fields P(x) with the exponential weighting factor in
(7).

Renormalization theory implies that correlators at long
distances B )) 1/T can be reproduced to any desired ac-
curacy by adding sufIiciently many operators to the effec-
tive Lagrangian and tuning their coefBcients with sufFi-
cient accuracy as functions of g2, T, and A [14]. With the
three terms in the Lagrangian that are given explicitly
in (6), long-distance correlators can only be reproduced
with limited accuracy. If we include the operator gP, the
Geld theory becomes renormalizable, but this renormal-
izable theory is still only accurate up to a Rnite order
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in the coupling constant g. This has been interpreted
as a breakdown of dimensional reduction [12], but the
correct interpretation is simply that nonrenormalizable
operators must also be included in 8 ~ in order to ex-
tend the accuracy to higher order in g. In general, one
must include all operators that are invariant under rota-
tions and under the symmetry P —+ —P. The resulting
Geld theory is nonrenormalizable and has infinitely many
parameters. These parameters, however, are not arbi-
trary, but are determined as functions of g, T, and A

by the condition that the effective theory reproduce the
long distance behavior of the original theory.

It is easy to determine the magnitude of the coeKcient
of a general operator in the effective Lagrangian. From
the kinetic term (V'P)2 in (6), we see that the field P
should be assigned a scaling dimension of 1/2. The op-
erators given explicitly in (6) then have dimensions 3, 1,
and 2. If we use a renormalization procedure in which
power ultraviolet divergences are subtracted, then by di-
mensional analysis, an operator of dimension d in the
effective Lagrangian must have a coefBcient that is pro-
portional to T ". It remains only to determine its order
in g. The operator P is generated at the tree level from
the g C term in the original Lagrangian, and therefore
has a coeKcient proportional to g . All other interaction
terms in Z,g arise from loop diagrams in the effective
theory. Operators with 2n powers of P are generated
by one-loop diagrams with n four-point interactions and
therefore have coefBcients of order g . Thus an opera-
tor with the schematic structure V'2 P " has dimension
d = 2m + n and will appear in 8 g with a coeKcient
of magnitude g T ". The case n = 1 is an exception,
because the one-loop diagram with two external lines is
momentum independent and therefore only the opera-
tor P2 is generated at order g . Operators of dimension
d = 2m+ 1 with the schematic structure V'2 P2 have
coeKcients with magnitude g T " for m & 2. The only
other exception is P4, which is generated at the tree level
and has a coefFicient of magnitude g2T.

III. SHORT-DISTANCE COEFFICIENTS

The coeKcients of the operators in the effective La-
grangian (6) must be tuned as functions of g, T, and A
so that the effective theory reproduces the static corre-
lation functions of the full theory at distances B )) 1/T.
The parameters can be determined by computing various
static quantities in the full theory, computing the corre-
sponding quantities in the effective theory, and demand-
ing that they match. If the running coupling constant
g (T) of the full theory is small at the scale T, then it is
convenient to carry out these calculations using pertur-
bation theory in g (T). A strict perturbation expansion
in g is addicted with in&ared divergences due to long-
range forces mediated by massless particles. These di-
vergences are screened at the scale gT, but this screening
can only be taken into account by summing up infinite
sets of higher-order diagrams. This breakdown of pertur-
bation theory does not prevent its use as a device for de-
termining the short-distance coefBcients in the effective
Lagrangian. As long as we can carry out perturbative

calculations in the effective theory that make the same
incorrect assumptions about the long-distance behavior
as perturbation theory in the full theory, we can match
the results and determine the short-distance coefFicients.

In the case of the 4 theory, conventional perturbation
theory in g corresponds to decomposing the Lagrangian
(4) as l = l:f„,+ l:;„i,where

l:r„,= —(0 4') + —(V'4),
2g 4

4! (8)

l:g„,= —(0 4)' + —(V'4)' + —m242,
2 2 2

4
2

8;„,= —e ——m e.
4! 2

(9)

Both g and m in the interaction term are treated as
perturbation parameters of the same order. The mass pa-
rameter m must be of order g T in order to avoid large
perturbative corrections that grow quadratically with T
in the high-temperature limit. Another possibility is to
add the mass term to Zf„, and subtract it &om 8;„q
only for the zero-frequency mode of 4(x, w) [15]. Both
of these approaches have the drawback that the resulting
sums and integrals involve two momentum scales T and
m, making calculations unnecessarily diFicult.

A simpler approach is to calculate in both the full the-
ory and the effective theory using ordinary perturbation
theory in g, but with an in&ared cutoff to regularize the
in&ared divergences. In the full theory, this strict pertu'-
bation expansion in g is deGned by the decomposition
(8). In the efFective Lagrangian (6), the coefjicients m
and A are of order g and. all the coefBcients in bZ are
of order g or higher. Thus, in the effective theory, the
strict expansion in g is deGned by the decomposition
E,s = (l:,s)q + (l:,s), ~, where

The expansions in g defined by (8) and (10) both gen-
erate in&ared divergences that become more and more

We will refer to the resulting perturbation theory as a
"strict" perturbation expansion in g . The &ee part of
the Lagrangian describes a massless scalar Geld. A mass
will not be generated at any Gnite order in g2, and the ab-
sence of a mass will give rise to in&ared divergences that
become more and. more severe as you go to higher and
higher orders in g . This behavior is physically incorrect.
It will be clear &om the effective theory that a mass m
of order gT is generated by higher loop diagrams and. it
provides the screening that cuts off the in&ared diver-
gences. One way of dealing with the in&ared divergences
in the full theory is to use a reorganization of perturba-
tion theory that incorporates the effects of the mass m in
the &ee part of the Lagrangian. The simplest possibility
[16] is to write the Lagrangian (4) as l: = l:r„,+ l:;„i,
where
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severe in higher orders. But if the parameters in the
eAective Lagrangian are tuned so that the two theories
are equivalent at long distances, then the in&ared diver-
gences in their strict perturbative expansions will also
match. Thus, in spite of the fact that the strict expan-
sion in g gives a physically incorrect treatment of in-
&ared e8'ects, we can use it as a device for computing
short-distance coeKcients.

A. CoefBcient of the unit operator

&go' fT lnZ 1 ln(P')—
V 2

g4( lb' 1+—
I16 E J, P') ~ (P')'

P Bg 1
48 P2Q2R2(P + Q+ R)2'

where the sum-integral notation is defined in Ap-
pendix A. We regularize both ultraviolet and in&ared
divergences using dimensional regularization in 3—2e spa-
tial dimensions, taking the momentum scale introduced
by dimensioiial regularization to be A. In (11) and below,
we use the symbol "=" for an equality that holds only in
a strict perturbation expansion in powers of g . Such an
equality does not properly take into account the screen-
ing of in&ared divergences at the scale gT, but it can
be used for determining short-distance coeKcients. The
sum integrals appearing in (ll) are given in. Appendix A.
To the order that is required, renormalization of the cou-

In this subsection, we calculate the parameter f in (7)
to next-to-next-to-leading order in g . The parameter f
can be interpreted as the coeKcient of the unit operator
which has been omitted &om the eBective Lagrangian
(6). We will determine f by matching calculations of
ln Z in the full theory and in the e8'ective theory.

We first calculate ln Z to next-to-next-to-leading order
in g2 using the perturbation expansion for the full theory
defined by the decomposition (8). It is given by the sum
of the Feynman diagrams in Fig. 1:

pling constant in the modified miniinal subtraction (MS)
scheme is accomplished by the substitution

Zg 1 + e

3 g
4e 16vr2

After this renormalization, the final result is

T inZ ~', 1 i g'(A)
V 9 10 8 16~2

31 g'( —i)3ln —+ —+ p+ 4
8 4' T 15 &(—1)

('(-3) ( g'
((—3) g 16'' ) I

'

where p is Euler's constant and ((z) is the Riemann zeta
function. The apparent dependence of the right side of
(13) on A is illusory. The renormalization group equation
for the coupling constant,

(14)

implies that the explicit logarithmic dependence on A in
the g term of (13) is canceled by the A dependence of the
coupling constant in the g term. Thus, up to corrections
of order gs, we can replace A on the right side of (13) by
an arbitrary renormalization scale p.

We now consider ln Z in the effective theory:

in' = f(A) V—+ inZ, g.

The partition function Z,~ for the effective theory is the
functional integral in (7). In the diagrammatic expansion
for lnZ, ~, the leading terms are given by the diagrams
in Fig. 1, plus additional diagrams involving mass iDser-
tions as in Fig. 2. To match with the strict expansion in
g for the full theory, we should calculate in the effective
theory using the perturbation theory defined by the de-
composition (10), again using dimensional regularization
to regularize both ultraviolet and in&ared divergences.
This calculation is trivial, since massless loop diagrams
with no external legs vanish in dimensional regulariza-
tion due to a cancelation between ultraviolet poles in ~

and in&ared poles in e. The result is therefore

TlnZ
V (16)

Matching the results (13) and (16), we obtain the coeffi-
cient f to order g:

FIG. 1. Feynman diagrams for the logarithm of the par-
tition function in the full theory and in the eff'ective theory.

FIG. 2. Additional Feynman diagrams for the logarithm
of the partition function in the efFective theory.
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1 p 31
3ln +—

8 4+7 15

where g2(p) is the coupling constant in the MS renormal-
ization scheme at the scale p. We have used the renor-
malization group equation (14) to replace A in (13) by
an arbitrary scale p associated with the renormalization
of the full four-dimensional theory. Thus, at this order
in g2, the coefficient f does not depend oii the ultraviolet
cutoff A of the effective theory.

B. Mass parameter

In this subsection, we calculate the coefficient m (A)
of the P /2 term in the effective Lagrangian (6) to next-
to-leading order in g2. The parameter m, (A) can be in-
terpreted as the contribution to the screening mass f'rom

short distances of order 1/T. The actual screening mass
m, is de6ned by the condition that the propagator for
spacelike momentum K = (ko ——0, k) has a pole at
k = —m, . The physical quantity m, coincides with
m (A) at order g, but m, has corrections of order g
which arise from the long-distance scale 1/(gT). In con-
trast, the mass parameter m (A) receives contributions
only from the short-distance scale 1/T, and thus has a
perturbative expansion in powers of g (T).

One way to determine m (A) is to match the propaga-
tor for the zero-frequency mode of the field 4(x, w) in the
full theory with the propagator for P(x) in the effective
theory. At leading order in g, these operators are related
as in (5). This identification is sufficient for determining
m (A) to next-to-leading order in g . Beyond that order,
we must allow for a short-distance coefBcient multiply-
ing P(x) in (5), and we must also allow for the fact that
P(x) is only the first term in an operator expansion that
contains Ps(x) and other higher dimension operators. In
general, we must include all operators that are odd under
P -+ —P, each multiplied by a short-distance coefficient.
In order to determine rn2(A) and all the necessary short-
distance coeKcients, we would have to match not only
the propagator but other two-point functions as well.

A simpler way to determine m (A) is to match the
screening mass in the full theory and in the efFective the-
ory. The screening mass gives the location of the pole in
the propagator for the zero-frequency mode f~ d~O(x, ~).P

Denoting the self-energy function for the field 4(x, 7) at
momentum K = (ko, k) by II(ko, k), the screening mass
m, is the solution to the equation

k' + m (A) + Ii,ir(k, A) = 0 at k2 = —m2.S' (i9)

By matching the expressions for m, obtained by solv-
ing (18) and (19), we can determine the short-distance
parameter m (A).

We will obtain a perturbative expression for the screen-
ing mass m, in the full theory by calculating II(K) to
order g using the strict perturbation expansion defined
by the decomposition (10). The self-energy is given by
the sum of the Feynman diagrams in Fig. 3:

Z2 2Z g
B

g4 1

6 ~~ P2Q2(P+ Q)2
(21)

It should be emphasized that this perturbative expression
does not give a physical value for the screening mass, be-
cause the sum integrals are infrared divergent. Howev ..r,
as long as we can compute m, in the efFective theory in
a way that makes the same incorrect assumptions about
the long-distance behavior, we can match the perturba-
tive expressions to determine the short-distance parame-
ter m2(A).

In order to match with the expression (21), we have
to calculate the screening mass in the effective theory
using the strict expansion in g defined by the decom-
position (10). The self-energy function Il,ir(k, A) in Eq.
(19) for the screening mass has a diagrammatic expansion
including the diagrams in Fig. 3 and the mass-insertion

2 g s" 4 g s" g p~)'
g4 1

6 ~~ P2Q2(P+ Q+ K)2

We can simplify Eq. (18) by expanding II(0, k) as a Tay-
lor expansion around. k = 0. This can be justified by the
fact that the leading order solution to (18) gives a value
of k that is of order gT, and II(K) is independent of K
at leading order. After setting K = 0 in the last integral
in (20), the solution to (18) to order g4 is trivial:

k +II(0, k) = 0 at k2 = —m2.8' (i8)

The location of the pole is independent of field redefini-
tions. Since the operator expansion that generalizes (5)
can be interpreted as a field redefinition, the screening
mass m, also gives the location of the pole in the propa-
gator for the field P(x). Denoting the self-energy for P(x)
by Il,&(k, A), the screening mass m, must satisfy

FIG. 3. Feynman diagrams for the self-energy in the full
theory and in the effective theory.
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Il,a(A:, A) = bm, (22)

where bm is the mass counterterm that contains the
poles in e that are associated with mass renormalization.
The solution to Eq. (19) for the screening mass is there-
fore trivial:

diagrams in Fig. 4. In the full theory, when II(K) is ex-
panded as a Taylor expansion around K = 0, terms that
in dimensional regularization scale like factional pow-
ers of k are automatically set to 0. We should therefore
make the same simplifications in the effective theory. But
then all the loop diagrams in Figs. 3 and 4 vanish, since
the external momentum k provides the only mass scale
in the integrals. The self-energy function reduces to

traviolet divergences from loop integrals in the effective
theory. The next-to-leading order correction to the mass
parameter m (A) in (26) has also been obtained in nu-
merical form by Farakos et aL [13].

C. Coupling constants

For the calculations in this paper, we require the cou-
pling constant A of the P4 interaction in the effective
theory only to leading order in g . At this order, we can
simply read A off &om the Lagrangian of the full theory.
Substituting O(7,x):~TP(x) in (4) and comparing

f dwC with C,~ in (6), we find that, to leading order in

g
2

m, =m(A) ibm. A=gT. (27)

From (23) we see that the screening mass in this un-
physical perturbation expansion is just the bare mass.
Comparing (21) and (23), we find that m (A) is given by

Z2 2 4

Q2 4 f j2/ (j2)2

Pg &'Q'(&+ Q)'
—bm, (24)

where the sum integrals are to be evaluated using di-
mensional regularization of both ultraviolet and infrared
divergences. The sum integrals in (24) are given in Ap-
pendix A. After renormalization of the coupling constant
g, there remains a pole in e which must be canceled by the
mass counterterm bm . The mass counterterm is thereby
determined to be

g T 1

24(16m 2) e
(25)

Our final expression for the short-distance mass param-
eter m (A) is

m (A) = —g (IJ,)T 1 + —3ln + 4ln2 1 2 2 p A

24 4' T 4vrT

+ 2&'(—1)" "'n-) -)'
where g (p) is the MS coupling constant. We have used
the renormalization group equatioii (14) to chaiige the
renormalization scale of the full theory from A to p, . The
remaining logarithm of A in (26) reveals that m (A) de-
pends explicitly on the factorization scale A at order g .
This A dependence is necessary to cancel logarithmic ul-

There is no dependence on the factorization scale A at
this order. The coupling constant A could be calculated
to higher order in g by matching four-point correlation
functions in the full theory and in the effective theory.
Beyond next-to-leading order in g, the matching is com-
plicated by the breakdown of the simple relation (5) be-
tween P(x) and the fundamental field. A more conve-
nient quantity for matching beyond leading order is the
on-shell scattering amplitude defined by the residue of
the four-point function at the poles of the propagators
of the four external lines. Like the screening mass, this
scattering amplitude is invariant under field redefinitions.

The only other coeKcient in the effective Lagrangian
that is known is the coeKcient of P . It has
been computed by Landsman [12], and its value is
15((3)g /(128m ). It first contributes to the free energy
density at order g and to the square of the screening
mass at order g .

IV. CALCULATIONS IN THE
EFFECTIVE THEORY

In this section, we calculate physical quantities in the
effective theory using perturbation theory. We calculate
the &ee energy to order g, reproducing a recent result
by Parwani and Singh [2], and we obtain a new result for
the screening mass to order g .

A. Free energy to order g

The free energy density F(T) is defined by

—P I"(T) V

Comparing with the equivalent expression for the parti-
tion function (7), we obtain

P(T) = T f(A) —T

where the partition function for the effective theory is

(&) (Z,s = 17/ exp~ — d xZ,g ~. (3O)
FIG. 4. Additional Feynman diagram for the self-energy

in. the effective theory. The strict perturbation expansion for ln Z g correspond-
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(C,a)„„=—(V'P)' + —m'(A) P',

(Z,~),.„,= —,A(A) P + bC. (31)

ing to the decomposition (10) of l:,s contains infrared di-
vergences. These divergences were not a problem in the
matching calculations of Sec. III, since identical infrared
divergences appeared in the strict perturbation expan-
sion for the full theory. However, if we wish to actually
calculate the &ee energy, we must incorporate the phys-
ical efFects that cut oK the in&ared divergences into the
&ee part of the Lagrangian. The necessary in&ared cutoK
is provided by the P term in the effective Lagrangian.
We therefore make the following decomposition of Z,g
into &ee and interacting parts:

From the matching calculations in Sec. III, m is of order
g T and A is of order g T. Since the only momentum
scale in (Z,s)i„,is m, any powers of T in the coefficient of
an operator will be compensated by powers of m. Thus
the efFective expansion parameter for the P perturba-
tion is A/m, which is of order g. The next most impor-
tant perturbation after P is the dimension-four operator
(PAP)2, for which the efFective expansion parameter is
of order g m/T or, equivalently, of order g . Sim.'larly,
the effective expansion parameter for the dimension-three
operator gP is g . Thus to calculate lnZ, ir to next-to-
next-to-leading order in g, we need only consider the P4
perturbations.

The contributions to ln Z g of orders g, g, and g are
given by the sum of the one-loop, two-loop, and three-
loop diagrams in Fig. 1 and the first diagram in Fig. 2:

ln Z,g
V

&( 1 ~ A'(
lnp +mo + —

I8 ( p + m2) ].6 E p2+ ) (p'+m')
A2 1+
48 „„(p + m )(q + m2)(r2 + m2)[(p+ q+ r)2 + m2]

(32)

The only eÃect of the diagram with the mass counter-
term in Fig. 2 is to replace m in the one-loop diagram
by mo ——m + bm, where the mass counterterm is

2(X )'1
3 (167rp e

(33)

With the identification A = g T, this expression is iden-
tical to the expression in (25). When f ln(p2 + m&) is
expanded in powers of A using (33), the 1/e term cancels
against a pole from the last integral in (32), but it also
gives rise to finite contributions &om the expansion of the
integral f ln(p2 + mo2) to order e. The integrals in (32)
are given in Appendix B. Adding up the diagrams, we
obtain

ln Z,g
V

1 s 1 A 2 1 A
m A —— m — 41n

12vr 87r 16m 12~ 2m

9 (Ai+——41n2
! ! m.

2 q 167r ) (34)

Our final result for the free energy (29) to order g is
the sum of two terms that represent the contributions
&om the momentum scales T and gT, respectively:

E(T) = E.(T)+ E.(T). (35)

The first term Ei(T) = fT is the contribution to the free
energy from single-particle eII'ects involving the short-
distance scale 1/T only. This contribution can be ex-
pressed as a power series in g2(2~T), with the first three
terms given by (17):

1g'(2~T) 1 31 &'(-1) &'(—3) «' &

Ei(T) = T-— ——3ln2+ ~+ 4 —2
9 10 8 16vr2 8 15 4(-1) 4(-3). i16 ', (36)

The choice p = 2mT for the renormalization scale of
the efFective theory will be justified in Sec. V. The second
term Eq(T) = T ln Z,~/V in the —free energy (35) takes
into account collective eKects of the particles involving
the long-distance scale 1/(gT). It can be expressed as a
perturbation series in A and in the other coupling con-
stants of the efI'ective theory. The first three terms are
given by (34):

1 3 3 A
E2(T) = — m (A) T 1

3.2' 2 1&rm

41n +. ——41n2
9 (

!2m 2 (16am)



6998 ERIC BRAATEN AND AGUSTIN NIETO 51

where A = g T and the mass parameter m(A) is given by (26) with p = 2mT. Note that, after substituting the
expression (26) for the mass parameter m (A), the A dependence in (37) cancels to next-to-next-to-leading order in
g. Adding the short-distance contribution in (36) and expanding in powers of g(2aT), the free energy reduces to

5--+xi.2-, +2 (
—

)
&'(—1)

1 &g(2~T) &
'

1 (g(2~T) q
'

4 ln
3 g

4~ 6

15 ((—1) ((—3) 47r

(3S)

The coefficient of g was erst calculated by Frenkel, Saa, and Taylor [1], up to an error that was corrected by Arnold
and Zhai [5]. The order g term was recently calculated by Parwani and Singh [2]. Our result agrees with theirs after
taking inta account the difFerence in the definition of the coupling constant. There is a loss of accuracy when we make
a strict expansion in powers of g as in (38). In Sec. V, we will give a more accurate expression for the free energy
which sums up leading logarithms of g from higher orders of perturbation theory.

B. Screening mass to order g4

The screening mass m, describes the long-distance behavior of the potential produced by the exchange af a particle
with spacelike momentum. The potential falls exponentially as e ' at large B. The screening mass is a long-
distance quantity, so it should be calculable using the efFective field theory. In this section, we use the efFective field
theory to calculate m, to order g4.

The screening mass m„which gives the location of the pole in the propagator of the efFective theory, is the solution
to Eq. (19). At leading order in A/m, the solution is simply m, = m(A). The self-energy function II ir(k, A) is given
to next-to-leading order in A by the Feynrnan diagrams in Figs. 3 and 4:

1 A 1 1
2 @2+m2 4 p2+m2 2+m2 2

A2 1
6 „(p'+m')(q'+ m2)[(p+ q+ k)'+ m2] (39)

The mass counterterm bm, which is given in (33), cancels an ultraviolet pole in e in the integral over p and q. This
is the only integral in (39) that depends on k. The self-consistent solution to (19) to next-to-leading order in A/m is
obtained by evaluating the integral at the point k = im. The resulting expression for the screening mass is

1 A2 1 1m.'=m' A
2 „p2+m2 4 @2+m2 (p2+m2)2

A~ 1
6 „, (p'+ m')(q'+ m2)[(p+ q+ k)'+ m'] „. (40)

Note that the screening mass is not identical to the value of the inverse propagator at 0 momentum, which would be
given by (40) with the last integral evaluated at k = 0. Unlike the screening mass, the mass defined by the inverse
propagator at k = 0 is not invariant under field redefinitions.

The integrals in (40) are given in Appendix B. To next-to-next-to-leading order in A/m, the screening mass is

m, =m(A) 1 —2
16vrm 3 2m ( 16vrm ) (41)

Note that, when we substitute (26) for m (A), the A depend. ence cancels to next-to-next-to-leading order in g. This
verifies that the screening mass is independent of the arbitrary factorization scale A to this order. Setting p = 2vrT
in (26), substituting it into (41), and expanding in powers of g(2vrT), we obtain

m, = —g (2zT) T I —v6 —+ 4ln —1+ ill+2 —p+2~ = 1 &'(-1)
24 4~ 4~~6 g(—1) 4'

The term of order gs in (42) was first calculated by Dolan
and Jackiw [17]. The correction of order g4 in the expres-
sion for the screening mass is a new result. The screen-
ing mass divers at order g from the quasiparticle mass,

I

which was calculated to order g4 by Parwaru [16]. The
quasiparticle mass is defined by the pole in the energy
for the propagator at zero three-momentum. It gives the
energy of the single-particle excitatians in the plasHla,
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while the screening mass gives the range of the force me-
diated by the exchange of a particle in the plasma. There
is a loss of accuracy in Inaking a strict expansion of the
screeiiing mass in powers of g as in (42). In Sec. V,
we will give a more accurate expression for the screening
mass which resums leading logarithms of g &om higher
orders of perturbation theory.

V. SUMMATION OF LEADING LOGARITHMS

A. Renormalization scale

The short-distance coefBcients in the effective La-
grangian would be independent of the arbitrary renor-
malization scale p of the original theory if they were cal-
culated to all orders in g . A dependence on p appears,
however, when a coeKcient is calculated only to a 6nite
order in g . At leading nontrivial order in g, the scale p
appears to be completely arbitrary. The resulting ambi-
guity can be decreased by a next-to-leading order calcu-
lation, because an inappropriate choice of p, will result in
unnecessarily large perturbative corrections. The short-
distance coefficients f and m2(A) were both calculated
to order g in Sec. III, and we can use those results to
discuss the appropriate scale for p in the g terms.

The transcendental constants appearing in expressions
(17) and (26) have the numerical values

p = 0.57722,
&'(—1) = 1.985 05,—1

= 0.645 43.—3

(43)

The coefficients in the efFective Lagrangian (6) depend
not only on the coupling constant g and the tempera-
ture T, but also on two arbitrary momentum scales: the
renormalization scale p of the full theory and the ultra-
violet cutoff A of the effective theory. In this section, we
exploit these arbitrary scales to sum up the leading log-
arithms &om higher orders in perturbation theory. We
6rst discuss the choice of the renormalization scale p.
We then present the evolution equations that describe
the dependence of the short-distance coeKcients on the
scale A. We then show how the solutions of the evolution
equations can be used to sum up leading logarithms of
T/(gT) in physical quantities.

where the coupling constant is the MS constant at the
scale p. This coupling constant is defined so that it
is the appropriate coupling constant for particles whose
Euclidean invariant mass-squared ko + k is approxi-
mately p2. The parameters (44) and (45) are coefficients
in an effective Lagrangian obtained by integrating out
modes with nonzero Matsubara &equencies ko ——2nvrT,
n = 1, 2, 3, . . .. Since these modes have invariant masses
that are equal to or greater than 2vrT, we expect p = 2vrT
to be an appropriate choice for the renormahzation scale.
Choosing p = A = 2mT, the coefficients of g2/(16vr2) in
square brackets in (44) and in (45) are —7.2 and 4.7, re-
spectively, which are reasonably small. The more naive
choice p = A = T gives even smaller coefFicients —1.7
and 2.9. We prefer the physically motivated choice, and
we therefore set the renormalization scale to p = 2mT
throughout the remainder of this paper.

B. Factorization scale

f(A) + C,s = ) C„(A) G„, (46)

The matching calculations described in Sec. III give
the short-distance coeKcients in the effective Lagrangian
Z,~ as perturbation series in g (2mT) with coefFicients
that are polynomials in in(2vrT/A). To avoid unneces-
sarily large coefBcients in these perturbative expansions,
we must choose A of order 2vrT. Once the short-distance
coefBcients are known, physical quantities can be calcu-
lated in the effective theory using a perturbation expan-
sion in A/m and in other dimensionless parameters ob-
tained by dividing the short-distance parameters by ap-
propriate powers of m. The coeKcients in the resulting
perturbation expansions for physical quantities contain
logarithms of A/m. To avoid unnecessarily large coeffi-
cients in these perturbation expansions, it is necessary
to carry out the perturbative calculations in the effective
theory using short-distance parameters that are evalu-
ated at a scale A of order m. The parameters calculated
at the original scale A = 2~T must therefore be evolved
down to the scale A = m before they can be used in
these perturbative calculations. The A dependence of
these parameters is described by "renormalization group
equations" or "evolution equations. "

The efFective Lagrangian (6) can be expressed as a sum
over all local operators that respect the symmetries of the
theory:

The short-distance coefFicients then reduce to

f = — T1—— —1+ —72sr~, 5 g'(p)
90 4 16vr2

-3l—3ln, , (44)

m, (A) = —g (y,)T 1 + 4.7 —31n P
24 ( 2vrT

g'
+4 ln

2mT) 16vr2

where we have included the unit operator as one of the
operators 0„. The coefFicients C are the generalized
coupling constants of the effective theory. Because of
ultraviolet divergences, the effective theory must be reg-
ularized with an ultraviolet cutoff A. The ultraviolet di-
vergences in the effective theory include power ultraviolet
divergences proportional to A", p = 1, 2, . . ., and logarith-
mic divergences proportional to in(A/rn). As discussed in
Sec. II, the power divergences are artifacts of the regular-
ization scheme and have no physical content. If they are
not removed as part of the regularization procedure, they
must be canceled by power divergences in the coupling
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constants C . In contrast, the logarithmic ultraviolet di-
vergences are directly related to logarithms of T in the
full theory, and therefore represent real physical effects.
This difFerence justi6es treating power ultraviolet diver-
gences and logarithmic ultraviolet divergences difFerently.
It is convenient to use a regularization procedure for the
eR'ective theory in which power ultraviolet divergences
are subtracted and logarithmically ultraviolet divergent
integrals are cut oK at the scale A. These logarithmic
divergences are then the only ones that must be canceled
by the A dependence of the coupling constants C . The
dimensions of a coupling constant can then only be taken
up by powers of the temperature T. The coupling con-
stant C must be proportional to T "",where d~ is the
scaling dimension of the corresponding operator 0 . The
dimensionless factor multiplying T "" in the coupling
constant C can be computed as a perturbation series in

g (T), with coefficients that are polynomials in ln(T/A).
The dependence on A is governed by a "renormalization
group equation" or "evolution equation" of the form

A C„(A) = P„(C),

where the P function P„has a power series expansion in
the coupling constants C . These equations follow Rom
the condition that physical quantities must be indepen-
dent of the arbitrary scale A.

Since C is proportional to T "", every term in the
expansion of its P function must be proportional to
T "". In particular, a term like C,C, - . . C „can
appear only if the dimensions d, of the corresponding
operators 0,. satisfy

k

) (3 —d, ) =3 —d„. (48)

d

dA 12 (16~j
d2 8(A

3 &16~

(49)

(50)

(51)

The allowed term m2A does not appear in the P function
for f Using A = rI2T, . we see that the P function for rn

This condition is very restrictive, particularly if the ef-
fective field theory is truncated to those terms that are
given explicitly in (6). It implies that the P function for
the coefficient 1' of the unit operator can only have two
terms proportional to A and m A. The P function for
m, must be proportional to A and the P function for A

must vanish to all orders in A. These restrictions reHect
the superrenormalizability of this truncated efFective the-
ory, which implies that there are only a Gnite number of
independent ultraviolet-divergent subdiagrams.

The evolution equations for f and m are calculated
in Appendix C. They follow &om the condition that the
&ee energy and the screening mass must be independent
of A. The evolution equations are

in (50) is consistent with the explicit calculation to order
g4 in (26). The evolution equations (49)—(51) are correct
to all orders in A, but they receive corrections involving
the coefficients of higher dimension operators such as P .
The coefficient of gP in the efFective Lagrangian is of order
g . It gives corrections to the right-hand sides of the
evolution equations (49)—(51) that are of order g
g6A2, and g6A, respectively.

To the accuracy given in (49)—(51), the solutions to the
evolution equations are trivial. The coupling constant A

does not evolve with A, and the solutions for f and m
are simply linear in ln(A):

f (A) = f (2vrT) ——
~

ln(A/2m. T), (52)
vr A l'

C. Resumming logarithms of g

The evolution equations for the short-distance coef-
ficients can be used to sum up leading logarithms of
T/(gT) in physical quantities, such as the Bee energy
and the screening mass. We must Grst choose a value
for the scale A which will avoid unnecessarily large co-
eKcients in the perturbation expansions of the effective
theory. A reasonable choice is the screening mass m„
since this is the minimum invariant mass for a particle in
the three-dimensional Euclidean theory. At leading order
in g, the screening mass is simply m, = gT/~24, so we

choose A = gT/~24.
An expansion for the screening mass in powers of g

is giveii in (42). This expression is only accurate up to
corrections of order g lng. A more accurate expression
for the screening mass can be obtained by not expanding
out the mass parameter in (41):

g T 2 (g'T )
m, = nP 1 —2 ——[3 —12ln2]

[ [ ),16am 3 16~m)

(54)

where g = g(27rT) is the coupling constant at the scale
27rT and m is the mass parameter in (26) with p = 2mT
and A = gT/~24:

m = —g T 1 + 4ln +2
24 4' 6

&'(—1)—ln2 —p+ 2-
((—1) 16vr2

(55)

The expression (54) is accurate up to corrections of order
g . It also sums up all the "leading logarithms" of order
g + ln g, n = 2, 3, . . .. These terms are generated by
expanding out the term proportional to g Tm in (54)
using (55).

m (A) = m (27rT) + —
~ ~

1n(A/2vrT). (53)
8/w
3 (16~)

Note that, since the perturbative expression (26) is linear
in ln(A), it already satisfies the evolution equation (50).
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An expansion for the &ee energy in powers of g is given
in (38). This expression is accurate up to corrections of
order g lng. A more accurate result can be obtained. by
using the solution to the renormalization group equation
(49) for f in the short-distance part and by not expanding
out the mass parameter m in the long-distance part (37):

vrZ(r)=S;(r) ——
~

'
~

r'in
12 q16~)

1
7Tl T

127r

VI. CONCLUSIONS

We have developed an efFective-Geld-theory approach
for calculating the thermodynamic properties of a Geld

theory in the high-temperature limit. The effective
Geld theory is the three-dimensional theory obtained
by dimensional reduction to the bosonic zero-&equency
modes. The short-distance coefBcients in the efFective I a-
grangian are computed by straightforward perturbative
calculations in the full theory without any resummation.
Thermodynamic quantities are then calculated using a
perturbation expansion in the effective theory which in-
corporates the efFects of screening. In each of these two
steps, the calculations involve only a single mass scale,
which greatly simpliGes the sums and integrals that need.
to be evaluated. The short-distance coefIicients satisfy
renormalization group equations which can be used to
improve the perturbation expansion by summing up lead. —

ing logarithms of T/(gT). The power of this method was
demonstrated by carrying out two calculations in mass-
less 4 theory beyond the highest orders that were previ-
ously available. The &ee energy was calculated to order

g lng and. the screening mass was calculated to order
g' lng.

The method that we have used to calculate the &ee
energy of a scalar Geld theory can also be applied to non-
Abelian gauge theories, such as QCD. The free energy for
QCD has been calculated with an error of order g ln g us-
ing more conventional resummation methods [5]. Using
our effective-Geld-theory approach, it should be straight-
forward to decrease the error to order g . The effective
theory obtained by integrating out the scale T is a three-
dimensional gauge theory with a scalar Geld in the adjoint

3 gzT 9 (g'T 5
x 1 —— — ——81n2

2 16zrm 2

(56)

where g = g(2vrT), and m is given by (55). The first two
terms on the right-hand side of (56) are the short-distance
contribution f(A)T, with the factorization scale evalu-
ated at A = gT/~24. Its expansion to order g4 is given
by I"i(T) in (36), and the term of order gs lng comes
from the solution (52) to the renormalization group equa-
tion for f Ther.e is also another contribution of order
g lng that comes from expanding out the g m T2 term
in (56) using (55). Having included both of these g lng
terms, the expression (56) for the free energy is accu-
rate up to corrections of order g . It also sums up all the
"lead.ing logarithms" of the form g + ln" g, n = 2, 3, . . .,
which are obtained by expanding out the m T term in
(56)

representation. There are two short-distance coefIicients
that must be calculated beyond leading order in g2 in
order to compute the &ee energy to order g5. The coef-
ficient f of the unit operator is required to next-to-next-
to-leading order in g, but this is already known [8]. The
electric mass parameter m I must be calculated to next-
to-lead. ing order in g . The error can be decreased further
by calculating the renormalization group equations for f
and m, &. Their solutions can be used to sum up terms of
the form g ln g and g lng, thereby reducing the error
to order g . This is the maximal accuracy that can be
achieved using purely diagrammatic methods. At order
g, there is a contribution to the &ee energy &om the
momentum scale g T that can only be calculated using
lattice simulations of three-dimensional QCD [8].

A similar efFective-Geld-theory approach was recently
developed by Farakos, Kajantic, Rummukainen, and
Shaposhnikov to study the electroweak phase transition
[13]. They integrated out the scale T to get a three-
dimensional effective theory, and exploited the renormal-
ization group equations of the efFective theory to take
into account logarithms of T/(gT), just as we have done
in this paper. They also integrated out the scale gT to
obtain a second. effective Geld theory that must be treated
numerically. This second step is necessary in gauge the-
ories since there is no screening of magnetostatic forces
at the scale gT. This strategy has also been used to
determine the asymptotic behavior of the correlator of
Polyakov loops [9] and to solve the problem of calculat-
ing the magnetostatic contribution to the &ee energy of
a non-Abelian gauge theory [8].

An effective-Geld-theory approach has also been ap-
plied recently to the massless 44 theory by Marini and
Burgess [18]. They used a momentum cutoff as a regula-
tor and their short-distance coefIicients therefore contain
power ultraviolet divergences that serve simply to can-
cel the power ultraviolet divergences &om loop integrals.
These power divergences greatly complicate the renor-
malization group equations for the short-distance coefIi-
cients. As we have emphasized, the power divergences
are artifacts of the regulator and. might as well be sub-
tracted as part of the regularization scheme. This not
only greatly streamlines explicit calculations, but it also
makes the conceptual &amework more transparent.

Effective Geld theories obtained. by dimensional reduc-
tion have provided great insight into the qualitative be-
havior of field theories in the high-temperature limit. In
this paper, we have shown how they can also be used as a
practical tool for explicit calculations. By using effective
field theory to separate the important momentum scales
T and gT (and g T if necessary), perturbative calcula-
tions can be organized into steps that involve only a single
momentum scale at a time. By exploiting the renormal-
ization group structure of the efFective theory to sum up
leading logarithms of g, potentially large coeKcients in
the perturbative expansion can be brought under control.
We have exhibited the power of our efFective-Geld-theory
method by carrying out pioneering calculations in mass-
less 4 theory. This method has many other exciting
applications, especially in unraveling the complexities of
non-Abelian gauge theories at high temperature.
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(e~p25 ' ds "p
'( 4vr ) - (2vr)s —" '

pO

(Al)

involve sums over po and integrals over p. It is conve-
nient to introduce a concise notation for these sums and
integrals. If dimensional regularization is used to regu-
larize ultraviolet or in&ared divergences, the definition
1s

APPENDIX A: SUM INTECRALS
IN THE FULL THEORY

In the imaginary-time formalism for thermal field the-
ory, a boson has Euclidean four-momentum P = (po, p),
with P = p& +p . The Euclidean energy po has discrete
values: po ——2~nT, where n is an integer. Loop diagrams

where 3 —2e is the dimension of space and p is an arbi-
trary momentum scale. The factor (e~/4vr)' is introduced
so that, after minimal subtraction of the poles in ~ due
to ultraviolet divergences, p coincides with the renormal-
ization scale of the MS renormalization scheme.

The sum integrals required to calculate the coeKcient
f(A) to next-to-leading order in g can be found in
Ref. [5]. We reproduce them here for convenience:

g lnP'

1

(P2) 2

P'Q'(P + Q)'
1

P Q B ( P +Q +R)

~'T4
[1+0(~)]45

T' f p1+~
~

21n +2+2 ~+0(~')4'(-1) ~

12 0 47'T —1 )
1 1—+ 2 ln + 2p + 0(e)P

4' 2 e 4mT

0,

T4 1 p 91 ('(—1) ('(—3)
24(4m) e 4vrT 15 ((—1) ((—3)

(A3)

(A4)

(A5)

(A6)

where p is Euler's constant and ((z) is Riemann's zeta function.

APPENDIX B: INTECHALS IN THE EFFECTIVE THEORY'

The effective theory for the scale g T is a Euclidean Beld theory in three-space dimensions. Loop diagrams involve
integrals over three-momenta. It is convenient to introduce the notation f for these integrals. If dimensional

p
regularization in 3 —2e dimensions is used to regularize ultraviolet divergences, we use the integration measure

f
e'u'l' ~' 'p
4n ) (2~)s (Bl)

If renormalization is accomplished by the minimal subtraction of poles in e, then p, is the renormalization scale in the
MS scheme.

The integrals that are required to calculate the free energy to order g and the screening mass to order g are

ln(p +m )=—
p

m3 +- ~+0(e')p,

2m 3) (B2)

1

p p2+ m'

f 1

, (p2+ m2)2

1 1 1

„q p2 + m2 q2 + m, 2 (p + g) 2 + m2

1 1 1
p2 + m2 q2 + m2 (p + ci+ Ic)2 + m2 k:ITIC

1 1 1 1

„q„@2+m2 q2 + m r2+ m (p+ cl+ r)2+ m2

1+a 2ln +2 +O ~ )

1

8am
1+. 2ln " +O.'

1 1 p—+ 4 ln + 2 + 4 ln 2 —4 ln 3 + 0(c)
(8vr) 2 e 2m

1 1 p—+ 41n + 6 —8 ln 2 + 0(e)
(8vr) 2 e 2m

1—+ 6 ln + 8 —4 ln 2 + 0 (e)
p

(4n) 2 e 2m

(B5)

(B6)
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The integral (B2) is standard. The remaining integrals are most easily evaluated by going to coordinate space. The
Fourier transform of the propagator 1/(k2 + m2) in 3 —2e dimensions defines a potential V(R):

v(R) —= f e'"' 1

It can be expressed in terms of the modified Bessel function K„(z):
E

At e = 0, this reduces to the familiar Coulomb potential
—mR

Vo(R) =

(Bs)

(B10)

For small R, the potential V(R) can be expressed as the sum of two I aurent expansions in R, a singular one beginning
with an R + ' term and a regular one beginning with an R term:

4 ) I(') 4 +2(1+2)+
, , I'( ——,'+e) 1,„m'R'—(e&p')' ', —m' " 1+ + O(m' R' )I (—-', ) 4~ 2(S —2e)

(Bll)

The integrals (B3) and. (B4) are related to the potential at R = 0. By the rules of dimensional regularization, they
can be evaluated by taking e large enough that the R + ' term vanishes as B —+ 0, and then analytically continuing
back to small values of e. The two integrals are

, , I'(——,'+e) 1= V(0) = —(e~p, )' 2, —m'
,p'+ m' I (——,')

1 1 d 2 I'(2+a) 1(, ,), —= —
2 d

V(R) = ("&')' F'(i)

The integrals (B6) and (B7) require a little inore effort. The integral (B7) can be written

(B12)

1 1 V'R,
@2 + m2 q + m r2 + m2 (p+ q+ r) + m

(B14)

where J'R is defined by

(B15)

From the R ~ 0 region of the integral (B14), there is a linear ultraviolet divergence, which is removed by diinensional
regularization, and a logarithmic divergence, which appears as a pole in e. We evaluate the integral by splitting the
radial integration into two regions, 0 & B & r and r & B & oo. Since the ultraviolet divergences come only from the
region B ~ 0, we can set e = 0 in the region r & B & oo. Thus the integral can be written

V (R) =
~ i

—

s 4vr dRR 'V (R) + 4~ dRR Vo (R) .
R E 4 & I'(2 —e)

(B16)

By choosing r (( 1/m, we can evaluate the first integral on the right-hand side of (B16) by using the small-R
expansion (Bll) for V(R). Dropping all terms that vanish as r -+ 0, we get

4m dRR 'V (R) =
4 ) I'(2 —e) (4~)s

1 (1 r2ps———m
~

—+2ln +4p+4
~

+O(e).r
r2m

The integral over the region r & B & oo is easily evaluated using integration by parts. Dropping all terms that vanish
asr —+0, we get

1 14' dRR V (R) = —+ 4m (ln4mr + p —1)(4') s (Bls)

Note that the 1/r and lnr terms cancel between (B17) and (B18). Inserting (B17) and (Bls) into (B16), we ob-
tain (B7).
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The integral (86) can be evaluated in a similar way to (87). It can be written

1 1 1 ik.R Vs
zz p2+ m2 @2+m (p+ g+4) +m (819)

Again we split the radial integration into two regions and set e = 0 in the region r ( B ( oo. After evaluating the
angular integrals, we obtain

4 oo
e*" V (R) =

~
~

' ' dR R 'Ji)2, (kR) V (R) + — dR Rsin(kR) Vo (R), (820)2k) k o

where J (z) is an ordinary Bessel function. We evaluate the first integral using the small-R expansion (Bli) for V(R)
and the small-B expansion for the Bessel function:

1+O(k'R') (821)

Dropping terms that vanish as r -+ 0, the first integral in (820) is

(e~p'l '
(2ir) ~2

sg, , s 1 (1dR R 'Ji(2, (kR) V (R) =
i

—+ 4ln pr + 2+ 4p
i

+ O(e) .
r2k p k s

'
87r

This integral is independent of k. In the second integral in (820), we have to set k = im:

4m 3 1
dR Rsin(kR) Ve (R) = (—1n2mr+ 1 —21n2 —p) .

Adding (822) and (823), the logarithms of r cancel and we obtain (86).

APPENDIX C: EVOLUTION EQUATIONS
FOR COEFFICIENTS

In this appendix, we calculate the evolution equations
for the short-distance coefficients J' and m, in the effec-
tive Lagrangian. These equations follow from the con-
dition that physical quantities must be independent of
the arbitrary renormalization scale A of the efFective the-
ory. The A dependence of the parameters in the e8'ective
Lagrangian must cancel the A dependence &om loop in-
tegrals. If power ultraviolet divergences are subtracted as
part of the regularization scheme, then the A dependence
comes only from logarithmically divergent loop integrals.
One-loop diagrams in a three-dimensional Geld theory
never give logarithmic ultraviolet divergences. After av-
eraging over angles, such an integral has the behavior

f d p/(p ) at large p. This gives a power divergence
for n = 1 or less and is convergent for n = 2 or greater.
Thus logarithmic divergences only arise in diagrams with
two or more loops. If the number of loops is odd, loga-
rithmic divergences only arise from subdiagrams with an
even number of loops. Thus the evolution equations are
completely determined by diagrams with an even number
of loops.

The renormalization group equations for m can be
determined &om the condition that the screening mass
m, is independent of A. Since only the ultraviolet region
of loop integrals is relevant for determining the evolution
equations, we can use the expression for the screening
mass that is obtained fi. om the strict perturbation ex-
pansion in g defined by the decomposition (10). The
expression for the screening mass to order g is

FIG. 5. Four-loop diagrams for the logarithm of the par-
tition function of the effective theory which have logarithmic
ultraviolet divergences.
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~m'
p2q2 (p +. q) 2 2 (p2)2

(C1)

1

dA 6 dA „q p q2(p+ q)
(C2)

The ultraviolet divergence in the integral on the right-
hand side of (C2) is the same as in (B5). The derivative
is with respect to the scale A associated with the ultra-
violet cutoff, and must be taken with the in&ared cutoff
fixed. The integral in (C2) vanishes in dimensional reg-
ularization only if we use the same regularization scale
p for ultraviolet and infrared divergences. If we use a
different scale A for the regularization of ultraviolet di-
vergences, the integral is

1 1 /1i
p q (p+ q) (8~) (e) vv

A
+4 ln—

P

(11
&') iR

(C3)

The only logarithmic divergence comes &om the two-loop
integral over p and q, which comes &om the last diagram
in Fig. 3. Thus the condition that m, is independent of
A reduces to

The subscripts UV and IR indicate whether the pole in
e is of ultraviolet or in&ared origin. Inserting (C3) into
(C2), we obtain the evolution equation

d2 8(A
dA 3 [i167r)

This result is accurate to all orders in A and to leading
order in the coeKcients of higher dimension operators.

The evolution equation for f can be determined f'rom

the condition that the &ee energy, or equivalently, the
logarithm of the partition function given in (15), is inde-
pendent of A. We need only consider diagrams for ln Z,~
which have an even number of loops, and they can be
calculated using the strict perturbation expansion in g
defined by the decomposition (10). The two-loop dia-
gram for lnZ g in Fig. 1 has no logarithmic ultraviolet
divergence. The four-loop diagrams that have logarith-
mic ultraviolet divergences are shown in Fig. 5. The erst
diagram in Fig. 5 has two-loop subdiagrams that are log-
arithmically divergent. The resulting A dependence is
canceled by the A dependence of m in the coeKcient
of the second diagram of Fig. 2. The second diagram in
Fig. 5 has no logarithmically divergent subdiagrams, but
it has an overall logarithmic divergence. The A depen-
dence of this contribution to the &ee energy can only be
canceled by that of the short-distance coefficient f:

d A~ d 1
A f = ———A

48 dA qi (p + qi)'q2 (p + q2)'qs (p + qs)
(C5)

After combining pairs of propagators using the Feynman parameter trick, the integrals over q~, q2, and q3 can be
evaluated analytically using (B13). The result is

1 fEP2E 2 d~(~ ~2) —
~
—E

P
—3—6E

I'(-'+ e)

P919293 qi(p+ qi)'q2(p+ &2)'q3(p+ qs)' .87r I'(-,') o
(C6)

The integral over p vanishes in dimensional regularization if the same scale p is used in the regularization of ultraviole
and in&ared divergences. If a different scale A is used for ultraviolet divergences, the value of the integral is

A+8»—
„q,~,~, qi(p+ qi) q2(p+ q2) qs(p+ qs) 32(16vr) &') vv &') iR

Inserting this result into (C5), we obtain the evolution equation

(C7)

d

dA 12 (16')
This result is accurate to all orders in A and to leading order in the coefFicients of higher dimension operators.
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