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One-loop renormalization of a self-interacting scalar field
in nonsimply connected spacetimes
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Using the e8'ective potential, we study the one-loop renormalization of a massive self-interacting
scalar field at Gnite temperature in Hat manifolds with one or more compacti6ed spatial dimensions.
We prove that, owing to the compacti6cation and finite temperature, the renormalized physical
parameters of the theory (mass and coupling constant) acquire thermal and topological contributions.
In the case of one compactified spatial dimension at finite temperature, we find that the corrections
to the mass are positive, but those to the coupling constant are negative. We discuss the implications
and limits of the validity of this calculation.

PACS number(s): 11.10.Wx, 04.62.+v, 11.10.Gh

I. INTRODUCTION

It is well known that one-loop quantum corrections
may alter the physical parameters of an interacting quan-
tum field theory. In general this alteration is not of a
form which can be absorbed by a simple redefinition of
the parameters, in the way that one can remove the ul-
traviolet divergences. A simple example of this occurs in
finite temperature field theory, where the renormalized
mass can become temperature dependent [1]. Similarly,
in Hat spacetime with compactification in one spatial di-
rection, the mass can depend upon the periodicity length
in the compact direction [2—4]. This phenomenon is of
particular interest in theories with broken symmetry, as
it allows both thermal and topological efFects to play a
role in the breaking and restoration of syminetry [5]. The
aim of this paper is to discuss quantum field theory at fi-

nite temperature in a spacetime where at least one of the
spatial dimensions is compactified. The particular model
which we adopt is a scalar field with quartic self-coupling.
In particular, we wish to investigate the dependence of
the renormalized mass and coupling constant upon the
temperature and the size of the compactified dimension.
We will calculate the efFective potential, which may be ex-
pressed in terms of Epstein ( functions. The ultraviolet
divergences may be removed by analytic regularization
and renormalization.

One physical motivation for undertaking this work is
its possible applications to physical processes in the early
Universe. There one expects to encounter efFects of both
finite temperature and of the structure of spacetime. The
compactification in a spatial dimension may be regarded
as a simplified model for the latter.

The outline of this paper is the following. In Sec. II,
periodic boundary conditions are imposed upon the fields
(after a Wick rotation), and the temperature-dependent

one-loop efFective potential is calculated. The theory is
regularized using an analytic continuation of the inhomo-
geneous Epstein ( function. The renormalization of Ap4
theory in this multiply connected spacetime can be done
by introducing counterterms, and we show that the mass
and coupling constant counterterms are temperature and
size independent.

In Sec. III, we assume Gnite temperature and only
one compactified spatial dimension. We explicitly calcu-
late the corrections to both the mass and the coupling
constant in this case. We find that the corrections to
the mass are positive but those to the coupling constant
are negative. The results are discussed in Sec. IV. In
particular, we discuss the possibility of arranging for the
renormalized coupling constant to vanish at some par-
ticular temperature or spatial size. In this paper we use
units in which h, = c = k~ ——1.

II. THE EFFECTIVE POTENTIAL OF A
SCALAR FIELD AT FINITE TEMPERATURE

In this section we study a real massive scalar field at
finite temperature, where we assume that the topology of
the spacelike sections is that of a three-torus. This kind
of topology allows two difFerent types of scalar fields: one
which is periodic in the identified spatial coordinates is
called an untwisted Geld, and the other which is antiperi-
odic in the identified spatial coordinate is called a twisted
scalar field [6]. To study twisted scalar fields, we cannot
assume that the normalized vacuum expectation value of
the field is constant and the efFective potential cannot be
used. For the sake of simplicity, in this paper we will
study only the untwisted scalar field.

The Lagrange density of the field is
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where p„(x) is the unrenormalized field, and mp and Ap

are the bare mass and coupling constant, respectively.
We may rewrite the Lagrange density in the usual form
where the counterterms will appear explicitly. Defining
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y„(x) = (1+bZ) p(x), (2)

mo ——(m + bm )(1+bZ)

Ao
——(A+»)(1+ bZ)

and substituting Eqs. (2)—(4) into Eq. (1), we have

1 „12 2 A 4 12 = —0 yB"p ——m y ——p + —bZ 8 yB"&p2" 2 4f 2

2 2 4——bm y ——bA (p
2

(5)

where bZ) bm, and bA are the wave function, mass, and
coupling constant counterterms of the model. Through
this paper we will assume that m ) 0. In the one-loop
approximation, the efI'ective potential at zero ternpera-
ture in uncompactified spacetime is given by [7, 8]

1 2 2 A 4 1 2 2 1 4V(po) = —m (p + —rp ——bm y ——bA p0 4| 0 2 0 4| 0

. 1 (1+
8=1

1
X

(q2 —m2 + ie)'

There is no diKculty in extending the above results to
finite temperature states. In this case, functional inte-
grals will run over the fields that satisfy periodic bound-
ary conditions in Euclidean time. The effective action
can be defined as in the zero-temperature case by a func-
tional Legendre transformation, and regularization and
renormalization procedures follow the same steps as in
the zero-temperature case. Similarly, compactification is

m'2=-
4Vr2 p2

(Pp) (8)

(I„.IJ,) = a, , i = 1, 2, 3, (9)

where p is a mass parameter introduced to keep the Ep-
stein ( function a dimensionless quantity. The Euclidean
efI'ective potential becomes

imposed by requiring that the field be periodic in the
spatial directions.

It has been shown that for models where the spacelike
sections are noncompact, all the divergences present in
the Feynman loops are temperature independent [9, 10].
Similarly, the renormalization of the zero-temperature
theory with at least one compactified spatial dimension
has been investigated by Toms [ll] and by Birrell and
Ford [12]. These authors found that through the two-
loop level, all of the counterterms are independent of the
spatial size. A more general discussion has been given by
Banach [13], who shows that topological identifications
will not introduce new counterterms. Thus the diver-
gences of the theory are independent of both ternpera-
ture and spatial size. If this were not the case, there
would be a danger that the renormalizability of the the-
ory would be upset by changing either the temperature
or the spatial topology.

I et us assume that we have a massive scalar field at
finite temperature P, and that the spacelike section is
compactified with the topology of a three-torus of sides
.Ll, L2) and L3. Define

~~(P, L., I., 1., ~0) = -m v. + —,~. —-bm ~0 ——,»~0
1 2 2 A 4 1 2 2 1 4

(
—1)'+' ( A ) '(

PLiL2Ls. , » &8~ ) (10)

where

(aini + a2n2 + + a~nN + c )

is the inhomogeneous Epstein ( function [14, 15]. Note
that in going from Eq. (6) to Eq. (10), we have first
performed a Wick rotation so that the momenta are Eu-
clidean, and then have replaced the momentum integrals
by discrete sums. In the case c = 0, Eq. (11) defines
a Madelung sum in the theory of classical lattices. If we
impose the condition that the renormalized mass is zero,
there is a problem in defining the renormalized coupling
constant. The way to circumvent this diKculty is to im-

I

pose the renormalization conditions not at p0 ——0 but
at another point. For a careful discussion, see the paper
by Coleman and Weinberg [7]. In this paper we assume
m & 0, and the above problem does not appear. In
the limit I, ~ oo, the expression given by Eq. (10) dif-
fers from the usual finite temperature effective potential
by terms that are independent of yo [16]. Because only
derivatives with respect to p0 correspond to physically
meaningful quantities, this does not pose any problems.

Let us define the modified inhomogeneous Epstein (
function as

) (an + ... +a~n~+c ) '. (12)

A simple calculation gives
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2 2 2

A4 (8, ai, a2, a3, a4) = 16E4 (s, ai, a2, a3, a4) + 8E3 (8, ai, a2, a4) + 8E3 (s, ai, a3, a4)
2 2 2+ 8E3 (8 a2 a3 a4) + 8E3 (8, ai, a2, a3) + 4E2 (s, ai, a2)

2

+ 4E2 (8, ai, a3) + 4E2 (8, ai, a4) + 4E2 (8, a2, a3)
2

+ 4E2 (s, a2, a4) + 4E2 (s, as, a4) + 2E, (8) a, )

+ 2Ei (s, a2) + 2Er' (s, a3) + 2Ei (s, a4) + c

Defining the new coupling constant and a dimensionless
vacuum expectation value of the field by

(15)

the finite temperature one-loop efFective potential is given
by

vE(p, Lr, L2, L3, $) = p I
2~ c p + —7r gQ —— hm p ——bAQ

4 i 2 2 2 2 4 2 2 1 4

3 2@2 4t

( 1)8+1
+ ) —g P A4 (8, ai, a2, as, a4).

LiL2L3 2s

It is possible to regularize the one-loop efFective poten-
tial introducing a cutofF in the Euclidean region, but we
prefer to use the method of analytic extension. Let us
assume that each term of the series in 8 in the one-loop
efFective potential V@(P,Li, L2, I3, po) is an analytic ex-
tension, defined in the beginning only in an open con-
nected set. To render the discussion more general, let
us discuss the process of the analytic continuation of the
modified inhomogeneous Epstein ( function given by Eq.
(12). For Re(s) ) 2, the Eg (s, ai, a2, a~) converges
and represents an analytic function of 8, so 8 &

&
is the

largest possible domain of the convergence of the series.
This means that in Eq. (10) only the terms s = 1 and
8 = 2 are divergent. The 8 = 1 term arises from the
self-energy diagram (the one-loop process with two ex-
ternal lines), and the 8 = 2 term arises from the one-loop
correction to the scattering amplitude (the one-loop dia-
gram with four external lines). After regularization, we
may think of the first two terms in the sum in Eq. (10)
as being evaluated not at s = 1 and 8 = 2, but rather
at s = 1 + o. and s = 2 + o. , respectively, where o. is a
complex parameter which vanishes in the limit in which
the regularization is removed.

Using a Melin transform, it is possible to continue ana-
lytically Er'v (s, ai, , a~) from Re(s) ) —to Re(s) ( —,
although isolated singularities will appear in the closed
region Re(s) &

2 at the points

Res Er'v (s, ai, ..., aiv), —'2

where

A(k) = ) ga, , a,„,
(i1,. . . , ik )

and g, denotes the sum over all possible choices of
the ii, ..., ik among 1, ..., K (for k = 0 the sum is set equal
to one) [17]. An appropriate choice of bm2 and bA will
remove the poles at s = 1 and 8 = 2, respectively. The
idea to continue analytically expressions and subtract the
poles was exploited by various authors [18, 19]. In the
method used by Bollini, Giambiagi, and Domingues [18],
a complex parameter was introduced as an exponent of
the denominator of the loop expressions and the integrals
are well-defined analytic functions of the parameter for
some sp. Performing an analytic extension of this expres-
sion for s & sp, poles will appear in the analytic extension
and the final expression becomes finite after the subtrac-
tion of the poles. It is clear that our regularization is
exactly a discrete version of the Bollini et al. analytic
regularization.

In our problem, the renormalization conditions are
given by

N A —1 1 2l+ 1

2 2
-

2 2
2

&@(p,Li, I2, L3, p-)~y —o ——4vr p c = p, m (20)

At these points, the analytic extension of
2

E~ (s, ai, ..., aiv) has first-order poles, with residues
Res[E (s~, , ar, ~)a, s;]. The exact expression of the
residue at the points in which we are interested is

4

V~(P Li L2 L3 &)-I4=o =8~1 9=V & (21)

Substituting Eq. (16) into Eqs. (20) and (21) in such
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a way that the counterterm bm, cancels the pole con-
tribution at 8 = 1 of the analytic extension of the inho-
mogeneous Epstein ( function, and 8A cancels the pole
contribution at 8 = 2, we have

r(l) &' 2) (26)

we can perform the integrations over the continuous mo-
menta and write

g 1
bm Res A4 (s, ai, a2, a3 a4), s = 1

PLi L2Ls p s —1

(22)

s+2
G@(as, a4, P) = p gasa4vr ) g'+ P '+

28+ 2
s=O

I'(s)
x A2 (s as a4) 'I' s+1 (27)

bA = —24 g 1

pLiL2Lslj, s —2

2
x Res A4 (s, ai, a2, as, a4), s = 2 (23)

By substitution of Eq. (18) and Eq. (19) into Eq. (22)
and Eq. (23), it is straightforward to show that both
bA and bm are temperature and size independent. This
shows that in the one-loop approximation, the counter-
terms of the model are independent of the parameters
which are associated with the nontrivial topology. Hence,
it is also renormalizable at finite temperature with ex-
actly the same counterterms.

III. TQP(3LC)CICAL AND THER.MAL
COB.KECTI(3NS TO THE MASS
AND CQUPLINC CONSTANT

In this section we will investigate the thermal and topo-
logical correction to the renormalized mass and coupling
constant in the case where there is compactification in
only one spatial direction. Set L = L3 and take the limit
in which Lq ~ oo and L2 ~ oo. The finite temperature
one-loop effective potential in this case is given by

Note that the poles which were at 8 = 1 and 8 = 2 in
Eq. (10) are now located at s = 0 and s = 1, respectively,
in Eq. (27). As before, we regularize Eq. (27) by analyt-
ically continuing the summand around the points 8 = 0
and 8= 1.

The formal correction to the squared mass is given by

(d'G~ l
4 d&o ) .=o

~gp, dasa4 im 'I'(s)Az (s as a4)
s —+0

(28)

The s ~ 0 limit of the Epstein ( function is evaluated
in the Appendix. The result, Eq. (A6), may be used to
separate L'm into its infinite and finite parts:
~'m2 —bm' + ~m2 (29)

bm = gp ~

— +27rlnc ~,
l7rc2

where bm is the counterterm to be absorbed by mass
renormalization, and Am is the finite correction to the
mass. The latter is defined so as to vanish in the limit of
zero temperature in noncompactified space. Explicitly,
we have

V@(P, LQ) = p,
~

2~ c P + —~ gP — bm P3 2p
and

——,SAP
~
+ G@(P,I, Q), (24) Am = m

4Vr2

(t' —1) -dt
~mPt 1

where

( 1)s+1
G~(P, L, P) =P, gasa4) g'Q '

x d'km''(s, a„a4).

In the above equation

M' = (k')' + (k')'+ c',

There is an equivalent expression obtained by interchange
of P and L Note that A. m2 ) 0 for all choices of the pa-
rameters. The first term in Eq. (31) is the purely thermal
correction to the mass [1]. In the limit that L + oo, the
second term vanishes, and this correction is all that sur-
vives. The second term becomes the purely topological
correction [3] in the limit of zero temperature:

where
1

271 P

A
Am

27rI
—2vrI x +m, /4m

(t —1) dt
gf7EI t 1

(32)

2

27' jL

are dimensionless quantities.
Using the identity

(An integration by parts was performed to obtain the last
form. )

The formal correction to the coupling constant A due
to finite temperature and/or spatial compactification is
given by
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(d4G~ 5 3%2 2

4
-

~

= — gasa4 lim A2 (s, as, a4) .
d(po J i 327l' s-+1

Then the finite correction to the coupling constant is
given by

2

A2 (s, as, a4)
vr 1 —ln c + . + I"i (as, a4),gas a4 s —1

(33)

This quantity is, of course, ill defined because of a pole
term at 8 = 1 which needs to be isolated and removed.
In the Appendix, it is shown that

3A
AA — gas a4 Ei (as, a4)

327r3

Here

Ei(as, a4) =

where

1
[f(as) + f (a4) + B(as, a4)],

a3a4

(36)

s -+ 1. (34)

The pole term is absorbed by the bA counterterm when
we let

(t' —1)
—- dt

f( ) =4~
1

32vr2 g s —1 ) (35) and B(as, a4) is given by

1
B(as, a4) = 2vr~as ) —f (a4)

2m (aant+ct)/a4-~ a3A

1
=2vr~a4 )

v'u n' + c'
(

* &' "'+"""—
y)

—f(as) (39)

Note that the thermal and topological corrections to
the coupling constant are always negative:

Let us now consider the purely thermal correction in
more detail. Let I —+ oo, so that a3 —+ 0. Then

AA &O, (40)

which follows, for example, from Eqs. (37)—(39), where it
is apparent that Pi(as, a4) ) 0. The three terms on the
right-hand side of Eq. (36) can each be given a physical
interpretation. The f(as) term is the purely topologi-
cal term. It is the correction to the coupling constant
at zero texnperature in a space with one compact dimen-
sion. Similarly, the f(a4) term is the purely thermal
term, which is the correction to the coupling constant
at finite temperature in uncompactified space. The B
term represents a coupling between thermal and topo-
logical efFects which is present only at finite temperature
in compactified space.

It is of interest to examine the small mass limit of this
correction to the coupling constant. In the limit that
m ~ 0, the dominant contribution to LA comes from
the n = 0 term in B(as, a4), and we obtain

3A
LA m~0.

Sm2PL'
(41)

This result seems to indicate that the one-loop correction
to the coupling constant can be arbitrarily negative for
small masses. However, one must be careful about the
limits of validity of the one-loop approximation. This is-
sue will be discussed in more detail in the next section.
Note that the coupling constant correction described by
Eq. (41) is nontrivial only at finite temperature in com-
pactified spacetime, i.e. , when both I and P are finite.

3A2 3A2
AA = — f(a4) =— (t' —1)

—- dt
ePmt 1

In the low temperature limit(p -+ oo), we have

AA = — (t —1) ~ e ™dt = — Kti(Pm)
3A 2 1 p , 3A

8m~ 8~2

3A2

8vr2

—Pm.e
2Pm

Similarly, in the high temperature limit (P + 0), we may
use

1
e2+Pmt 1 Pmt

to write

(44)

3A2T
LA —,Tm oo.

16vrm
(45)

Again, this correction would naively seem to be large in
the case that T &) m.

The temperature dependence of coupling constants in
uncompactified Hat space has been discussed previously
by several authors, including Bapu Joseph et al. [20],
Eboli and Marques [21], Fujimoto et al. [22], Weldon [23],
Funakubo and Sakamoto [24], and Fendley [25]. Higuchi
and Parker [26] have discussed the size dependence of
coupling constants for gauge theories in a compactified
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space at zero temperature. In particular, Bapu 3oseph
et al. [20] have calculated the temperature dependence
of the coupling constant for the Ap model and give the
result

where a = Pm, . We wish to prove the equivalence of this
result to Eq. (42). First perform the difFerentiation in
Eq. (46) and then define a new integration variable by
t = (x2 + o2) ~ /a. The result is

1
xl (46)

[ [T'+ a') ' (exp[(2." + a') ~ ]
—i) j

(t2 —1) (at + l)e ' —1
dh.

t'(e" —1)
'

However, we may perform an integration by parts:

(t2 —1) ~ ate '
dt =—

t'(e ' —1)'
(t' —1)- d

dg e~& —1
(t —1) ~ —t (t —1) ~ dt . (48)

This identity enables us to rewrite Eq. (47) as our previ-
ous result, Eq. (42).

In this section we have found that in a space with one
compact spatial dimension and/or at finite temperature,
the one-loop correction to the squared mass is always
positive, whereas that to the coupling constant is always
negative. In the limits that the size of the compact di-
mension becomes large, we recover the results of previous
authors for the mass correction, Lm and the coupling
constant correction, AA. Of course, all of the results of
this section also apply to the case of a spacetime with
periodicity in two spatial directions, but at zero temper-
ature. One simply replaces I and P in the above formulas
by Lq and L2, the two periodicity lengths.

IV. DISCUSSIC)N

In this paper, we have calculated the mass correction,
Lm, and the coupling constant correction, LA, due to
both Bnite temperature and compactiBcation in one spa-
tial direction. We found. that Am & 0, whereas LA & 0.
One of the primary reasons for interest in Lm2 is its role
in symmetry restoration. It had been noted by previous
authors that Am & 0 when one has either finite tem-
perature in uncompactified space, or compactification at
zero temperature. Thus in both cases, the efFect of the
radiative correction is to restore broken symmetries. Our
results show that this efFect also holds when one has a
finite temperature state in compactified space. In the
case of finite temperature iri uncompactiBed space, our
results are equivalent to those of previous authors. How-
ever, the summation method which we employ tends to
lead to simpler expressions than have been previously
found, e.g. , compare Eq. (42) with Eq. (46). The exten-
sion of these results to models in spacetime dimensions
other than four and to other model Beld theories is un-
dertaken in a separate paper [27].

An interesting feature of the negative coupling con-
stant correction is that it tends to make the theory less
strongly coupled. One is then tempted to raise the ques-
tion of whether it would even be possible to cause the
net coupling constant to vanish at some particular tem-

perature or compactiBcation length. We have defined
A to denote the renormalized coupling constant at zero
temperature in uncompactiBed space. Thus the efFective
couphng constant when either I or P are finite is

A' = A+ LA.
The one-loop correction AA is of order A, so it is not
clear that one can make it equal to A in magnitude be-
fore the one-loop approximation fails. The crucial issue
here is just what are the limits of validity of this approxi-
mation. If it were simply that one needs A (& 1, then this
would not prevent us from arranging a situation where
A' = 0. This is apparent from Eqs. (41) or (45).

However, in general this is not suflicient. It has been
noted by several authors, e.g. , [24, 25] that results such
as Eq. (42) cannot be trusted at high temperatures.
One may see this by noting that in writing Eqs. (41)
and (45) we have ignored the temperature-dependence
of the mass. A better approximation would be ob-
tained by replacing m by the temperature-dependent
mass, m. '(T). However, in the high temperature limit,

T2
m, ' (T) Am A i2. If one inserts this result into
either Eq. (41) or (45), one finds a result for b.A which
does not grow with increasing temperature. Various au-
thors have obtained difFering results for the high temper-
ature limit. In particular, Weldon has argued that AA
should increase as a logarithmic function at high tem-
peratures. Funakubo and Sakamoto [24] have analyzed
an O(N) model using renormalization group methods at
the two-loop level and found the although the coupling
constant initially decreases with increasing temperature,
it eventually begins to increase again. Thus, our gen-
eral result for the coupling constant correction, Eq. (36),
should be valid for low temperature and large I, but is
expected to fail if either T M oo, or I —+ 0.

Even within the domain of validity of the one-loop
approximation, the temperature and size dependence of
coupling constants could have interesting implications for
cosmology. Note that the decrease in the coupling con-
stant with increasing temperature is a collective efFect;
the scattering cross section for a pair of particles is inBu-
enced by the presence of the other particles in the thermal
bath. Thus one cannot view the system simply as a col-
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lection of pairwise interacting particles. It is of interest
to investigate more realistic Geld theories to determine
whether such effects could be significant in cosmological
models.
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A, (s, ai, a2) =
V1y A%2 =—OO

(a,n,' + a2n', + c')

This series is convergent for Re s & 2, and divergent oth-
erwise. Our starting point will be the following summa-
tion formula, which is proven in Ref. [28]:

I (A, a) = ) (n'+ a') = a' —'" ~~ ' + 4sin~A
1(A)

(t' —1)
—"dt

2mat 1
(A2)

The series representation of E converges for Re A )
whereas the integral representation is de6ned for Re A (
1.

Let us first use Eq. (A2) to replace the ni summation
in Eq. (Al). The result is

I'(s —-,') i ~, ( 1 c
A2 (s, a„a2) = ~~ a, 'a2 I'

~

s ——,
1(s) ' ' ( 2 va, )

where

a2n2 + C2

+4ai ' sin~s ) a

(t —1) 'dt
g27t At ] (A3)

The function I"(s —2) which appears in the first term of
Eq. (A3) can in turn be expressed as an integral using
Eq. (A2) a second time. The result is

+4ai 'a2 sin mrs ) ai
&2+at ]

gaia2A2 (s, ai, a2) =m c ' + ~sr sinvr
l

s
I'(s —«) 2(i .)

I'(s —2) . &» 2(i .)

2J
(t' —1)

—'dt

(t' —1) ~ 'dt
g 2'll'ct / ~Q2 ]

(A5)

For the purpose of explicitly calculating the mass correction, Eq. (28), we need to evaluate the function
1 (s) A2 (s, ai, a2) in the neighborhood of s = 0. The pole term will arise from the factor of I'(s —1) in the first
term of Eq. (A5). The remaining two terms will be finite in the s ~ 0 limit. The required asymptotic form is

2

gaia2 I'(s) A' (s, ai, a2) -— (t' —1) ~ dt+ 2' inc+ 8~c
1 ~2~Ct / ~a2

+4ga, a, vr ) a' " dt
s —+0.

p 27ccLt 1
(A6)

For the purpose of calculating the corrections to the
coupling constant, we need to examine the s + 1 limit
of Eq. (A5). There will again be a simple pole coming
from the factor of 1 (s —1), and all other terms will be

I

regular. However, the s + 1 limit of the third term on
the right-hand side of Eq. (A5) requires some care. There
is a pole coming from the integral which is canceled by
the sinus factor. To calculate this explicitly, let
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(t —1) 'dh

" (t' —1)
—'Ch (t' —1)

—'Ch
+ )&2~at 1 &27' at

1 tP
(A7)

where 0 & to —1 &( 1.. As s —+ 1, the contribution of the
second integral is finite, so we may write

where a is defined by Eq. (A4).
2 2

Note that A2 (s, ai, a2) = A2 (s, az, ai), whereas the
procedure which we have used has obscured this sym-
metry. Thus, there is an alternative expression for
A2 (s, ai, az) in which the roles of ai and of a2 are inter-
changed. We may rewrite Eq. (All) as

I(s)-
" (t —1)

—'(t+ I)-'dt
1

&2' at 1

1 tp

(t —1) 'dt .
2(e2~a —1)

2

A; (s, ai, a2)- 7r 1 2—inc + + Fi(ai, a2),
Qaia2 8 —1

s m 1, (A12)

Furthermore, because 8 ( 1,

(A9)

where Ei(ai, a2) is the finite, s-independent part of A2
near 8 = 1, which can be expressed as

Next, we may use sinus n(1 —s) as s -+ 1 to write

sinvrs I(s) + -, s -+ 1.
2 e2 —1

(A10)

2 7r 2Az (s, ai, a2) —inc +.
~aia2 s —1

Finally, we may combine the above results to yield an
expression for A.2 (s, ai, a2) in the s ~ 1 limit:

1
+i(ai a2) = — [f(ai) + f(a2) + Ih(ai a2)],aj a2

(A13)

where

(t' —1)--dt
g 2%'ct / ~cL2 1

++
aya2

1
a(e2ma I)

f(ai) = 47r
- (h' —I)--dt

~2v ct/~a, (A14)

—f(a2), (A15)

or, equivalently,

1
B(ai, a2) = 2~~a2 ) g, „2 ~,.(,*-Q(-.- +")/-, ,)

—f(ai) . (AI6)

Note that R(ai, a2) -+ 0 as ai ~ 0 or as a2 ~ 0. [The sum in Eq. (A15) may replaced by an integral when ai —
& 0,

and that in Eq. (A16) may be so replaced when a2 ~ 0.]
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