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A large class of noncritical string theories with extended world sheet gauge symmetry are de-
scribed by two coupled, gauged Wess-Zumino-Witten models. We give a detailed analysis of the
gauge-invariant action and in particular the gauge-fixing procedure and the resulting BRST sym-
metries. The results are applied to the example of W3 strings.
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I. INTRODUCTION

Whereas the simplest models in string theory are based
on the Virasoro algebra or supersymmetric extensions
thereof, a lot of interest has been generated by exten-
sions based on nonlinear symmetry algebras [1], called
W algebras. There are several lines of investigation for
systems having an extended conformal symmetry. One
possibility is to make use of the symmetry algebras only,
trying to gain information about their representations,
and in this way about the possible physical string models
these nonlinear algebras correspond to. This is an ambi-
tious line, but probably still too diKcult at the present
time. More or less complete data about representations
have until now only been obtained for some simple Rnite
analogues of these W algebras [2], and for Ws [3]. A dif-
ferent approach has been to realize the operator product
expansions of the ~ algebras in terms of free fields, which
are easily realized in Fock space, and investigate physical
consequences [Becchi-Rouet-Stora- Tyutin (BRST) oper-
ators and their cohomology] in these realizations. In this
paper we follow a third line, related to the previous one,
and accord a central role to Lagrangian realizations of
the symmetry algebras in terms of Wess-Zumino-Witten
models. This is done erst on a classical level, after which
the theories described by these Lagrangians can be quan-
tized. The transition to quantum theory is in practice
very simple: it amounts to assuming the validity of aKne
Lie algebra operator product expansions (OPE's) for the
symmetry currents of the theory. Moreover, these models
are very malleable in that, by gauging and constraining,
they allow the construction of (almost?) all extended con-
formal algebras.

One has to distinguish between critical and noncrit-
ical models. The critical models impose a cancellation
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between the central charges of the "matter" component
of the model against the "ghost" particles (implying, for
example, for the simplest bosonic string a central charge
c = 26 and for a model based on the 343 algebra a value
c = 100). The noncritical models achieve this cancel-
lation by introducing another sector, the gravitational
sector. This can be understood &om the fact that inte-
grating over matter and ghosts first induces, through a
quantum anomaly, an action for classically nonexisting
degrees of &eedom. For the simple bosonic string in the
conformal gauge this induced action is the Liouville ac-
tion, where it is also called the "Liouville" sector. The
induced action describes an extension of two-dimensional
gravitation theory. The subsequent integration over its
degrees of freedom restores the nonlinear symmetry of
the theory.

Noncritical 34 string theories were erst constructed
"by hand" [4], meaning that the symmetry currents of
both the matter and gravity sectors are realized in terms
of &ee fields and the BRST operator is then constructed
by trial and error. Though this is quite feasible for the
simplest models, it turns out to be a formidable task for
more complicated models. Obviously, a more systematic
approach is needed. Recently several possible approaches
were discovered.

A most elegant way to solve extended noncritical string
theories is by using the (suspected) equivalence of a large
class of them, the so-called (1,q) models, to topological
string theories [5]. Using the matter picture [6,7] for these
topological strings, choosing a Landau-Ginzburg-type re-
alization of the matter sector provides a very quick way to
investigate several essential properties, such as the spec-
trum, of the noncritical string theory.

A related approach takes advantage of the hidden %=2
structure of any string theory. The BRST current and
the Virasoro antighost together provide the two super-
charges [8—10]. Adopting this as the essential structure
of any string theory, one then views the construction of
string theories as the study of realizations and represen-
tations of extensions of the %=2 conformal algebra. This
implies then that one should be able to construct a large
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class of noncritical string theories from Hamiltonian re-
duction. Indeed, many %=2 algebras can be constructed
by the reduction of Wess-Zumino-Witten (WZW) mod-
els on supergroups, the reduction being determined by an
embedding of SU(2~1) in a supergroup. By an appropri-
ate choice of the grading, which is necessary to determine
the reduction completely, one obtains a certain &ee-field
realization which can immediately be viewed as a non-
critical string theory. Though this approach looks very
elegant and promising, it has only been established in
certain cases [10].

A last approach, again relying on gauged or reduced
WZW models, takes reduced WZW models for both the
matter and the gravity sector separately. Precisely this
approach will be studied here.

In this paper we will exploit the versatility of the WZW
models. First, in Sec. IIA, we will analyze a con-
strained WZW model, showing how, following the ideas
of the Drinfeld-Sokolov (DS) reduction scheme, one can
use them to realize W algebras. Our treatment here im-
proves on the ones existing in the literature in that the
auxiliary fields, necessary to save DS gauge invariance
on the Lagrangian level, now arise as a natural part of
the construction, based as it is on that gauge invariance
from the start. This is shown with the help of a recursion
method to perform the transition to the so-called highest
weight gauge, in which the appearance of the ~ algebra
is the most manifest. As a by-product, we also give an ef-
ficient recursive method to construct the gauge-invariant
polynomials that realize the W algebra. The construc-
tions in this section are relevant for both critical and
noncritical strings. Then, in Sec. IIB, we introduce the
transformations of the W symmetry. We use the previ-
ous construction in Sec. III both for the matter and the
gravity sectors. We show how, already at the classical
level, it is only through a cancellation of central charges
of the sectors that the symmetry is achieved. As an ap-
plication, we give in Sec. IIIB the expression for the
classical BRST charge for the combined matter-ghost-
gravity system in the case of ~3 that follows from our
construction. Our method gives an expression for this
charge that extends to the quantum theory by a simple
renormalization of a single coefBcient, without the need
for any additional terms.

In Sec. IV we give a more thorough treatment of the
gauge-fixing procedure, using the field-antifield formal-
ism of Batalin and Vilkovisky. First (Sec. IVA), we
use this method in the realization of a single sector to
explicitize the fixing of the DS gauge invariance. This
simplifies the derivation of the gauge-fixed action in [ll]
as it avoids any explicit reference to open gauge algebras.
Then (Sec. IV B) we apply the same method to the ad-
ditional A' symmetry that is present if one combines a
matter and a gravity sector. We keep the discussion gen-
eral, working out the ~~ case explicitly at the end. This
serves as a justification of the ghost Lagrangian used in
that (relatively simple) case in Sec. III B, and also points
the way to extend the present treatment to arbitrary ex-
tensions that can be obtained from DS reduction.

A more detailed treatment of the resuIts presented in
this paper can be found in [12,13].

II. THE CLASSICAL ACTIQN GF ~ MATTER.

A. The Drinfeld-Sokolov procedure revisited

In this Erst section, we realize a Vd system (matter or
gravity) by constraining the currents of a WZW model.
We will not review the method of Hamiltonian reduction
here we only give a cursory description to establish no-
tation and refer the interested reader to, e.g. , [14,11]
for a general introduction and references. We will sup-
plement the standard treatment with some detailed re-
cursion formulas to carry out this reduction in practice,
since we need these for later use.

The starting point is the usual WZW action ~8 [g] for
some Lie (super)group G with generic element g(z, z).
The W algebra is determined by choosing a particular
sl(2) embedding 8 = (eo, e+, e j in the algebra g. The
first step is to constrain the current J(z) = 28g . g to
the form

K i K K &0J~ J= —Bg. g = —e + —[r, e ]+ J—
2 2 2

where J— denotes the positively graded components in
the grading induced by eo, and v is a set of auxiliary fields
with grading 1/2 that are introduced to ensure that all
constraints are first class [15,11]. These constraints gen-
erate the Drinfeld-Sokolov (DS) gauge transformations.
They can be used to put the current J in the highest
toeight gauge:

J = —Og. g
' m —Oe~g g 'e ~ = —e + W(J), (2)

2 2 2

where TV contains only highest weight components.
These components are gauge-invariant polynomials of the
original components of J and their derivatives, and form
a classical ~ algebra under Poisson brackets. We will
denote the gauge-fixed group element by e~g = m. The
existence and uniqueness of the algebra element p defin-
ing the transition to the highest weight gauge has been
proven long ago [14], but we present here an algorithmic
procedure to calculate it exactly. For convenience we first
introduce the notations E = ad(e ), E+ = ad(e+), and
furthermore we define the "inverse" I of E [16], which
vanishes on highest weight generators and IE = I on
g/ker(E ) . The highest weight gauge can now be de-
fined by

This equation can be solved order by order in J— and
r by writing p =—P &i p, W = P &i W . Up to first
order the equation becomes

and since p is positively graded (and thus LE pi ——pi)
the solution is

At higher order one may easily construct the recursive
algorithm
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L

1 —IBP„(e»+ "+'r" '-(e +2J '/—r. + [v-, e ] —cl) e "
1

2W„/r. = IIHv]] P (e»+ +~"" '(e-+ 2J— /r + [~ e ]
—cl) e» ~" ')-

1 —IB

(6)

where 7 indicates that we only retain the part of order n. Notice that the expansion of p and W terminates after a
Gnite number of steps, since the expression

P„(e»+"+&--' (e + 2J— /r„+ [7-, e ]
—c]) e

—» —"—&--~ )

contains only components of grading ( 2
—1) or higher.

The action 8 [tv] is obviously invariant under DS
gauge transformations, as it involves only the gauge-
invariant polynomials W. In addition, the WZW action
8 [g] has, from the start, an invariance under (left) mul-
tiplication of g with an arbitrary holomorphic group ele-
ment. The constraints imposed in the DS reduction also
reduce this additional invariance, namely, to the trans-
formations generated by the DS gauge-invariant polyno-
mials R'. These are called 34 transformations. One may
attempt to lift the restriction to holomorphic parameters
by coupling the R' to an extra external 6eld p. This will
be discussed further in the next section. This same cou-
pling can also be used to great effect to study the induced
W gravity theory itself; see [17—19,16,11]. We therefore
continue with the action 8 = 8 [m] + f p, W. The re-
cursion relations derived above can be used to rewrite it
as follows, making explicit the dependences on the aux-
iliary field and the WZW currents J. Using ur( J) = e~g,
and splitting the WZW action r8 [tU], with help of the
Polyakov-Wiegmann identity [20],

8 [hg] = 8 [h] + 8 [g] — str (h 'cih clgg
' ) ,

1

we obtain

1r8 [t'ai] = K8 [g] + r8 [e~] + str(De ~ . e~ J) .

B.~ transferrnations

In the previous subsection we introduced a constrained
WZW action, where the (DS) gauge invariance could be
used to bring the currents in a highest weight form. Here,
we analyze the ~ transformations themselves.

Infinitesimally the W transformations are of the form
bto = X to where X g g should be determined such
that the highest weight gauge (1) is preserved. This
means that the transformation acts on the highest weight
current R' only, so we demand that

Lb(2W/r) = L(D[2W/r] —E ) I = 0.

Defining, for any current j, the operator I[j ] by

I[j]—= 1-LD[j], (12)

and using the identity 1 —IE = III,~ ——the projec-
tion operator on lowest weight components, the general
solution for X can be written as

I

and (6). Higher order terms of p do not contribute to the
supertrace. In Eq. (10) the DS gauge invariance is still
present, and will have to be fixed eventually. This can
be done in different ways, which allows one to derive all
order expressions for the induced W action; see [16,11].
Note that the kinetic term for the auxiliary Beld v. , added
ad hoc in [ll] to preserve gauge invariance, emerges very
naturally in the present formulation, which is based on
that gauge invariance from the start. We will come back
to the gauge fixing in Sec. IV.

Since p is strictly positively graded, the WZW action
r8 [e~] vanishes identically. The local mixed term sim-
plifies too, and we find that

1

I [2W/~]
with g g kerE

18 = r.8 [g] +

str(pW( J)j
= r.8 [g] +

4vrx
str ([~, e ]o]7.)

str —oe e ]e +]v, e ]))2

Notice that the inverse operator

g,.&o (LD [2W/r])' is well defined since each factor
LD [2W/r] increases the sl(2) grading with at least one
unit, so that the sum, when applied to any current, ter-
minates after a finite number of steps.

Once we have determined the form of the parameter
X, we can derive the g transformation rules for the

str(pW(J) j. (10)

To derive this last result we inserted the explicit expres-
sions for J, pi and p2 that can be read off Rom Eqs. (1)

We denote, for any current j, the covariant derivative as
D[j] = 8 —ad(j). Later we will also use D[A]:—8 —ad(A).
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K 1
hW = IIH—vvD [2W/v]

2 I 2W r (14)

These constraint preserving g transformations are noth-
ing but the R' transformations, which are generated by
the W currents themselves through Dirac brackets [14].
These Dirac brackets are equivalent to the Poisson brack-
ets of the gauge-invariant polynomials discussed above,
defining the classical W algebra.

In the previous section we introduced the action

highest weight currents. They can be encoded in the
matrix equation

classical level, it is in fact a blessing in disguise, since
exactly the same cancellation mechanism turns out to
suKce for the quantum treatment.

III. NONCB. ITICAL ~ STRINC MODELS

In this section, we will lift the obstruction to the ~
invariance of the classical realization by introducing, be-
sides the matter sector, also the Liouville sector. Then,
adding ghosts, we show how this can be used to deduce
the BRST charge of [4] for the combined system.

1S = KS [u)] ~ str(pW). A. The ~ invariant action

It describes a fully constrained WZW model, of which
the highest weight currents W are coupled to chiral W
gravitational [lowest sl(2) weight] fields p. The currents
transform under W transformations as in Eq. (14).

Consider the variation of the action S:

1
b„S = str —Bg. W

The ~ transformations can be gauged if we intro-
duce two WZW models, which we call "matter" (M) and
"gravity" (G), respectively. For convenience we intro-
duce the notation

DM = D [2WM/+M] ~

IM = I [2WM/vM] = 1 —IDM.

+b„M W + MD ]2M/~] — q).2 I2WK,

It can be derived by using

Sx A:8 [g] = str (BX J)
—1

(16)

Later on we will also need the conjugated operator I~,
which is defined by

I~+—:1 —DM L. (20)

All these definitions of course apply, mutatis mutandis,
for the gravitational sector as well.

Our action at this stage is

and the fact that g is of lowest weight.
independent part of the variation (16) reads

The W- ~M+a = &M~ [u)M] + Ka~ [~a]
1

str (p, (WM ~ Wa) ) . (2i)

1 K
(~~~)]lM „= ~« —

M n),
which cannot be canceled by the b„p term. This shows
that, already at the level of the classical realization, we
have to face the central extension terms, which in some
treatments appear only at the quantum level. Although
this forces one to arrange for a cancellation also at this

I

KM+KG =0. (22)

Using this relation, it remains to be checked that the last
term in the resulting variation of the action Eq. (21),

Prom Eq. (18) it is seen that the obstruction to invariance
is lifted if the levels of the matter and gravity sector add
up to zero:

=1 vM ( 1 11
~n~M+a = ~« &n (~M+ ~a)+4 —9'MM+~a)+ M l &Mq —&aq l n)7CX Ia j

is proportional to WM + WG. Indeed, we find that

rM (1 1) 1 1
str p~ +DM —Da ~g = — str p +ad(WM+Wa) —q(I Ia) g+ I+

(23)

(24)

so that SM~G. is invariant under W transformations if we
define

f i
S„p, = 8g —rr,~ ad

I S I

—g
&IM ) I

There is some arbitrariness in this choice. The symbol

indicates that we have chosen an additive M-G
symmetrization of the transformation law for p. Ex-
plicitly, E(M, G) ~M a ——

2 $I" (M, G) + F (G, M) j, and

DM, a = —,'(DM + Da).
The gauge fixing of the action (21) is a nontrivial prob-

lem. It can for instance be checked that the W gauge al-
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gebra in general only closes modulo WM + WG terms.
This will cause higher ghost interaction terms in the
gauge fixed theory. In Sec. IV we will treat the deriva-
tion of these terms in some detail using the formalism of
Batalin and Vilkovisky, which is eminently suited to mas-
ter these complications. At the moment we only present
the lowest order terms explicitly:

transformation of 6 splits into three distincts pieces

~BRs6 - ~M + ~G + ~gh

where the ghost current Rzh is given by

1 1
Wsh = IIHw + ad(b) C

MG
(28)

1
~sr = KNI~ [~NI]+Ka~ [~a]+ str (bc3c)

+more ghosts (26)

str P
~

W~+Wa+ +ad(b) c~a ~I+ I Ma)

On the other hand we know that the BRST charge Q,
when acting on 6, generates the BRST transformation
(27), so Q can easily be constructed once the W currents
are known.

For the case of 343 gravity we evaluate the ghost cur-
rent Wgh explicitly. It contains terms quadratic in the
ghosts only. If we parametrize

B. The BR,ST charge af noncritical ~3 strings

(0,'T. —,'W-. .)
(0 o o

for o. = M, G, gh

(29)
The BRST charge for 343 gravity can be read oA from

the gauge-fixed action (26). Let us explain why this is the
case. The background field p, that was introduced during
the gauge fixing of the ~ symmetry of our model, is
in fact nothing but the antifield 6* for the antighost 6.
But this means that operator that couples to the field
p, is nothing but the BRST variation of 6. The BRST

I

( O ,'b, —

6= ' 0 0 bi-
(o o 'o J'

we find that

I(0 o 0)
c= ci 0 0

c2 ci 0
(3o)

Tgh ———26gBci —86g . ci —36gBc2 —2862 . c2)

2 1 1
Ws, sh = 3628c—i —ob2 . ci — biBc2 (TM —Ta) — -Bbi c2 (Tm —Ta) — bic2 (&TM —&Ta)

3&M

+—(lobi0 c2 + 15Clbi . 0 c2 + 90 bi OC2 + 20 bi . c2) .
12

To compare our result with the currents Tsh and Ws sh that were obtained in [4] we introduce rescaled spin-3 ghosts
62 and c2:

C2 —/KM C2.

To make this rescaling into a canonical operation we also redefine the antifields of the ghosts. It is then very natural
to rescale the background field p3, and the W3 currents as well:

1
Wa —— .W3 (34)

The rescaled ghost current Wz h reads (dropping the primes)

2 1
Ws h = —3620ci —062 ci ——biOC2 (TM —Ta) ——Obi c2 (TM —Ta) ——bic2 (OT~ —OTa)ig 3 3 3

+- - (lobiO C2 + 1506i 0 C2 + 90 6i BC2 + 20 bi C2) .
12 (35)

c ccri
2

(dye —d~) 6 —6y v+6,
v. +h (36)

Now we comment on the transition to quantum theory.
There is a general formula [ll] for arbitrary DS reduc-
tions:

I

where c„;t is the critical value of the central charge for
the W algebra under consideration, d~ and d~ count the
number of bosonic and fermionic generators in the Lie al-
gebra g, and y is the index of embedding of sl(2) in g. The
values of these characteristic numbers can be computed
with simple counting formulas [ll]. For the case at hand,
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the DS reduction of the 34'3 algebra proceeds via the prin-
cipal embedding of sl(2) in sl(3) (so d~ = 8, d~ = 0), and
the sl(3) algebra branches into an sl(2) spin j = 1 and
j = 2 representation. The values c„;t ——100 and y = 4
follow. In the limit of large central charges (which in our
case corresponds to the classical limit) 24r—M = cM, as
is clear from (36). We may write the factor

a simplified algebra. Because the symmetries close only
modulo field equations, it is expedient to use the BV
treatment to take this into account. We will not succeed
in deducing all order (in antifields) expressions for arbi-
trary DS reductions, but at the end we will illustrate the
general procedure by deriving the relevant expression for
the W3 case.

KM 1 5c~ 1

12 90 16 90pMO
(37)

A. The Drinfeld-Sokolov symmetry

Upon quantization this factor, and only this factor, must
be renormalized

1 17P~ —1 . 16
with p~ =

90pMO 90pM 22+ 5cM

The relevant information concerning the Drinfeld-
Sokolov symmetries, which are quite conventional gauge
symmetries, are encoded by adding the antifield-
dependent terms

leading immediately to the nilpotent BRST charge [9,4]

dz 1
QnostcritrR q . ci

l
TM + TG + Tgh

27ri 2 )
1

+c2
l
~s,~ + ~&,& +

2
~s sh I

.

1 K
S, = str — J*—D[2J/r]cDs

7t X 2

1*+—cDsad (cDs) cDs
2

(40)

This may be coinpared with the procedure in [4], where
the same final result was obtained only after adding ad-
ditional terms to a classical charge. The reader will have
noticed that in the present treatment the BRST charge
follows almost automatically from Eq. (28). Once the
classical ghost currents of Eqs. (32) and (35) have been
derived, one can obtain the quantum currents by a sim-
ple renormalization of one factor in &ont of the classical
terms. In this respect the realization of the 143 algebra
via WZW models proves to be superior to the realization
in terms of scalar fields which was used in [4]. In the clas-
sical analysis of [4] the term proportional to KM cM
in (35) was absent, and arose at the quantum level from
counterterms. Clearly, using WZW models one already
has a nonzero central charge at the classical level, so that
the transition to the quantum theory can proceed in a
very gentle way.

IV. C AUC E FIXING

In this section we treat more thoroughly the ques-
tions related to gauge fixing, both for the Drinfeld-
Sokolov symmetry and for the & symmetries. For the DS
symmetry we present a realization of the gauging that,
at the expense of introducing extra Lagrange multipli-
ers, succeeds in closing the algebra of the transforma-
tions. As a result the gauge-fixing procedure simplifies,
and although one could dispense with the full Batalin-
Vilkovisky treatment, we nevertheless phrase it in that
language for uniformity. For the ~ symmetries our treat-
ment does not (at least not automatically) lead to such

where J is given in Eq. (1) and cDs 6 II&og. The ex-
tended action Si,„]; ——S+ S„, with S from Eq. (10), is
a cornerstone of the Batalin-Vilkovisky (BV) treatment.
Gauge invariance is expressed through the classical mas-
ter equation (Si,„];tSi,„t) = 0. The term in the ex-
tended action proportional to cDs expresses the closure
of the DS gauge algebra. The particular form of this cDs
dependent term is typical for non-Abelian gauge theories.

To proceed, we now add a (cohomologically) trivial
system, with the extended action

g„; = ssS [g] —sS [g]+ f str{A[g —g)i

1 K
str —g *D ]gg/s] stss + A*& IAI sDs }7rx 2

(41)
The extra variables introduced here are a Lie algebra val-
ued Lagrange multiplier A, and an extra current J which

' is completely unconstrained. The action is trivial in the
antibracket sense. The addition of this extra trivial sys-
tem allows us to "unconstrain" the currents on which
the DS transformations are acting, achieving in this way
a decoupling of the constraints and the gauge transfor-
mations. This is the basic reason why we succeed in ob-
taining a closed algebra, which, upon elimination of the
trivial systems (by integrating out the Lagrange multi-
pliers and putting their antifields to zero), goes over into
the open algebra computed in [16,11]. This we now show.
We split the full Lagrange multiplier A and its antifield
into two parts:

A = ADS + Aident With ADS e II&Og)

Aident ~ II(Ogy

A review of the Batalin-Vilkovisky formalism can be found
in [21].

DS + ident h DS ~ II&Og~

Ad, „, e II g.

The Lagrange multipliers in ADs are precisely the ones
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that impose the Drinfeld-Sokolov constraints, bringing
the current J into the J form. We keep these Lagrange
multipliers manifest in the action. The multipliers in
A;d, „t identify the free components J— which are con-

tained in J, with the corresponding components in J.
We will implement this identification, by integrating ex-
plicitly over A;d, „t and over J— . To this end we rewrite
the extended action S + S, + St„as

S, ,„,= rS [g]+ 4ax str([7, e ]De-) + str pR J

stI ADs + Aident J —ad ADs + Ailment cDs —J

K K 1 *
ADScDS —J D 2J K cDS J D 2J K cDS + —cDSad cDS cDS

2 2 2
(43)

Next we introduce the shifted current

(&Ds) (44)

and now eliminate the A;g, „t and J— GeMs, with their corresponding antiGelds. This leads to the extended action

S,„, = ~S [g]+
4vrx

str ([r, e ]]9r) + str (pW(J —,r) )

-~p K K
str ADs J ——e ——~, e ADScDs

2 2

K 1*
CDS —7 II+y/2 cDS + —cDSad cDS cDS

2 2

str bDSOCDS + str plV J—,7.

K K
+Any J' ——e ——[v;e ]) l,2 2

(46)

Notice that this action may contain terms with multiple
antiGelds ADs, due to the appearance of shifted currents
in the gauge-invariant polynomials W(J—,r). If this
happens, this is a manifestation of the nonclosure of the
gauge algebra, that belongs to the DS invariant classical
action S,i ——S,„i[A* = J = c* = r* = 0]. It is pre-
cisely this classical action S,i that was used in [16] in the
case of Ws gravity, and in [ll] in the case of SO(N) su-

pergravities, as a starting point for a direct construction
of the BV-extended action. The existence of nonclosure
terms made this construction rather cumbersome, but as
we showed here, this can be avoided by introducing a re-
dundant set of Lagrange multipliers A = ADs + A;g~„t,
which keeps the gauge algebra closed. The BV-extended
action can be constructed easily in this extended space
of variables, and be reduced afterward.

The gauge fixing of the DS symmetry in the extended
action (45) can. now be simply achieved by putting ADs =
ADS ——6DS and ADS = —bDS~ a transformation of vari-
ables canonical in the antibracket. This is one of the
gauges used in [ll]. If we keep the dependence on ADs,
so that the reader may still transit to the other gauge
used in [11] if (s)he wants, we find

S~F = KS [g]+ str([r, e ]]9r)
4mx

where, apart from the kinetic term, the ghost dependence
is through the shifted current

J = J + ad (bDs) cDs.

It should be remarked that the BRST transformation
rules of the Gelds in the gauge-Gxed action do not depend
on the sources p. Prom this we learn that the DS invari-
ant polynomials computed from Eq. (6) have become
BAST invariant polynomials through the replacement of
the currents J— by the shifted J— .

B. The ~ gauge symmetry

We propose to start from an unconstrained system of
coupled WZW models, for which the extended action can
be obtained more easily. Using only canonical methods
(with respect to the antibracket) we then implement the
various constraints, necessary to bring the WZW models
in the highest weight form.

The starting point is
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1
So ——KMS [gM] + KGS [gG] + str(A (J~+ JG))

str A'D A C ——C*ad C C+ JMD 2JM K C+ J&D 2J~ K C
2 2 2

(48)

where all the fields take values in the entire Lie algebra,
and the covariant derivatives involve at the moment un-
constrained currents JM and J~. One may notice that we
are treating the currents J as basic variables, rather than
the group elements g: this simplifies the calculations, but
should not inQuence the results. One can read ofF the
gauge (or BRST) transformations &om the terms with
starred fields. The gauge invariance (i.e. , the BV master
equation) can be checked explicitly if KM+Kc; = 0. It can
also be seen by parametrizing A = 6 Oh, and rewriting
the first line, with the help of the Polyakov-Wiegmann
formula Eq. (8), as the sum of two (separately invari-
ant) WZW actions KMS [hgM]+KGS [hgG.]: the condi-
tion KM + Kc; = 0 eliminates the additional 8 [li] terms.
The gauge field A acts as a Lagrange multiplier impos-
ing J~ + J~ —ad(A*)C = 0. The antifield dependence
of this constraint can be absorbed into a redefinition of
the currents JM, JG. . We implement this redefinition by
performing the canonical transformation generated by

Il = 1 —rtr —(Jt'r + JP ) art (A'*) t ) .
2

Dropping the primes, it leads to the extended action

Si ——KMS [hM] + Kt-8 [h~]
1

str(A (J~+ JG))

1 1
str A' t)C ——t. 'att (t") t )AX 2

str JMDJ..C + J~DJ..C, 50

where the covariant derivative Dg „= D[JM/KM +
J~/K~] involves a current that averages over matter and
gravitational sectors, and the group elements h, for
n 6 (M, G), are defined through

2 2
)9h h = J + —ad(A*)C.

The next step is to split the gauge field A into pieces,
»y A = IIL~A+ p = A+ p, and accordingly A'
IIH~A* + p' = A + p'. It is clear that the A field
imposes the condition IIHw (J~ + Jt-) = 0. To achieve
our aim of constraining both currents in the Drinfeld-
Sokolov way, we need an extra condition. The gauge
&eedom allows us to impose such a condition. We choose
to impose it in a M ~ G symmetric way: the condition

IIH~ + ~ —e = 0 precisely brings the currents
KM K~

JM and JG. in the desired highest weight form. In the
Batalin-Vilkovisky scheme we may implement that con-
straint by first adding the following trivial system to the
action:

1S„;„= str(p') ),

where A, p 6 IIz,~g. Then we perform the canonical
transformation with the generator

F= ~+str pllHW
~

+
(KM KG )

The resulting extended action reads

1
S2 ——KMS [hM] + K~S [h~] + str (p (VM + Vt-))

str A + p,
* BC ——C*ad C C —AIIH~ JM+ JG

KM KG. JG
str JMDz„C+ J&DJ C+ pDJ „C—AIIHw

~
+ e —+ p

2 - 2 (KM KG j

where the currents V are the highest weight components of the J 's.
(A, At IIHw JM, IIHw JG ), and find that

Now we eliminate the variables

By definition II&w ——1 —HLw.
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1
~3 = K'M~ [fM] + +G~ [fC'] + str(p (VM + Va) j

str p*BC ——C*ad C C+ p Dv..—E + ad p' C

str KMVM Dv —E +ad p* CM~ (55)

The group elements f are given by

2 2 2
Bf f ' = (e —p*) + V + —ad(p*)C. (56)

The fields (p, IILwC) also form a "trivial" pair of variables, albeit in a more subtle way. Indeed, the equation of
motion of p evaluated in the point p* = 0 is equivalent to Eq. (11). The structure of this equation is such that all
the IIg~C fields can be exactly solved for, yielding

1Cm
vav

c) (57)

where c denotes the lowest weight part of the original ghost 6eld C and Iv is de6ned in terms of the average current
as Iv ——1 —LDv . In doing so we find the action

1[. ]+-~ [. )+..
1 KM ~ 1 &G' ~ 1

str VM Dv c + — VGDv c
'lr X Iv. 2 "

~v.„

1 1 . ( 1 l 1
ctr(y. (Vcr+ Va)) — etr p'Bc ——c*ad

~

c
~

c(
jrx &Iv.„)Iv.„

(58)

K~ 1 * 1
c)v v ' = e + V + —ad(p*)-

2 2 2 Iv.„
(59)

The last term in Eq. (59) will be called the ghost current
J h. We may replace p,

* by (minus) the antighost 6, and
put p equal to a background value. The action (58) then
becomes the gauge-fixed action.

This expression, albeit not very transparant, is valid to
all orders in the ghost fields. The ghost field dependence
is partly explicit, but also implicit in the WZW function-
als, where it enters through the definition of the group
elements v in Eq. (59). We now investigate how to make
this dependence more explicit. Although at present we
cannot give the end result in general, the following con-
stitutes a constructive procedure. We will explicitize the
ghost dependence in a specific case, namely, the reduc-
tion of sl(3) to the A'3 algebra, which also served as an
example in Sec. IIIB.

The first step is to disentangle the dependence in the
WZW actions. To this end, in the same spirit as in
Sec. II A, we factorize v = e ~ m, where m is such
that the current "~ Bm m is in the highest weight form
"2 e + W . To obtain this form, we follow the same
method as in Sec. II A. Note however that the right-hand
side of Eq. (59) is not restricted to non-negative eo grad-
ing, due to the ghost contribution. It is not obvious &om
the group property that such a heighest weight gauge can

I

+(o)

g =exp p{ )+ . +p"
„(p(n) (n)

I'+

L, X("),

2
IIHw X~" )

Jgh I
(g'"') '

K~

In these expressions, the derivatives are covariant deriva-
tives, with V (either VM or VL, ) as gauge fields. These
derivatives are also used to construct I via Eq. (12).
Finally, 7 ( ) now denotes that only terms with products
of 2n ghost fields are kept. For concreteness, we list the
erst few terms:

I

be reached. Proceeding nevertheless in the same man-

ner, weputp = P&ip and W = P &oW(~) (~)

where the expansion now is not in the full current (as in
Sec. II A), but in the deviation from the highest weight
form, namely, the ghost current in Eq. (59). Conse-
quently, the successive terms in this expansion will be
sums of products of two, four, six, etcc) ghost fields. In
addition we impose p E IIL~g, which guarantees that
LE p = p . Now an algorithm can be given to con-
struct p and W iteratively. The recursive construction
is

1R' = V + IIH~ Jgh-y+ g

2 1 2 1 1 ) 1
L + Jgi —,L +ad

l
~gh+ IIHw + Jg~ l

L + Jgh+I+ g ) f+ g

1 l 1
I++ad

l Jgh+ IIHw + Jgh.
~

L + Jgi +f+ ' ) r+ '
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Explicitly, for Ws, we find the following relations in the "matter" sector. We write down the relations between
the highest weight fields T and Ws before (V) and after (W) the transformation with p with the (conventional)
normalizations as in Eq. (29):

Tm(W) = TM (V) + (2 bi Dci + 3 b2 clc2 + Dbi ci + 2 Db2 c2)/2 + 5 bi elhi c2 Bc2/48 r M,

W3 M (W) —W3 M(V) —f—Bb2 ci/2 —3 b2 Bci/2 5 bi 8 c2/12 + 5 Bbi 8 cz/8 + 3 8 bi Dc2/8 + 8 bi c2/12
T~—(V) bi Oc2/6 r~ —TG (V) Bbi c2/16 rG —TM (V) bi Bc2/2 r M —13T~ (V) Bbi c2/48 rM

—5 OT~ (V) bi cz/48 rc~ —11 BTM (V) bi c2/48 KM ) + (—24 bi b2 c2 0 cz —8 bi Ob2 cz Oc2 —24 Bbi bq c2 Bc2

+8 bl cubi cl clc2 bi Obi cocci c2 + 3 bi cl'bi ci c.k/48 KM. (62)

For the "Liouville" sector, the same relations obtain, mu-
tatis mutandis. We do not write down the corresponding
expansions for p . We now construct the gauge-fixed
action explicitly. The Polyakov-Wiegmann formula is
used repeatedly to extract the ghost dependence &om
the WZW functionals. It turns out that all ghost con-
tributions vanish, for a variety of reasons: partial inte-
gration, highest weight properties, Grassmann algebra,
and KM + KG ——0. The total currents VM + V~ in Eq.
(58) can be obtained by inverting the relations Eqs. (62)
above. Due to the presence of the four-ghost terms, this
is actually simpler for the sum than for VM and VG sep-
arately, by virtue of the relation ~M + KG ——0 which
causes the four-ghost terms to cancel. The result is that
V~ + V~ ——W~ + W~ + Wgh, with the ghost contribu-
tions given by Eq. (32). Thus we fulfilled our promise in
Sec. III. We emphasize that the Inethod used here was
completely constructive. Finally, the terms of Eq. (58)
involving antifields are immaterial for the gauge-fixed ac-
tion (they determine the final constraint algebra), and
need not be discussed here.

Having demonstrated the method, let us now comment
on the general situation. First, the gauge-fixed action
that is implied by Eq. (58) has all the suitable variables
and symmetries. The dependence on the ghost fields, as
emphasized, is only given implicitly through the shifted
currents of Eq. (59), making the ghost Lagrangian par-
ticularly untransparant. The strategy applied above for
Ws may be developed for the general case also, but a
couple of possible obstructions to this straightforward
line should be mentioned. First, whereas in Sec. IIA
the finiteness of the iteration in Eq. (6) was guaranteed,
for Eq. (62) we do not have such a proof, although we do
believe that there is no problem in this respect. In partic-
ular, for reductions of Lie algebras (not superalgebras) all
ghosts are fermionic, and the finiteness of the expansions
of p and W follows &om dimensional arguments. Per-
haps more serious is the fact that, in the general case,
we have no reason to expect that the WZW function-
als with argument e~ to will always simplify as for Ws
above. In general, this could entail a nonstandard ghost
Lagrangian, and quite possibly a further transformation

may be needed, of variables from the set (V, ghosts}
to (W (V, ghosts), ghosts(V, ghosts)) that mixes the
ghosts with the matter and gravity currents. This trans-
formation should be such that in the end the redefined
ghost fields decouple from the WZW models. Also, the
inversion of the relations expressing the W curents in
terms of the V currents may be considerably more in-
volved in general. We leave the treatment of these com-
plications to the future.

V. CONCLUSIONS

To recapitulate, we realized any ~ symmetry that is
obtained from a Drinfeld-Sokolov reduction, for noncrit-
ical values of the central extension, in a generic way by
coupling a WZW model representing the matter fields
to a WZW model representing the (generalized) gravita-
tional degrees of &eedom. The constrained classical mod-
els give rise to two separate A' algebra realizations, and
the constraints entail the presence of ghosts. A condition
for W invariance of the full theory is always the vanishing
of the sum of the central charges. We showed (using the
field-antifield forinalism) how to derive the BRST charge,
always on the classical level. We showed explicitly the
workability of our scheme by applyin. g it to Ws. Since
the central extensions are already present at the classical
level, the eventual transition to the quantum level was
shown to be rather trivial, involving (in that case) only
the renormalization of a single coe%cient, without addi-
tional terms. This suggests that our method may be used
to advantage in all these cases where the transition to the
quantum algebras seems impossible or problematic. We
hope to come back to these questions in the future.
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