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Dynamics of vortex and monopole production by quench-induced phase separation
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We examine the nonequilibrium dynamics of defect formation for weakly coupled global O(N)
theories possessing vortices (strings) and monopoles. It is seen that, as domains form and grow,
defects are trapped on their boundaries at a density of about one defect per coherence area in the
case of strings, or one per coherence volume in the case of monopoles.
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I. INTRODUCTION

The formation of topological defects during symmetry-
breaking phase transitions is generic to many physical
systems. In particular we cite the vortices and monopoles
of superfluid He and He and the vortices (Hux tubes) of
high- and low-T superconductors. Similar defects, cos-
mic strings, or monopoles most likely appeared in the
early Universe at the grand-unified-theory- (GUT) scale
phase transition. All of these systems are described by
some form of quantum field theory and, due to the phase
transition, their dynamics is intrinsically nonequilibrium.
They therefore provide a good means to test nonequilib-
rium field theory experimentally over a wide range of
energies.

Roughly, the dynamics of defect formation proceeds as
follows [1]. From some initial state, usually not too far
from thermal equilibrium, some change in the bulk prop-
erties of the system, such as pressure or volume, induces a
phase transition. During this transition, the scalar fields
which describe the order parameter fall from the false
vacuum into the true vacuum, choosing a point on the
vacuum manifold at each point in space, subject to the
constraint that they must be continuous and single val-
ued. We shall limit ourselves to continuous or weakly
first order transitions, for which this collapse to the true
vacuum occurs by spinodal decomposition or phase sepa-
ration. The resulting field configuration is one of domains
within each of which the scalar fields have relaxed to a
constant vacuum value.

For a theory permitting defects, it will sometimes hap-
pen that the requirements of continuity and single val-
uedness force the fields to remain in the false vacuum
between some of the domains. For example, in the case
of a single complex scalar field producing vortices, the
phase of the field may change by an integer multiple of
2' on going round a loop in space. This requires at least
one zero of the field within the loop, which signifies the
presence of a region of unbroken phase. Each zero has
topological stability and characterizes a vortex passing
through the loop. When the phase transition is complete
and there is no longer sufIicient thermal energy available
for the field to fIuctuate into the false vacuum, the topo-
logical defects are frozen into the field. From then on, the

defect density alters almost entirely by interactions of de-
fects amongst themselves, rather than by fIuctuations in
the fields. See for example [2].

The major question then, is what fixes the initial defect
density and the defect correlations? Only then can the
subsequent evolution of defect networks be determined
with any accuracy. It was first argued [1] that topological
defects should be frozen in at the Ginzburg temperature
T~ [3], the temperature above which there is sufficient
thermal energy available for the field to fIuctuate into the
false vacuum without cost [4]. If so, the defect number
would be strongly Huctuating above the Ginzburg tem-
perature but frozen in below it. In this case, the relevant
scale for the initial defect density would be the coherence
length ((T~) of the Higgs field, or fields, at the Ginzburg
temperature. For example, in vortex production for the
U(l) theory mentioned above, the initial vortex density,
that is the number of vortices passing through unit area,
would be r/( (T~), where v is a constant of order unity.
Similarly, in monopole production the monopole density
would be expected to be r/( (TG), for similar r.. There-
after, defect forces are assumed to take over.

Recently, however, more compelling pictures of the way
in which the initial density of topological defects is fixed
have been proposed. While the mechanism outlined ini-
tially is almost certainly correct, in general it is unlikely
that the Ginzburg temperature is relevant to anything
other than a thermally produced population of defects.
This is most obviously so in the experiments using liq-
uid He where the final temperature after the quench is
greater than the Ginzburg temperature. For the cases
of greater interest to us, for example, an expanding Uni-
verse, we expect that, as the system is driven from some
initial thermal state towards the phase transition, there
will come a point when the rate at which the transition
is driven is too fast for the evolution of the field to keep
up [5]. The transition may now be viewed as a quench
and it is no longer clear that either temperature or free
energy means anything at all. The current view [5] is
that the initial density of topological defects is fixed at
this stage since the density of zeros of the field, which will
eventually become defects, evolves so slowly in compari-
son to the rate of the quench. Thus, the initial density of
defects is held to be approximately the density of zeros
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of the scalar field when it first goes out of equilibrium.
Until the time when the scalar field is actually falling

d.own the potential hill, one can always quench suFi-
ciently fast that this is a good approximation. It is not
clear, however, that the approximation will always be
valid during the fall from the false to the true vacuum.
In the following, we study the evolution of the defect
d.ensity during the early stages of spinodal decomposi-
tion, for a weakly coupled. theory. The result is that, for
su%ciently weak coupling, during the early stages of the
fall into the true vacuum the defect network scales and
the d.efect density d.ecreases. In this case, the approxima-
tion is not valid, although it may be so for more strongly
coupled theories.

II. THE MADEL

The t dependence of m2(t) and A(t) is assumed given and
O(N) indices are summed over.

We wish to calculate the evolution of the defect d.ensity
during the fall from the false vacuum to the true vacuum
after a rapid quench Rom an initial thermal state. The
simplest assumption, made here, is that the symmetry
breaking occurs at time t = to, with the sign of m (t)
changing from positive to negative at tp. Further, after
some short period At = t —to ) 0, m (t) and A(t) have
relaxed to their final values, denoted by m = —p and A,
respectively. The field begins to respond to the symmetry
breaking at t = tp but we assume that its response time
is greater than At, again ignoring any mode dependence.

To follow the evolution of the defect density during
the fall oK the hill involves two problems. The Grst is to
follow the evolution of the quantum field and the second
is how to count the defects. We take these in turn.

In the following we consider a quench &om an initially
thermal state in a class of theories where the broken and
unbroken symmetries are global, thereby guaranteeing
that they pass through a second order transition. (Had
they passed through a strongly Grst order transition, the
mechanism for the transition, bubble nucleation, would
lead to different consequences from those outlined below,
although it might then be a good approximation to say
that the defect density is frozen in when the field first
goes out of thermal equilibrium. ) We assume that the
change of symmetry is suKciently rapid that the fields
are unable to respond immediately, but evolve by means
of phase separation or spinodal decomposition and do-
main formation.

We shall consider the simplest theory, one of N mas-
sive relativistic scalar fields P, where a = 1, . . . , N, in D
spatial dimensions, transforming as the fundamental rep-
resentation of a globally O(N) invariant theory. Changes
in the environment cause the symmetry to be broken to
O(N —1) (i.e., as given by the generalised "wine-bottle"
potential) leading to a theory of one massive Higgs boson
and N —1 massless Gold stone bosons, with the vacuum
manifold S . Since the nth homotopy group II~ of the
n sphere is II (S ) = Z, the group of integers, the theory
possesses global monopoles if N = D and global strings if
N = D —1. Otherwise the theory does not permit stable
defects. We are primarily interested in D = 3 dimen-
sions, for which the O(3) theory possesses monopoles,
and the O(2) theory possesses strings.

The transition is realized by the changing environment
inducing an explicit time dependence in the Geld param-
eters. Although we have the early Universe in mind, we
remain as simple as possible, in flat space-time with the
P-field action:

However, the vortex production in the D = 2 Kosterlitz-
Thouless transition has some interest, although we shall not
pursue it here.

III. EVOLUTION OF THE QUANTUM FIELD

4 (~f )=c'f
DP exp(~s]P])',

in which 17g = Q i 17/ and spatial labels have been
suppressed. It follows that pir [C f] can be written in the
closed-time-path form

@g{ty)=4f
&0+&4—

+{&o)=+o

x exp i~ S[P+] —S[P ] ~

Instead of separately integrating P~ along the time paths
tp & t & tf, the integral can be interpreted as time or-
dering of a single field P along the closed path C+ C
where P = P+ on C+ and P = P on C . The two-field
notation is misleading in that it suggests that the P+
and P fields are decoupled. That this is not so follows
immediately from the fact that P~(tt) = P (tf). See
Fig. 1.

It is necessary to keep this in mind. when we extend the
contour from tf to t = oo. Either P+ or P is an equally

During a symmetry-breaking phase transition, the dy-
namics of the quantum field is intrinsically nonequilib-
rium. The normal techniques of equilibrium thermal field
theory are therefore inapplicable. Out of equilibrium, one
typically proceeds using a functional Schrodinger equa-
tion or using the closed time path formalism of Mahan-
thappa, Schwinger, and Keldysh [6—8]. Here, we employ
the latter, following closely the work of Boyanovsky, de
Vega and co-authors [9,10].

Take t = tp as our starting time. Suppose that, at
this time, the system is in a pure state, in which the
measurement of P would give 4o. That is,

P(to, ~)l@o to) = I]'o(x)l@o, to).

The probability pir [4y] that, at time ty ) to, the mea-
surement of P will give the value 4f is pir [C'f] = ~cto~
where



DYNAMICS OF VORTEX AND MONOPOLE PRODUCTION BY. . . 6951
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FIG. 1. The closed time path contour C+ C

g (to) =40
'Dp~Vp b[p+(ty) —C f]

x exp i
l S[@+]—S[P ] l

good candidate for the physical field, but we choose P+.
See Fig. 2.

With this choice and suitable normalization, pt be-
comes

At this stage, we have to begin to make approxima-
tions. We shall find that analytic calculations can be
performed only if pi& [@f] is Gaussian. Although there is
no compelling reason why this should be exactly so, it
provides a natural first guess. So that p&z[@f] shall be
Gaussian, it is necessary to take Pi, [4) to be Gaussian
also, with zero mean. All the cases that we might wish
to consider are encompassed in the assumption that 4 is
Boltzmann distributed at time to at an efI'ective temper-
ature of Tp ——Pp according to a quadratic Hamiltonian
IIp[4]. That is,

&Is ~xo(~+a(AI),
3 (to) =+=@3(to —po)

for a corresponding action Sp [$3], in which $3 is taken to
be periodic in imaginary time with period Pp. We take
Sp[$3] to be quadratic in the O(N) vector $3 as

&i [c'tl = Ver, .[e) Sy+Vy b[y+(tq)
y+(t, )=c

—@el ~xr (~l ~II+1 —~(4'-I
I

where b'[P+(t) —@f) is a delta functional, imposing the
constraint P+(t, x) = 4f (x) for each x.

The choice of a pure state at time to is too simple to
be of any use. The one Axed condition is that we begin
in a symmetric state with (P) = 0 at time t = tp. Oth-
erwise, our ignorance is parametrized in the probability
distribution that at time tp P(tp, x) = 4?(x). If we allow
for an initial probability distribution Pio [4] then p&z [4f]
is generalized to

Sp[43] = d +'x —(0„$3 )(8"$3 ) ——mpp3
2 " 2

We stress that mp and Pp parametrize our uncertainty in
the initial conditions. The choice Pp —+ oo corresponds to
choosing the @&[4] to be determined by the ground state
functional of Ho, for example. For the sake of argument
we take Tp ——Pp to be a temperature higher than the
transition temperature T . Whatever the eKect is to give
an action S3[P] in which we are in thermal equilibrium
for t ( tp during which period the mass m(t) takes the
constant value mo and, by virtue of choosing a Gaussian
initial distribution, A(t) = 0 for t ( tp.

We now have the explicit form for p, & [@t]

pi, [c'y] =
3 (tp) =4=$3 (to —ipo)

Z)y ei So [4'sj

+(to)=@

&os&o+&0 ~xo(~~o(A(+I(~IN+I —e(W-I)) ~II+('r) c'rl

where the boundary condition R is p~ (tp) = $3 (tp)
Q3 (tp —iPp) . This can be written as the time ordering of
a single Geld:

~[&+(tf ) —@f]

I

a third imaginary leg, where P takes the values P+, P
and $3 on C+, C, and C3, respectively, for which Sc is
S[P+], S[g ], and Sp[$3]. See Fig. 3.

We stress again that although Sp[P] may look like the

Mm 7

along the contour C = C+ C C3, extended to include tp

%.'e(r)

Ep

%.'e(r)

tp —i p

FIG. 2. Extending the integration contour. FIG. 3. A third imaginary leg.
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quadratic part of S[P], its role is solely to encode the ini-
tial distribution of conGgurations 4 and need have noth-
ing to do with the physical action. Henceforth we drop
the suffix f on 4y and take the origin in time Rom which
the evolution begins as to ——0.

We perform one final maneuver with pq[4] before re-
sorting to further approximation. This will enable us
to avoid a nominally ill-deBned inversion of a two-point
function later on, a consequence of the seeming indepen-
dence of P+ and P mentioned earlier. Consider the
generating functional

where jjP is shorthand notation for

omitting spatial arguments. Then introducing o. (x)
where a = 1, . . . , N, we Bnd

D4 ex'pIiS't:[4]) expI~' d~za [x)[gt~[t~, x) —4[x)] )
Bn exp —i o, 4 Z o. , 0, 0,

where n is the source n(t, x) = o.'(x)8'(t —tf).
'DP, 'Dn denotes g, 'Do.

We have said that analytic progress can only be made
insofar as pi[4] is itself Gaussian, requiring in turn that
Z[n, 0, 0] be Gaussian in the source n. In order to treat
the fall from the false into the true vacuum, at best this
means adopting a self-consistent or variational approach
i.e. , a Hartree approximation or a large K expansion.
However, if we limit ourselves to small times t then pal[4]
is genuinely Gaussian since the Geld has not yet felt the
upturn of the potential. That is, we may treat the poten-
tial as an inverted parabola until the field begins to probe
beyond the spinodal point. The length of time for which
it is a good approximation to ignore the upturn of the
potential is greatest for weakly coupled theories which,
for the sake of calculation we assume, but physically, we
expect that if the defect counting approximation is going
to fail, then it will do so in the early part of the fall down
the hill.

IV. INITIAL CONDITIONS

The onset of the phase transition at time t = 0 is
characterized. by the instabilities of long wavelength fluc-
tuations permitting the growth of correlations. Although
the initial value of (P) over any volume is zero, the result-
ing phase separation or spinodal decomposition will lead
to domains of constant (P) whose boundaries will evolve
so that ultimately, the average value of P in some finite
volume will be nonzero. That is, the relativistic system
has a nonconserved order parameter. In this sense, the
model considered here is similar to those describing the
A transition in liquid helium or transitions in supercon-
ductors.

In the latter case, given the relationship between N and
spatial dimension D = N, this corresponds to a large-
dimension expansion.

Consider small amplitude fluctuations of P at the
top of the parabolic potential hill described by V(P) =
2m (t)P . At t ( 0, m2(t) ) 0 and, for t ) 0, m2(t) (
0. However, by t At, m (t) and A have achieved their
Bnal values, namely —p and A. Long wavelength fluc-
tuations, for which ~k~ ( —m (t), begin to grow expo-
nentially. If their growth rate I'I, = g—m2(t) —~k~2 is
much slower than the rate of change of the environment
which is causing the quench, then those long wavelength
modes are unable to track the quench. For the case in
point, this requires mAt (( 1. We take this to be so.
To exemplify the growth of domains and the attendant
dispersal of defects, it is suKcient to take the idealized
case, Lt = 0, in which the change of parameters at t = 0
is instantaneous. That is, m (t) satisfies

2( )
mo ) 0 if t ( 0,
—p (0 if')0)

where, for t & 0, the Beld is in thermal equilibrium at
inverse temperature Po. p is a physical parameter, but
mo is not. A concrete choice of mo is to take it as the
effective scalar field mass at temperature To ——Po . That
is, in the mean-field approximation we take

where To is greater than the transition temperature T,
given by T, = 12@ /(%+2) A in the same approximation.
As will be seen, results are insensitive to mo, provided
it is comparable to p. With the parametrization above,
this would be true unless we quenched from very close
to the transition, and we do not consider this possibility
here. As for A(t), for t ( 0, it has already been set to
zero, so that pq, [4] be Gaussian. However, for small t,
when the amplitude of the Beld fluctuations is small, the
Beld has yet to experience the upturn of the potential
and we can effectively take A(t) = 0 then as well when
determining the Beld evolution. At best, this can be valid
until the exponential growth ~P~

—pe~ in the amplitude
reaches the point of inflection ~P, ~

= p, /i/3A, that is
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pt ln(1/A). The smaller the coupling, the longer this
approximation is valid. As noted earlier, it should be
possible to perform more sophisticated calculations with
the aim of evolving the defect density right through the
transition. For our present purposes, however, the small
time or Gaussian approximation is adequate.

There is one final concern. A necessary condition for
this rolling down of the field to be valid is that the initial
field distribution at t & 0 should not overhang the point
of in8ection. That is, the initial thermal field Huctuations
about P = 0 should be small enough that the field does
not initially feel the non-Gaussian nature of the potential
and there is no significant probability that the field is
already in the true vacuum.

This is not difEcult to check. In equilibrium, the prob-
ability pq [4t], now independent of t, is calculable as

p[4] = Ne-~"~ j.

N is a normalization factor and H permits the expansion
in p0ma [4]:

2

H[4] = S0[4] ——p0 d 2
( )

+ O(pam0).~S4q
With calculational simplicity in mind we restrict our-
selves to high initial temperatures (Pam0 « 1) for which
it is sufhcient to retain only the first term.

As always, fluctuations are defined with respect to
some length scale. At time t & 0 we see from the defini-
tion of S0 that the fields 4 are correlated over a distance
(0 ——m0 . Let v be any correlation volume v = (0. The
fields 4 coarse grained to this volume are defined by

Q(N + 2)/6

automatically satisfied by the small A that we need for
rolling to be relevant.

We note in passing that a similar concern would have
arisen had the transition been first order, where the con-
dition

is necessary for bubble nucleation to dominate over ther-
mal Auctuations as the mechanism for the transition dy-
namics. This has been discussed in detail for the elec-
troweak transition in the standard model [ll]. The fact
that A is such a small number makes thermal Quctuations
irrelevant in this case.

Finally, although we are happy to remain with the
Gaussian approxixnation in this preliminary analysis, it
is possible to be more general. Using Chebycheff inequal-
ities, even if S0[4'] is not quadratic, it is not difficult to
show [4] that

p(C ) 4) & N exp[ —PpvV„(4)],

where V„(4) is the effective potential coarse grained to
volume v, and we have taken C ) 0 for convenience.
This is not the usual efFective potential V,yy(4), which is
recovered from V„(4) at high T0 only in the v -+ oo limit.
For the case of S0 quadratic the inequality becomes an
equality and we recover the previous result, which can be
rewritten as

V„(4) = 4
I4

ev
d x@ (x) for correlation volumes, ten times steeper than the clas-

sical potential.
(where v denotes both the position of the correlation vol-
ume and its magnitude).

The probability p„(4) that 4„=4 can be written as V. COUNTING THE DEFECT DENSITY

p„(C) = N exp[ —4'/2(A„4)'],

where (A„4) is the coarse-grained, two-point function

(4 „4b„) = 8 b(D„4)

defined with respect to So[4]. For the quadratic S0[4]
chosen here it is straightforward to show [4] that, for
V =

)

(A„C) = Am0T0,

where A 10 (depending slightly on the geometry of
v).

The condition that there be no overhang is thus

(A„C)' « p,'„.
There is no difhculty in satisfying this for small coupling.
For example, with the parametrization of m0 given ear-
lier, let us suppose that To ——2T, so that m0 ——p. Then
the condition for no overhang for correlation-volume Buc-
tuations is

Given a Gaussian pal[4], the probability that the mea-
surement of the field P(t, x) = (Pi, g2, . . . , Piv) would
yield the result 4'(x) = (4i, 42, . . . , 4~), the defect den-
sity can be calculated quite easily. Let us write the
Gaussian distribution in the field in the form

pi[4] = JVexp~ ——— d xd y
D I

2

x4 (x)K b(x —y;t)@b(y) ~,

with K b = b bK and A a normalization. In this we fol-
low Halperin [12], whose work on defect counting in ther-
mal equilibrium will be adapted to our circumstances.

For weakly coupled theories we have argued that, for
short times after t0 at least, a Gaussian p&[4] will occur.
If this is taken for granted it is relatively straightfor-
ward to calculate the number density of defects. Post-
poning the calculation of K until then, we quote those of
Halperin's results that are relevant to us.

Suppose that the O(N) vector field P(t, x) takes the
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particular value 4(x). We count the vortices by identify-
ing them with its zeros. The only way for a zero to occur
with significant probability is at the center of a topolog-
ical defect so, but for a set of measure zero, aH zeros are
topological defects. This will be clariBed later.

Consider the O(D) theory in D spatial dimensions,
with global monopoles. Although less relevant than
strings for the early Universe they are slightly easier to
perform calculations for. Almost everywhere, monopoles
occur at the zeros of 4'(x), labeled x.;, i = 1, 2, . . ., at
which the orientation dly(x)/~O(x)

~

is ill defined. A topo-
logical winding number n; = +1 can be associated with
each zero I; by the rule

n; = sgndet(t9 4s)

Monopoles with higher winding number are understood
as multiple zeros of 4'(x) at which the n; are additive.
The net Inonopole density is then given by

p„.»(x) = ) n; h(x —x;).

The volume integral of this gives the number of
monopoles minus the number of antimonopoles. The
correlations of p„q give us information on monopole-
(anti)monopole correlations but, in the First instance, we
are interested in the cruder grand totals. The quantity
of greater relevance to us is the total monopole density

p(x) = ) ~n;~b(x —x;) =- ) 8(x —x.;),

where the triangular brackets denote averaging with re-
spect to p»[4t]. That is,

(F[4]), = jD@P'[O]pe[d],

with p»[4] normalized so that I 174'p»[4b] = 1. The trans-
lational invariance of the Gaussian kernel of the proba-
bihlty density ensures that p(t) is independent of x.

In terms of the fields 4b, vanishing at x;, p (t) can be
reexpressed as

~-(t) = (~ [4'.(x)) 1«t [~-4'~(x))
I

)».

The second term in the angular brackets is just the Ja-
cobian of the transformation from x to 4t(x), explicable
from the form of )()(x) above. Similarly, although we have
less need for it, the net monopole density at any time is

( (t)) = (~ [4'( )) d t[~ 4' ( )]) .

Since field zeros that do not correspond to defects have
det[(9~»Iyb(x)] = 0, since otherwise n; = +1 from above, it
is apparent that only those zeros corresponding to defects
are being counted.

It follows Rom the Gaussian form of the probability
density that the 4' are individually and independently
Gaussian distributed with zero mean, as

(4 (x) 4», (x)), = 8», W(~x —yi;t),

where W(~x —y~; t) = K (x —y; t). So also are the First
derivatives of the Beld 0 Cb, which are independent of
the C field,

whose volume integral gives the total number of
monopoles plus antimonopoles in the volume of integra-
tion.

Now consider an ensemble of systems in which the
Fields 4t are distributed according to p»[4'] at time t.
Then, on average, the total monopole density (with sufFix
m for mono@ales) is

(O.(x)O 4»(y))» = 0,
due to the fact that W is dependent only on the magni-
tude of x —y.

Thus, the total defect density may be separated inta
two independent parts:—

~-(t) = (~ [4'(x)) )» ( I
det(~-4' ) I )

The Brst factor is easy to calculate, the second less so.
Consider first the b-distribution factor

(~[4'(xo)])» = &d b[o(«o)] exp( —— dP«dPyd (x)K(x —y; t)d (y) }2

1
foe 1tb exp(io4(xo) ——

2
dP«dPyd (x)K(x —y; t) O(y) },

where O(~) indices and integrals over spatial variables have been suppressed and gn = dt'i/2m. On deFining»i =
8(x —xo)c», we find

(~[4'(xo)))» = ]'. 1
ge» Dd p(exf dP«

]
t ( )4( ')oe—x— xd xd yo(x)IC(x —y;t)d'(y)

]2

1
go. exp( ——

1
ttoe exp( ——

d xd yee(x)yy(]x —y];t)ee(y)}

dxxdxyb(x —«o)sty(]x —x'];t)oeb(»' —«o) }
1 (

27r (g~-i) 2'(41)
1

2~W(0; t)
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Consider now the second factor. Writing out the determinant explicitly for N = D = 2, and exploiting the fact
that the field is Gaussian, we have

(I det[~-&~(x)1 l)~ = det[0 Pg(x)]

(o14'lcl24'2) + ()914'2)924'1) 2cl14'2cl241)914'lo2)t'2

The erst term may be factorized into a product of two Gaussian variables and calculated as follows:

((~1&1~2&2)')~ = ((~1&1)')~ ((~2&2)')~
=

[
—~»~1~1W(lxl t)1 [

—~22~2~2W(lxl t)] = [~1~1W(lxl t)]'

where W(lxl; t) is as before. Fourier transforming the two-point function, we find:

((~141~24'2)')~ =
I

~i~i e*""W(»t)4'&
I I

~2~2 e W(1 t) 4

2

k cos (0)W(k;t) g k
I

= [V' W(lxl;t)]
x=o

A similar result applies for the second term whereas the
third term vanishes. The Anal result is

independent of i, but for N = D —1. For the case of
interest, N = 2 and C2 ——1/2vr.

N/2W" (0; t)
P (t)=C~

W( ')

where the second derivative in the numerator is with re-
spect to x = Ixl. C)v is 1/vr for N = D = 3 and 1/2vr
for N = D = 2 had we performed the calculation in
D = 2 dimensions, the difference coming entirely from
the determinant factor.

Let us now consider the case of global strings in D = 3
dimensions that arise from the O(2) theory. Strings are
identified with lines of zeros of P(t, x) = 4(x) and the
net vortex density, the density of vortices minus that of
antivortices, in a plane perpendicular to the i direction
ls

p &, '(x) = ~ [@(x)]eU') (~i@1)(~&@2)

with obvious generalizations to N = D —1, for all % in
terms of the Levi-Cevita symbol e,, ;, , As before,
the iota/ vortex density is of more immediate use. On a
surface perpendicular to the i direction this is

~'(x) = ~'[c'(x)] lee~(~'~1)(~~4'2) I

in analogy with the monopole case. The expectation
value of this total density, when calculated as before
reproduces the same expression (where s now denotes
strings):

N/2

,*(t) =( '( )) =C W"(0; t)

VI. EVOLUTION OF THE DEFECT DENSITY

We are now in a position to evaluate pq[4] for t ) 0,
identify K, and calculate the defect density accordingly.

S~[P] becomes So[$2] on segment Cs. On setting the
boundary condition P+(0, x) = Ps(0, x) = Ps( —iP0, x)
and we have:—

~[4+] =

on C+. The Gaussian integrations can now be performed
to give

p, )4] = J 170.

x exp —i d

j
x exp ~ *& v~-(")~("—v;&, &)~b(v) j,

where G(x —y; t, t) is the equal time correlation, or
Wightman, function with thermal boundary conditions.
Because of the time evolution there is no time translation
invariance in the double time label. As this is not simply
invertible, we leave the o. integration unperformed. The
form is then a mnemonic reminding us that K = G.

In fact, there is no need to integrate the Q.s since from
the previous equation it follows that the characteristic
functional (exp(i IJ 4 }) is directly calculable as
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exp i j 4 = VCpq4 exp i

=exp — d xd yj (x)G(x —y;tt)j, (y)).2

Thus for example, the first factor in the monopole density p (t) is

(d [e(x)])e =
( dj exp td (x)j.

t

1.2dj exp —j'G(O; t, t)) =
[
—tG( ttt, t)]

with suitable normalization, without having to invert G(0; t) Thu.s, on identifying —iG(x; t, t) with W(x, t) as defined
earlier, p (t) becomes

—iG(x; t, t) has to be built from the modes M k, satisfying the equations of motion

d2

, + k'+ m'(t) 2+„=0,

for m (t) above, subject to the initial condition of a thermal distribution.
Details are given by Boyanovsky et al. , [10] and we quote their results, which give —iG(x; t, t) as the real, positive

quantity:

—iG(x; t, t) =
2(u((k)

e*"""tt'Itje~&(t )/&I
I

t + &e(«et'I&tp(t')t] —t) p(p' —lt'I')

+ 1+ngjcos[2(G)(k)tj —1) 8(~k~ —p, )

with

u)((k) = ~k~ + mo,
~)(k) = Ikl' —v'

W((k) = p, —ski

1 f (G((k) l
2 W2(k)

~;(k) l
2 ( ~)2(k))

tk, = p 1+Oi(D —1)
2 (]Mt

and we have assumed p and mo to be comparable. The
effect of changing Po is only visible in the O(1/)at) term.
In the region ~x~ ( gt/IJ, the integral is dominated by
the saddle point at A:„ to give

The first term is the contribution of the unstable long
wavelength modes; the second is that of the short wave-
length stable modes which provide the noise. The first
term will dominate for large times and. even though the
approximation is only valid for small times, there is a
regime, for small couplings, in which t is large enough for
cosh(2pt) 2 exp(2pt) and yet pt is still smaller than the
time O(ln1/A) at which the fluctuations sample the de-
viation from a parabolic hill. In these circumstances the
integral at time t is dominated by a peak in the integrand
k e ~ ~ at k around k~, where

for D = 3, where

2p, t
W(0;t) = C

for some C, which we do not need to know. The expo-
nential growth of G(0; t) in t reflects the way the field
amplitudes fall ofF the hill centered at 4' = 0.

After symmetry breaking to O(2V —1) the mass of the
Higgs is mH = ~2@ with cold correlation length ((0) =
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8m~ . Qnidentifying e " / withe /~ ~ ~ we interpret

g(t) = (8~2)'~'gt g(O),

as the size of Higgs field domains. This t / growth be-
havior at early times is characteristic of relativistic sys-
tems (i.e., with a double time derivative) with a noncon-
served order parameter.

To calculate the number density of defects at early
times we have to insert this expression for —iG or R'
into the equations derived earlier. Expanding W(x; t) as

It is also possible to use Halperin's results to calcu-
late defect-defect correlation functions. For example, the
monopole-monopole correlation function on scales larger
than a coherence length is found to be

(p„„(~)p„„(0)),= p (t)8(x) + g(x)„

where g(w)t is a measure of the screening of a monopole
at the origin, satisfying

d x g(x)t ———p~(t) .

gives

r' —x' l
W(x; t) = W(0; t) exp

~

( *'
3 &'(t) &'(t)

1 (g14/3) 1.02

((t) ) ((t)s '

Explicit calculation yields

g(~), =—3i/2 exp[ —3x /( (t)] sin [2~2x/((t)]
8~'x('(t)

o '(')

for an O(3) theory with monopoles in three-dimensions
and

1 ( /14/3 ) 0.74

&(t) ~
&(t)"

for an O(2) theory with strings in three-dimensions. The
first observation is that the dependence of the density
on time t is only through the correlation length ((t),
or in other words we have a scaling solution. This is
entirely unconnected with the scaling solutions usually
studied in the context of defects, which are relevant at
late times. As the domains of coherent field form and ex-
pand, the interdefect distance grows accordingly. Since
the only way the defect density can decrease without the
background space-time expanding is by defect-antidefect
annihilation, we deduce that the coalescence of domains
proceeds by the annihilation of defects on the bound-
aries. In the case of monopoles, this is simple annihila-
tion, whereas in the case of strings, it is the annihilation
of small loops of string. However, since the density of de-
fects only depends on ((t) in this early stage, the fraction
of string in "infinite" string remains constant. Thus,
at the same time as small loops disappear, other loops
must rearrange themselves so that the length of "infinite"
string decreases accordingly. Second, there is roughly one
defect per coherence size, a long held belief for whatever
mechanism.

By "infinite" string we mean that string that does not inter-
sect itself. We have not shown that vortices behave as random
walks, although it seems approximately likely. If they do, then
the fraction of string in "infinite" string is determined by the
probability that such a walk does not self-intersect. There
is more string in infinite string than in finite (which ineans
small) loops.

This alternation in the sign of the screening on scale ((t)
is compatible with the density result presented previ-
ously. Similar calculations have been performed for the
correlations of the string densities p„,i;(x) introduced
earlier. At the moment this is more information than we
need.

VII. CONCLUSIONS

Under the conditions of a symmetry-breaking phase
transition, from O(K) to O(K —1), which proceeds by a
rapid quench, we have derived expressions for the evolu-
tion of the defect density during the early part of the fall
from the false vacuum to the true vacuum, at least for
weakly coupled theories. In particular, there is approx-
imately one defect per correlation volume for the time
during which the approximation is valid. The t ~ time
dependence of the correlation length ((t) that we have
seen above is specific to a nonconserved order parame-
ter in a theory with a double time derivative, but we
expect the qualitative features to be similar for all de-
fect production by quenched symmetry-breaking phase
transitions.

Thus, generically, we expect the defect density to fol-
low the correlation length during the early part of the fall
from the hill. Further, the more weakly coupled the the-
ory, the more that the correlation length will grow during
the fall, since the period before which the fields feel the
upturn in potential and slow down is longer. For very
weakly coupled theories the correlation length can grow
significantly in the time interval t =O(ln(1/A) ) available.
In almost all physically realistic scenarios except inQa-
tion, however, the coupling is not small enough for this
growth to be significant. For more strongly coupled the-
ories we know less but self-consistent calculations can be
performed using the methods of Boyanovsky and cowork-
ers [9,10] and will be discussed elsewhere.
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