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We find new classes of ezact solutions of the equations describing propagation of a classical
string, in a variety of given curved backgrounds. They include stationary and dynamical (open,
closed, straight, finitely, and infinitely long) strings as well as multistring solutions, in terms of
elliptic functions. The physical properties, string length, energy, and pressure are computed and
analyzed. In anti-de Sitter spacetime, the solutions describe an infinite number of infinitely long
stationary strings of equal energy but different pressures. In de Sitter spacetime, outside the horizon,
they describe infinitely many dynamical strings infalling nonradially, scattering at the horizon and
going back to spatial infinity in different directions. For special values of the constants of motion,
there are families of solutions with selected finite numbers of different and independent strings.
In black hole spacetimes (without cosmological constant), no multistring solutions are found. In
the Schwarzschild black hole, inside the horizon, we find one straight string infalling nonradially,
with indefinitely growing size, into the r = 0 singularity. In the (2+1)-black hole anti-de Sitter
background, the string stops at r = 0 with finite length.

PACS number(s): 11.27.4+d, 04.62.+v, 04.70.—s, 11.25.Mj

I. INTRODUCTION AND RESULTS

In this paper we find new classes of exact solutions of
the equations describing propagation of a classical string,
in a variety of given curved backgrounds. This is a contin-
uation of our investigations on the ezact string dynamics
in curved spacetimes, see, for example, Refs. [1-3]. In
curved spacetimes, it is generally impossible to obtain
the exact and complete solution to the string equations
of motion and constraints. These are highly nonlinear
coupled partial differential equations and are generally
not integrable. However, in some curved spacetimes such
as gravitational wave backgrounds [4] and cosmic string
backgrounds [5], the string dynamics turns out to be ex-
actly solvable. Moreover, the full string equations of mo-
tion and constraints have been shown to be exactly inte-
grable in D-dimensional de Sitter spacetime [6]; they are
equivalent to a generalized sinh-Gordon equation. Sev-
eral new properties like the multistring solutions [7,8,1]
emerged. On the other hand, in most spacetimes, quite
general families of exact solutions can be found by mak-
ing an appropriate ansatz, which exploits the symmetries
of the underlying curved spacetime. In axially symmetric
spacetimes, a convenient ansatz corresponds to circular
strings. Such an ansatz effectively decouples the depen-
dence on the spatial world-sheet coordinate o, and the
string equations of motion and constraints reduce to non-
linear coupled ordinary differential equations. They are
considerably simpler to handle than the original system,
and they have indeed been analyzed and solved in a num-
ber of interesting cases from gravitation [2,9], cosmology
[1,3], and string theory [2,10]. In this paper we will make
instead an ansatz which effectively decouples the depen-
dence on the temporal world-sheet coordinate 7. This
ansatz, which we call the “stationary string ansatz” is
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dual to the “circular string ansatz” in the sense that it
corresponds to a formal interchange of the world-sheet
coordinates (7,0), as well as of the azimuthal angle ¢
and the stationary time t in the target space:

T & o, t o . (1.1)

The stationary string ansatz will describe stationary
strings when ¢t (and 7) are timelike, for instance, in anti—
de Sitter spacetime (in static coordinates) and outside
the horizon of a Schwarzschild black hole. On the other
hand, if ¢t (and 7) are spacelike, for instance, inside the
horizon of a Schwarzschild black hole or outside the hori-
zon of de Sitter spacetime (in static coordinates), the
stationary string ansatz will describe dynamical propa-
gating strings. Considering a static line element in the
form

2
ds? = —a(r)dt® + ar”

) +r2(d#? + sin? 6dg?), (1.2)
the stationary string ansatz reads explicitly
t=7, r=r(o), ¢=¢(o), 6O=mu/2. (1.3)

The string equations of motion and constraints reduce to
two separated first-order ordinary differential equations:

¢ = —I—;—, " +V(r)=0,
r

(1.4)
Vo) = o) (a0 - 5 ).

where L is an integration constant. The qualitative fea-
tures of the possible string configurations can be read off
directly from the shape of the potential V (r). Thereafter,
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the detailed analysis of the quantitative features can be
performed by explicitly solving the (integrable) system of
Egs. (1.4). The induced line element on the world sheet
is given by

ds? = a(r)(—dr? + do?). (1.5)
Thus, if a(r) is negative, the world-sheet coordinate 7 be-
comes spacelike while o becomes timelike and the station-
ary string ansatz (1.3) describes a dynamical string. If
a(r) is positive, the ansatz describes a stationary string.
In this paper we solve explicitly Egs. (1.4) and we analyze
in detail the solutions and their physical interpretation
in Minkowski, de Sitter, anti-de Sitter, Schwarzschild
and (2+41)-black hole anti-de Sitter spacetimes. In all
these cases, the solutions are expressed in terms of el-
liptic (or elementary) functions. We furthermore ana-
lyze the physical properties, string length, energy, and
pressure of these solutions. We also give the qualitative
features of the solutions in Schwarzschild—de Sitter and
Schwarzschild—anti—de Sitter spacetimes.

In Minkowski spacetime (M), the potential is given by

(1.6)

and the solution of Egs. (1.4) describes one infinitely long
straight string with “impact-parameter” L. The equation
of state takes the well-known form

dFE = —sz = COIlSt, P]_ = P3 = 0. (17)
In anti—-de Sitter (AdS) spacetime, the potential is given
by

L2
VAds(’r‘) = —(1 + H2T2) (1 -+ Hz'f'z — 7‘_2) . (18)
The radial coordinate r(o) is periodic with finite period
T, which is expressed in terms of a complete elliptic inte-
gral, Eq. (4.11). For o € [0,T,], the solution describes an
infinitely long stationary string in the wedge ¢ € |0, A¢][,
where

Ag

1— 2k2

=2k —
1—k2

(1 — k2, k) — K (k)] € ]0, 7. (1.9)
The elliptic modulus k& parametrizes the solutions, k €
10,1/+/2]. The azimuthal angle is generally not a peri-
odic function of o; thus, when the spacelike world-sheet
coordinate o runs through the range | — oo, +o00| , the so-
lution describes an infinite number of infinitely long sta-
tionary open strings. The general solution is therefore
a multistring solution. Until now multistring solutions
were only found in de Sitter spacetime [1,7,8]. Our re-
sults show that multistring solutions are a general feature
of spacetimes with a cosmological constant (positive or
negative). The solution in anti-de Sitter spacetime de-

scribes a finite number of strings if the following relation
holds:

NA¢ = 2 M. (1.10)
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Here N and M are integers, determining the number of
strings and the winding in azimuthal angle, respectively,
for the multistring solution, see Fig. 2. The equation of
state for a full multistring solution takes the form (P =
0)

dP, = dP; = -%dE for r — oo (1.11)

corresponding to extremely unstable strings [11].
In de Sitter (dS) spacetime, the potential is given by

2

Vys(r) = —(1 — H?*r?) (1 — H*r* - %) . (112)
In this case we have to distinguish between solutions
inside the horizon (where 7 is timelike) and solutions
outside the horizon (where 7 is spacelike). Inside the
horizon, the generic solution describes one infinitely long
open stationary string winding around r = 0. For special
values of the constants of motion, corresponding to a re-
lation, which formally takes the same form as Eq. (1.10),
the solution describes a closed string of finite length
l = Nn/H. The integer N in this case determines the
number of “leaves,” see Fig. 3. The energy is positive
and finite and grows with N. The pressure turns out to
vanish identically, thus the equation of state corresponds
to cold matter. Outside the horizon, the world-sheet co-
ordinate 7 becomes spacelike while o becomes timelike,
thus we define

7’:

Il
11l

o, F=m, (1.13)

and the string solution is expressed in hyperboloid coordi-
nates, Egs. (5.31). The radial coordinate r(7) is periodic
with a finite period T3, Eq. (5.29). For 7 € [0,T;], the
solution describes a straight string incoming nonradially
from spatial infinity, scattering at the horizon, and escap-
ing toward infinity again, Fig. 4. The string length is zero
at the horizon and grows indefinitely in the asymptotic
regions. As in the case of anti-de Sitter spacetime, the
azimuthal angle is generally not a periodic function, thus
when the timelike world-sheet coordinate 7 runs through
the range | — oo, +00[ , the solution describes an infinite
number of dynamical straight strings scattering at the
horizon at different angles. The general solution is there-
fore a multistring solution. In particular, a multistring
solution describing a finite number of strings is obtained
if a relation of the form (1.10) is satisfied. It turns out
that the solution describes at least three strings. The en-
ergy and pressures of a full multistring solution are also
computed. In the asymptotic region they satisfy an equa-
tion of state corresponding to extremely unstable strings,
i.e., as Eq. (1.11).

In the Schwarzschild (S) black hole background, the
potential is given by

2

Va(r) === 2m/r) (1=2m/r— T ). (119

No multistring solutions are found in this case. Outside
the horizon the solution of Egs. (1.4) describes one in-
finitely long stationary open string. This solution was



derived in [12] and we shall not go into details here. In
our notation the solution is given by Egs. (6.4)—(6.6).
Inside the horizon, where 7 becomes spacelike while o
becomes timelike, we make the redefinitions (1.13) and
the solution is expressed in terms of Kruskal coordinates,
Eq. (6.16). The solution describes one straight string in-
falling nonradially toward the singularity. At the horizon,
the string length is zero and it grows indefinitely when
the string approaches the spacetime singularity. There-
after, the solution cannot be continued.

In the (2+1)-black hole anti—de Sitter (BH-AdS) space-
time [13], the potential is given by

2 2 L2
Veu-aas(r) = — (% - 1) (;—2 -1- r_2> . (1.15)
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Outside the horizon, the solutions “interpolate” between
the solutions found in anti—de Sitter spacetime and out-
side the horizon of the Schwarzschild black hole. The
solutions thus describe infinitely long stationary open
strings. As in anti—de Sitter spacetime, the general solu-
tion is a multistring describing infinitely many strings. In
particular, for certain values of the constants of motion,
corresponding to the condition of the form (1.10), the
solution describes a finite number of strings. In the sim-
plest version of the (2+41)-black hole anti-de Sitter back-
ground (M =1, J = 0), it turns out that the solution de-
scribes at least seven strings. Inside the horizon, we make
the redefinitions (1.13) and the solution is expressed in
terms of Kruskal-like coordinates, Eq. (7.21). The solu-
tion is similar to the solution found inside the horizon of

TABLE I. Short summary of the features of the string solutions found in this paper. In anti-de
Sitter spacetime and outside the horizon of de Sitter and (2+1)-BH-AdS spacetimes, the solutions
describe a finite number of strings provided a condition of the form NA¢ = 27 M is satisfied, where
Ad¢ is the angle between the “arms” of the string and (N, M) are integers.

Line element

ds® = —a(r)dt® + 4= 4 r2(d6? + sin® 0d¢?)

a(r)

Ansatz t=71, r=r(0), ¢ =¢(c), 6 =7/2
String solution ¢ =%, r?+V(r)=0; V(r) = —a(r)la(r) — fj—:]
String length element dl = y/a(r(o))do

Minkowski, a(r) =1, V(r) = & — 1

The solution describes one infinitely long stationary straight string:

dE _ _dPy _ - P =
= 27 = counst, PL=P;=0

Anti-de Sitter, a(r) =1+ H?*r?, V(r) = —(1 + H*r?)[1 + H?*r? — %;]

The solution describes a finite or infinite number of infinitely long stationary strings:

dE _ _9dPy _
di

dE —94dPy
dl = dl >

P; = 0 (asymptotically for r — oo)

de Sitter, A(r) =1 — H?r?, V(r) = —(1 — H?r?)[1 — H?r® — L]

Inside the horizon, the solution describes one finitely or infinitely long stationary string winding

around r = 0:

P, = P, = P; = 0, as cold matter, E expressed in terms of elliptic functions.

Outside the horizone, the solution describes a finite or infinite number of dynamical straight strings
“scattering at the horizon.” The string length vanishes at the horizon, but stretches indefinitely

at spatial infinite:

dE _ _odP, _ _odP
ar = —2°g = 2%

P3 = 0 (asymptotically for r — oo)

Schwarzschild, a(r) =1 —2m/r, V(r) = —(1 — 2m/r)[1 — 2m//r — %:4]

Outside the horizon, the solution describes one infinitely long stationary string.

Inside the horizon, the solution describes one dynamical straight string. The string size is zero
at the horizon, and grows indefinitely as the string falls toward r = 0.

(2+1)-black hole AdS, a(r) = &7, V(r) = —(& — 1)[5 — 1 - L]

Outside the horizon, the solution describes a finite or infinite number of infinitely long stationary

string.

Inside the horizon, the solution describes one dynamical straight string. The string size is zero
at the horizon, and grows finitely as the string falls toward r = 0.
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the Schwarzschild black hole, but there is one important
difference at » = 0. As in the Schwarzschild black hole
background, the solution describes one straight string in-
falling nonradially toward r = 0, and beyond this point
the solution cannot be continued because of the global
structure of the spacetime. At the horizon the string
size is zero and during the fall toward r» = 0, the string
size grows but stays finite. This should be compared with
the straight string inside the horizon of the Schwarzschild
black hole, where the string size grows indefinitely. The
physical reason for this difference is that the point » = 0
is not a strong curvature singularity in the (2+1)-black
hole anti-de Sitter spacetime.

Finally we consider also the Schwarzschild—de Sit-
ter and Schwarzschild—anti—de Sitter spacetimes. These
spacetimes contain all the features of the spacetimes al-
ready discussed: singularities, horizons, positive or neg-
ative cosmological constants. All the various types of
string solutions found in the other spacetimes (open,
closed, straight, finitely and infinitely long, multistrings)
are therefore present in the different regions of the
Schwarzschild—de Sitter and Schwarzschild—anti—-de Sit-
ter spacetimes. The details are given in Sec. VIII.

Throughout the paper we use sign conventions of Mis-
ner, Thorne, and Wheeler [14] and units in which, beside
G =1, ¢ = 1, the string tension (27ra’)~! = 1. A short
summary of our results is presented in Table 1.

II. GENERAL FORMALISM

In this section we derive the ordinary differential equa-
tions obtained from the generic string equations of mo-
tion and constraints using a stationary string ansatz.
For simplicity we consider stationary strings embedded
in static spherically symmetric spacetimes. The results,
however, can be easily generalized to stationary axially
symmetric spacetimes. Stationary strings in stationary
background spacetimes were first discussed from a gen-
eral point of view in Ref. [12]. It was shown that station-
ary string configurations can be,described by a geodesic
equation in a properly chosen “internal” space [12]. Using
the same formalism, small perturbations around the sta-
tionary strings have also been considered [15,16]. In this
paper we will use a different approach and we will find
with it new classes of solutions. For a stationary string in
a general static and spherically symmetric spacetime, we
derive an effective potential in the radial spacetime co-
ordinate. The potential provides immediate information
about the stationary string configurations. To be more
specific we consider the spacetime line element

dr?

a(r)
which includes as special cases Minkowski space-
time, anti-de Sitter spacetime, de Sitter spacetime,
Schwarzschild black hole spacetime, and its extensions
including charge and cosmological constant. The string
equations of motion and constraints are

ds® = —a(r)dt® + +7%(d6” +sin® 0dg?),  (2.1)

Sy TR 7 1" NPT __ plplo
g+ — g + T8 (2P27 — z'Pz'7)

L - 'yt
Jupata’” = g, (2H” + x'H2'") = 0,
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where the overdot and prime stand for derivatives with
respect to 7 and o, respectively. For the metric defined
by the line element (2.1), they take the form
Pt 4+ 2 (i — t'r'y =0,

a
n_ Gr

2a

aa

5 (tz _ tlZ)

(7-_2 _ ,,,12) +

r—r

—ar(§% — 0%) — arsin® (42 — ¢'%) = 0,

6—0" + ;2:(9'7= —¢'r') —sinfcos 0(¢* — ¢"*) = 0

$—¢" + ;(dn‘ —¢'r") +2cot (6 — 0'¢) = 0,

. 1 5 j
—att’ + Ef'r' + 200" + r?sin® 8¢’ = 0,

. 1
_a(t2+t12)+;(7-,2+r12)

+7r2(0% + 0'?) + r2sin% 0(¢% + ¢'2) = 0. (2.2)

The stationary string ansatz, consistent with the symme-
tries of the background, is taken to be

¢ = ¢(0),

i.e., the string is in the equatorial plane and the two func-
tions r(0), ¢(o) are to be determined by the equations
of motion and constraints, Egs. (2.2). After inserting the
ansatz, the equations of motion and constraints are con-
sistently reduced to two first-order ordinary differential
equations:

t=1, r=r(o), 0 =m/2; (2.3)

L
/
¢=,3

: (2.4)

2 L?
r'? = a(r) (a(r) — 7'_2) , (2.5)
where L is an integration constant, which without loss

of generality can be taken to be non-negative. r(o) is
obtained by inversion of the integral

r dx
B /ro Va(@)[a(z) — (L/2)?]’

after which ¢(o) is obtained by integrating Eq. (2.4). In
all cases under consideration in this paper, Eqgs. (2.4)
and (2.5) will be solved in terms of elliptic or elementary
functions. It is convenient to define an effective potential

V(r) by

o — 0g

(2.6)

V(r) = —a(r) (a(r) - f—j) , (2.7)

such that the r equation of motion takes the form

" +V(r)=0. (2.8)
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With this definition the stationary string will be located
at the r axis in a (r,V(r)) diagram. The possible string
configurations can therefore be read off from knowledge
about the zeros of the potential. The exact string shape
can thereafter be obtained by solving Egs. (2.4) and (2.5).
Notice that the circular string solutions of Eq. (2.8) must
be considered separately. They are determined by

L
¢:EU,

r = const = 7, V(re) =0, (2.9)
where 7. # 0, L # 0, but they are solutions to the orig-
inal second-order differential equations (2.2) only pro-

vided

dv (r)
dr

=0. (2.10)
=T,
We shall return to this point later for each of the curved
backgrounds under consideration.

Insertion of the ansatz, using the results (2.4) and
(2.5), in the line element (2.1), leads to

ds® = a(r)(—d7? + do?). (2.11)

The string length element dl is then identified as

dl = y/a(r(0)) do,

and the physical string length is obtained by integrat-
ing over the appropriate range of o, which may be finite
or infinite. For strings in Friedmann-Robertson-Walker
(FRW) universes, it is interesting to also consider the
string energy and pressure that can be obtained from
the spacetime energy-momentum tensor,

V=gr

(2.12)

_ / drdo(X XY — XX (X - X (r,0)), (2.13)

by integrating over a volume that completely encloses the
string. The coordinates X* are here the comoving FRW
coordinates,
dR? + R?(d6? + sin® 0d¢?)
1+ %Rz)2 ’
(2.14)

including as special cases Minkowski, de Sitter, and anti—
de Sitter spacetimes:

ds® = —(dX°)? + a*(X°)

a(X% =1, k=0 for Minkowski spacetime,

a(X%) = eHXO, k =0 for de Sitter spacetime,

a(X%) = cos(HX®), k= —H?

which can all be brought into the static spherically sym-
metric form of Eq. (2.1).

We close this section with the following interesting ob-
servation: the function a(r) introduced in the line ele-
ment (2.1) is not necessarily non-negative. In de Sitter
and Schwarzschild spacetimes it changes sign at the hori-
zon. Then the world-sheet coordinate 7 becomes space-
like while o becomes timelike, see Eq. (2.11), and the
string solution must be expressed in other coordinates.
In such cases the stationary string ansatz, Eq. (2.3), actu-
ally describes dynamical propagating strings. We there-
fore reach the interesting conclusion that the stationary
string ansatz, Eq. (2.3), for different initial conditions,
describes both stationary equilibrium string configura-
tions as well as dynamical propagating strings, in differ-
ent regions of the background spacetime.

In the following sections we use the general formalism
of this section to describe and analyze stationary and dy-
namical strings in various spacetimes. For completeness
we first recall the results in flat Minkowski spacetime.
We then consider anti—de Sitter and de Sitter spacetimes
and thereafter turn to the (2+1)- and (3+1)-dimensional
black hole spacetimes with and without a cosmological
constant.

ITII. MINKOWSKI SPACETIME

In Minkowski spacetime the situation is considerably
simple. The potential, Eq. (2.7), takes the form [see

for anti-de Sitter spacetime,

[
Fig. 1(a)]

L2

so that stationary strings are only possible in the region
r > L. Equations (2.4) and (2.5) are easily solved by
r(o) = Vo2 + L2,

(3.2)

vir)

FIG. 1. The potential V(r), Eq. (2.7), in three cases (a)
Minkowski, (b) anti-de Sitter, (c) de Sitter spacetimes. The
potential is defined such that (classical) string solutions can
only exist in the regions where V(r) < 0.
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¢(o) = arctan(o /L), (3.3)
which for 0 € | — 0o, +oo[ describes an infinitely long
straight string parallel to the X? axis with “impact pa-
rameter” L. Obviously, the string length, string energy,
and integrated string pressure are all infinite. For in-
finitely long strings it is however more interesting to con-
sider the energy and pressure densities. From Egs. (2.12)
and (2.13) we find

dE _d [ 00
ﬁ_dl/d X/=gT® =1, (3.4)
dP, _d [ 4 ,
_cﬁ__dl/d X/=gT¥ , = —1, (3.5)

while P; = P3; = 0. This is the well-known result con-
cerning stationary strings in flat Minkowski spacetime.
Finally, notice that the circular string r = L, ¢ = 0/L,
which solves the first-order differential equations (2.4)
and (2.5), must be excluded since it does not satisfy the
original second-order differential equations of motion, Eq.
(2.2), cf. the remarks related to Egs. (2.9) and (2.10).

IV. ANTI-DE SITTER SPACETIME

In anti-de Sitter spacetime, which corresponds to
a(r) = 1 + H?%r? we find the stationary string poten-
tial

2,2 22 L7
V(r):—(1+Hr)(1+Hr —T—z) (4.1)
[see Fig. 1(b)]. It follows that stationary strings can only
be found for r > 7o :

1/2
1 (—-1++1+4H?2L?

- . 4.2

ro= 7 ( 5 ) (4.2)

The circular string configuration » = ro, ¢ = Lo/r2,

which solves the first-order differential equations (2.4)
and (2.5), is excluded since it does not satisfy the original
second-order differential equations of motion, Eq. (2.2),
cf. the remarks related to Egs. (2.9) and (2.10). This
is similar to the situation in Minkowski spacetime. It
turns out then, that all stationary strings in anti-de
Sitter spacetime are infinitely long open strings. For
L =0 (ro = 0) we have the straight string onr =0:

= % tan(Ho), ¢ = const. (4.3)

For L # 0, Eq. (2.5) is solved by a Weierstrass elliptic
function

1 2
HZT‘z(O') = ﬁp(a — Op; g2, 93) - gv (44)

with invariants

g2 = 4H*(} + H?L?), gs=2H®(Z+ H?L?), (45)

discriminant
A =16H'L*(1 + 4H*L?) (4.6)
and roots
H2
ey = T[l +3\/ 1 +4H2L2] > e
H2
STy e
HZ
= S l1-3V1+am2L2). (4.7)

The integration constant oo must be carefully chosen in
order to obtain a real solution for real o. In the present
case it turns out that oy must be real and it is convenient
to take o9 = 0. Then, solution (4.4) can be written in
terms of a Jacobi elliptic function

H?r?(0) = v — p? + p? ns*[uHo, k), (4.8)
where we introduced the more compact notation
NZEWHTLE, yzE%(—l—@—pz), kzg‘
(4.9)

It follows that the elliptic modulus k € |0, 1/+/2[, where
k — 0 corresponds to L — 0, while & — 1/4/2 corre-
sponds to L — co. By integrating Eq. (2.4) we find

—k {Ha— V1—2k2TI(1 - k2, pHo, k)},

e

(4.10)

where II is the elliptic integral of the third kind. Equa-
tions (4.8) and (4.10) provide the complete solution for
stationary strings in anti—de Sitter spacetime. The radial
coordinate, Eq. (4.8), is periodic with a period

2K (k)
pH "’

T, = (4.11)
where K (k) is the complete elliptic integral of the first
kind. For o € [0, T,], r goes from infinity toward r = rg
and back toward infinity. In the same range of o, the
azimuthal angle ¢ goes from ¢ =0 to ¢p = A¢:

1 — 2k?

B¢ =2k

[O(1 - k2, k) — K(k)] € ]0, «[,
(4.12)

that is to say, A¢ is the angle between the two “arms” of
the stationary string. Two important remarks are now
in order: First, the stationary string extends from spa-
tial infinity to spatial infinity for a finite range of the
world-sheet coordinate o. Second, the azimuthal angle
is generically not a periodic function of o with period
T, (or an integer multiple of T, ), not even modulo 2.
These two statements together imply that the solution
described by Eqs. (4.8) and (4.10) is actually a multi-
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string solution in the sense that one single world sheet,
determined by one set of initial conditions, describes a
finite or even an infinite number of different and inde-
pendent strings. Multistring solutions were first found in
de Sitter spacetime for nonstationary strings [7,8,1]. In
that case, it was found that strings can contract from in-
finite size to a minimal size and back toward infinite size
for a finite range of the timelike world sheet coordinate
7. The process, on the other hand, takes infinite physical
time, such that when the world-sheet time 7 runs from
—00 to +00, the world sheet describes infinitely (for de-
generate cases: finitely) many strings. The physical time
was not periodic so the solution really described different
and independent strings; not simply infinitely many (or
finitely many) copies of the same string. Here, in anti-de
Sitter spacetime the situation is somewhat similar, but
with the roles of 7 and o as well as t and ¢ interchanged:
For o € [0, T,] the solution describes one infinitely long
string in the wedge ¢ € [0, A¢)], for 0 € [T,, 2T,]
it describes another infinitely long string in the wedge
¢ € [Ad, 2A¢], etc. In the general case, the solution,
Egs. (4.8) and (4.10), describes infinitely many strings.
However, for certain values of the “impact-parameter” L,
or alternatively of the elliptic modulus k, the azimuthal
angle becomes periodic modulo 27 and then the solution
describes only a finite number of strings. Clearly, this
situation appears provided:

NA¢ = 21 M, (4.13)

where N and M are integers. From the exact expres-
sion of A¢, Eq. (4.12), it follows that M/N € ]0,1/2],
and the solutions are then conveniently parametrized in
terms of (N, M). The simplest examples are (N, M) =
(3,1), (N,M) = (4,1), etc., see Fig. 2. The integer N
gives the number of strings in the multistring solution
while the integer M is a “winding-number” of the az-
imuthal angle. It should be stressed also that the general
solution is a multistring solution but it can of course be
truncated, in particular, to describe only one string by
considering an appropriate range of the world-sheet co-
ordinate o.

We now consider the physical properties of the station-
ary strings found above. Each string has infinite length;
the string-length element, Eq. (2.12), being

S

~

FIG. 2. The (N, M) = (5,1) multistring solution in anti-de
Sitter spacetime. The (N, M) multistring solutions describe
N stationary strings with M windings in the azimuthal angle
¢, in anti—-de Sitter spacetime.

A gy - dsluto, K|
do

S (4.14)

which diverges for ¢ = 0, £7,, +27,,..., i.e., at spa-
tial infinity. Next we consider the energy and pressure
densities. The energy as a function of the cosmic time is
obtained by integrating 7°° :

E(X° = /d3X\/:§ T, (4.15)

where T is given by Eq. (2.13), and the cosmic time
X9 is given in terms of static coordinates by

HXO(r,0) = +arccos /[1 + H2r2(g)] cos?(HT) — H2r%(0). (4.16)
For a full (N, M) multistring solution we find after some algebra, the integral expression
T, /2 0 2,.2(,\12 272,02 0
B(X°) :2N/ do’l cos(HX®) | {[1 + H?r*(0)]* + H*L?*tan?*(HX )} (4.17)
o (1 + H?r2(0)]y/H?r2(c) + cos?(HX?O)
Not surprisingly, the total energy is infinite. Using also Eq. (4.14) we find the energy density
dE(X°%) oN | cos(HX®) | {[1 + H%r%(0))? + H2L? tan?(HX")} (4.18)
dl (1 + H2r2(0)]3/2/H?r2(0) + cos?(H X°) ’ ’

with the asymptotic value



6936 A. L. LARSEN AND N. SANCHEZ 51

ii—E(LO) =2N |cos(HX") |

7 for » - oo .

(4.19)

Notice that the right-hand side of Eq. (4.18) can be expressed in terms of the physical length [ (and X°), by integrating
Eq. (4.14), and that the asymptotic region I — oo corresponds to r — oo. Each individual string in the multistring
solution gives the same contribution to the energy density but different contributions to the pressure densities in the

different directions. However, if we consider the full (N, M) multistring solution we find P; =0, P, = P, = P:

P(X% = /d3X¢?g T, = /dsX\/—_g T?,

_N/d /T«/Zd cos?’(HX®)[R? — R”? — R?¢"?]
- o ¥ (1— H?R?/4)?

§5(X° — X°(r,0)), (4.20)

where X! = Rcos$, X2 = Rsin¢ (in the equatorial plane), and R is expressed in terms of static coordinates by

HR(r,0) = %w){‘/l + H2(0) cos(Hr) — /[L + H?r2(0)] cos? (Hr) — Hr2(0) , (4.21)

see Egs. (2.1) and (2.14). After some algebra we find

T, /2 0 2,20 V12 _ 272 tan2 0
P(X%) = —N/ dal cos(HX®) | {[1 + H?*r?*(0))? — H?L? tan*(HX )}, (4.22)
0 (14 H?r2(o)]\/H?r2(c) + cos?(HX?O)
which is infinite. The pressure density is finite

dP(X°%) _N | cos(HX®) | {[1 + H?*r?(0)]? — H2L? tan?(HX")} 4.3
dl (14 H?%r2(0)]3/2\/H?r%(c) + cos2(HX?°) ’ (4.23)

with the asymptotic value

dP(X°)

— for r - o .

= —N |cos(HX?) | (4.24)
Comparing with Eq. (4.19), the energy and pressure den-

sities in the asymptotic region satisfy

dP(X°) = —1dE(X°) for r — o0 . (4.25)

This type of “equation of state” is quite typical for strings
in (2+1)-dimensional FRW universes [3,11,17], so it is not
surprising that we recover it here for stationary strings in
the equatorial plane of (3+1)-dimensional anti—de Sitter
spacetime. Generally, for arbitrary r(o), there is no sim-
ple expression for the equation of state and the pressure
density can take both positive and negative values de-
pending on X° and r(o). An exception is the case when
L = 0 where the string solution (4.3) describes a straight
string. If the string is oriented along the X2 axis we find

E(X% = -P(X°)

/2
= 2/ do
0

while P; = P; = 0. The integrated energy and pressure
are infinite but the densities satisfy the same equation of
state as the straight string in flat Minkowski spacetime,
compare with Egs. (3.4) and (3.5).

| cos(HX®)|[1 + H?r?(0)]
VH?r%(o) + cos2(HXD)

., (4.26)

V. DE SITTER SPACETIME

We now come to the cosmologically interesting case of
de Sitter spacetime, corresponding to a(r) = 1 — H?r? in
Eq. (2.1). The stationary string potential in this case is

= (5.1)

L2
V(r) = —(1 — H?r?) (1 — H?*? - ~—) ,
see Fig. 1(c). The potential vanishes at the horizon r =
1/H and for r = ro4 :

1/2
1 (11\/1 —4H2L2) /

To+ = - B (5.2)

H

and we must consider separately the two cases: HL >
1/2 and HL < 1/2. The first-order differential equations
(2.4) and (2.5) are solved by r = rox, ¢ = Lo/r2, as
wellas by r = 1/H, ¢ = H?Lo, but these three solutions
must be excluded [cf. Egs. (2.9) and (2.10)] since they do
not satisfy the original second-order differential equations
(2.2) except in the case HL = 1/2, where one of them
survives:

(5.3)

This is the stationary circular string configuration in de
Sitter spacetime already discussed in Refs. [1,7,8,15]. An-
other “degenerate” case appears for L = 0 where we find
the straight string configuration:
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r(o) = %tanh(Ha), ¢ = const. (5.4)

Let us now consider the general case L # 0, HL # 1/2.

A.0< HL<1/2

In this case the potential has two different real zeros in-
side the horizon besides the zero at the horizon r = 1/H.
It follows from the potential, Fig. 1(c), that solutions will
exist both inside the horizon and outside the horizon, but
they can never actually cross the horizon. The solutions
outside the horizon must be expressed in terms of comov-
ing coordinates or hyperboloid coordinates (say), since
the static coordinates, Eq. (2.1), are only appropriate to
cover the region of de Sitter spacetime inside the horizon;
we will return to that question later. Equation (2.5) is
solved by a Weierstrass elliptic function [compare with
Egs. (4.4)-(4.7)]

H%r%(0) =

= 3 (5.5)

p(o —0o; g2, g3) + 2,
with invariants

g2 = 4H*(} — H?’L?), g3=%H®(-%+ H?’L?), (5.6)

discriminant
A =16H®L*(1 - 4H?L?) , (5.7)
and roots
2
e = -—3-— > ez
2
= %[-—1 +3vV1—4H2%L2?] > e3
H2

The solution, Egs. (5.5) and (5.8), was originally derived
in Ref. [15], but it was only analyzed in the two “de-
generate” cases corresponding to the solutions given by
Egs. (5.3) and (5.4). Here we shall analyze the general
solution. We can write Eq. (5.5) in terms of a Jacobi
elliptic function

H%r%(0) = v? + p? ns®[uH (o — 00), k], (5.9)

where we introduced the more compact notation [com-
pare with Egs. (4.8) and (4.9)]

u? %(1 + /1 —4H2L?2),
(1 —+/1—4H2L?),
= YoV

M

N
il

(5.10)

DN | =

It follows that the elliptic modulus k € |0, 1[ , where k —
0 corresponds to HL — 1/2, while £ — 1 corresponds to

L — 0. We still have not fixed the integration constant
09. It turns out that two qualitatively different families
of real solutions appear depending on the choice of oy.
For 09 = 0 we find

Hzri(o) =v? 4+ u? ns?[uHo, k|, (5.11)
while, for 09 = w’ = iK' (k)/(uH),
H%*r? (o) = v2 + (u® — v?) sn?[uHo, k). (5.12)

Notice that H?r% (o) > 1, thus this solution is always
outside the horizon and it must be expressed in a different
coordinate system. For the r_ solution we find that u? >
H?r% (o) > v?, thus this solution is always inside the
horizon, in fact, it oscillates (in the spacelike world-sheet
coordinate o) between 12 > 0 and pu? < 1.

Let us first consider the solution r_ in a little more
detail. The corresponding azimuthal angle is obtained
from Eq. (2.4):

k2 k2
¢—(0) = \/ i——kzn (m@ wHoa, k) ) (5.13)

where II is the elliptic integral of the third kind. The
radial coordinate, Eq. (5.12), is periodic with a period
T, as formally given by Eq. (4.11), but with x4 and &
given by Eq. (5.10). For o € [0, T,], r— increases from
r— = v/H to r— = p/H and then decreases back to
r— = v/H. In the same range of o, the azimuthal angle
increases from ¢_ =0 to ¢p_ = A¢p_ :

2~k2H( —k?

Ap_ =2 Y
¢ 1— k2 1— k2’

k) € |m, V2r[. (5.14)

Generally the solution described by Egs. (5.12) and (5.13)
represents an infinitely long open string winding around
r = 0 between r = v/H and r = p/H. However, in
the special case where the azimuthal angle is periodic
modulo 27 with a period which is an integer multiple
of T,, it describes a closed string of finite length. This
closed string condition takes the form
NA$_ = 21M, (5.15)

which is similar to Eq. (4.13) but with A¢ replaced by
A¢_. The closed strings inside the horizon of de Sitter
spacetime are then parametrized in terms of the two in-
tegers (IV, M), and we find, from Eq. (5.14),
M/N €11/2, 1/V2]. (5.16)

The simplest examples are (N, M) = (3,2), (N,M) =
(5,3), etc., see Fig. 3. The integer N gives the number of
“leaves” (see Fig. 3) of the solution, while the integer M
is a winding number of the azimuthal angle. At this point
it is interesting also to determine which types of station-
ary closed string solutions are not allowed because of the
conditions, Egs. (5.15) and (5.16). It is, for instance,
impossible to have a solution with 4 “leaves” (N = 4),
while 3 “leaves” (N = 3) or 5 “leaves” (N = 5) are per-
fectly allowed. Notice also that the closed circular string,
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FIG. 3. The (N, M) = (3,2) stationary string solution in-
side the horizon of de Sitter spacetime. In addition to the
circular string, this is the simplest stationary closed string
configuration in de Sitter spacetime.

Eq. (5.3), in a pure mathematical sense, corresponds to
(N, M) = (v/2,1).

Using Egs. (2.12) and (2.13) we can calculate the phys-
ical length, energy, and pressure of the (NN, M) strings

described above. The string length is given by

2NK (k)/(1H)
I = / do \/1— H2r? (0) = Nx/H. (5.17)

0

This result holds for the circular string also (taking for-
mally N = /2, as discussed above). The string energy
is given by an expression of the form (4.15) where

HXO(r,0) = % In[l — H*2 ()] + Hr.  (5.18)

Using (2.13) the integrals are easily evaluated and we find

4N E(k)

E_(XO) = E_ = F —m, (519)

where E(k) is the complete elliptic integral of the second
kind. It should be stressed that N and k are not inde-
pendent quantities. For each (N, M) string, the elliptic
modulus must be calculated by solving Eq. (5.15). Nu-
merically we find that the energy is an increasing function
of N, i.e., the energy grows with the number of “leaves.”
Notice that the result, (5.19), holds also for the circular
string (N = v/2), in agreement with [1] [in units where
(2ma’)™1 = 1]. Let us finally calculate the pressure of a
generic (N, M) string. From the symmetries of the prob-
lem, it follows that P3 =0, P; = P, = P_, where

P_(X°% = /d3X\/:§ T, = /d3X\/—_g T?

o 2N K (k)/(nH) .o
= 2HX /dT/ do[X1X1 — XL XM5(X° — X°(r,0)) (5.20)
0
and where
X (r,0) = T=(2) 03¢ (9) s (5.21)
1— H?r2 (o)
see Egs. (2.1) and (2.14). After some algebra the integral is reduced to
w/H 2,2 _1)2 272
P (X% =P_ = N/ dr (H7r" —1)7+ H7L . (5.22)
v/H (1 — H?r2)3/2,/1 — H2r2 — (L/r)?
This integral can be evaluated in terms of complete elliptic integrals
N 2 2
P = (1 — k)II(E*, k) — E(k)], (5.23)

Hv2 — k2

which vanishes identically by an identity between elliptic integrals (Ref. [18], formula 17.7.24):

M1 (k?, arcsin(sn[u, k), k) =

Elarcsin(sn[u, k]), k] k?

snfu, k]4/1 — sn?[u, k]

1— k2

1— k2

v/ 1 — k2sn?[u, k]
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For w = K (k) (in our notation), this is exactly the com-
bination of elliptic integrals appearing in Eq. (5.23). The
closed stationary strings inside the horizon in de Sitter
spacetime thus satisfy an equation of state of the cold
matter type. A similar result was found recently [3] for
oscillating circular strings in de Sitter spacetime.

We now consider in more detail the solution 7 (o),
Eq. (5.11). Although obtained from the stationary string
ansatz, Eq. (2.3), this solution is actually not stationary
since it is always outside the horizon where 7 is spacelike
while o is timelike, as follows from Eq. (2.11) when a(r) =
1 — H?r2. Therefore, we define

o

Il

T, T=o, (5.24)
and identify the physical string length element outside
the horizon as:

dl = VH?r2 —1ds,

which vanishes at the horizon and diverges at infinity.
The actual string length is obtained by integrating over
the range of &, which is now a finite range, for instance,
& € [0, w]. Since the radial coordinate now depends on
the timelike world-sheet coordinate 7, the string length
is then simply

(5.25)

I (F) ==y /H?>r2(F) - L. (5.26)
J
2 — k2
agy =20/ 2= ) - (- 1

In order to better obtain the physical interpretation of
this solution, it must be expressed in a coordinate sys-
tem which covers the complete de Sitter manifold. In
hyperboloid coordinates, the solution takes the form

q° = q°(%,6) = \/H?r%(¥) — 1cosh(H?5),
,0) = 4/H?r?% (7) — 1sinh(Hg),

g (7
q*(7) = Hr (7) cos ¢ (7),
¢*(7) = Hry(7)sin ¢, (7),

and we have dropped g%, which is identically zero. As
usual, we should take another copy of (¢°, ') to cover the
full de Sitter manifold; the coordinates, Eq. (5.31), only
describe the expanding de Sitter universe (¢° > 0). No-
tice that the spatial coordinates ¢* depend on the space-
like world-sheet coordinate & through ¢! only, and that
all & dependence disappears at the horizon. The solution
r, thus describes a straight string which at ¢° = —co
starts at spatial infinity with infinite length. As the de
Sitter universe contracts, the straight string falls nonradi-
ally toward the horizon while it contracts and eventually
becomes a point at the horizon, when the de Sitter uni-
verse takes its minimal size (for ¢° = 0). As the de Sitter
universe expands, the straight string also expands and

I

ql
q2
q3

Il

(5.31)
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In our further analysis we shall not need to specify the
exact range of &. The solution (5.11) is written as
H?r2 (7) = v® + p® ns®[uH7T, k. (5.27)

The corresponding azimuthal angle is obtained from
Egs. (2.4) and (5.27):

#+(7)

- ﬁ {HF = V2 =R T(- (1= %), uHT, K},

(5.28)

thus it also depends on the timelike world-sheet coordi-
nate 7, only. The radial coordinate, Eq. (5.27), oscillates
between the horizon and infinity with a period

T, = 2K()

=5 (5.29)

For 7 € [0, T3], r goes from infinity toward the horizon
and back toward infinity. In the same 7 range, the string
size, Eq. (5.26), contracts from infinite size to zero size
and then expands back to infinite size. The azimuthal
angle increases from ¢4, =0 to ¢4 = Ad, :

k%), k)] € 10, 7(vV2—1)] . (5.30)

travels nonradially away toward infinity, where its length
grows indefinitely. Since the string travels from spatial
infinity toward the horizon and back toward spatial in-
finity for ¢° € ] — 0o, +o00[, but for a finite range of the
world-sheet coordinate 7 (say 7 € [0, T%]), the full solu-
tion is actually a multistring. In the general case, the so-
lution describes infinitely many straight strings incoming
from different directions, “scattering” at the horizon, and
then going out again in different directions toward infin-
ity. An exceptional case is provided by the limit L = 0,
where the solution describes only one string falling ra-
dially in from infinity and going radially out again. In
all other cases, the solution describes finitely or infinitely
many strings. Following the analysis of the stationary
multistrings in anti-de Sitter spacetime, as done in Sec.
1V, we find the following condition for the solution to de-
scribe only finitely many strings in de Sitter spacetime:

NA¢, = 2rM, (5.32)

where N and M are again integers. It follows that
M/N €10, 1/4/2 — 1/2[ and the simplest examples are
then (V,M) = (5,1), (IN,M) = (6,1), etc., see, Fig. 4.
Again, the integer IV describes the number of strings in
the multistring solution while the integer M is a winding
number of the azimuthal angle.



6940

<

l.5r /
0.5
—
i
- —
) 1'5 | -

FIG. 4. Schematic representation of the time evolution of
the (N, M) = (5,1) dynamical multistring solution, outside
the horizon of de Sitter spacetime. Only one of the five strings
is shown; the others are obtained by rotating the figure by the
angles 27 /5, 47/5, 6w /5, and 8n /5. During the “scattering”
at the horizon, the strings collapse to a point and reexpand.

In the limit HL = 1/2, the solution, Egs. (5.27) and
(5.28), reduces to elementary functions

1 H
H?r2(7) =1+ = cot? =7

5 75 (5.33)

P (X% = /d3X\/“*—g T = /daX\/_*—g T2,

o ANK (k)/(uH)
= e2HX / dé / dF (
0

where
74+ (%) cos 4 (T) o—H&
Hzri(%) -1

XY(#,6) = , (5.39)

compare with Egs. (5.20) and (5.21). After some algebra
we find the integral expression

esH(X"—&) — H2[2e-H(X°-5)
VelH(X°=5)g2H(X°-5) { 212’
(5.40)

P (X°) = —N/d&

which is again of elliptic type. Asymptotically we find
the pressure density, using also Eq. (5.25):
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¢+ (7) = HT — arctan (\/Etan %) .

For this solution we have A¢, = 7(v/2 — 1), and it de-
scribes infinitely many strings.

We already considered the physical length of the string
solutions, Egs. (5.27) and (5.28). Let us now consider

the energy and pressure. The string energy is given by
an expression of the form (4.15) where

(5.34)

HX°(7,6) = L In[H?r% (7) — 1] + Hé. (5.35)

For a full (¥, M) multistring we find, using Eq. (2.13),
e3H(X°-&) + H2[2e—H(X°-4&)

VetH(X°=5) | ¢2H(X°=&) | g212’
(5.36)

E (X% = 2N/d&

By the substitution z = exp(H&), the integral can be
evaluated in terms of elliptic integrals but we shall not
give the explicit expression here. Asymptotically, when
the string travels toward spatial infinity, we find from
Egs. (5.25) and (5.36) the following expression for the
energy density:

dE,(X°)

d; =2N for X° — 0o .

(5.37)

It follows that the energy diverges in this limit, since the
physical length diverges. Concerning the pressures we
find that P3 :0, P]_ = P2 = P+ :

dx?

2 rdxt\? 0 vo/- ~
Y (e }s(x ) (5.38)
|
MO_) =—-N for X° > . (5.41)
dl;

Thus, in this limit the strings satisfy an equation of state
such as (4.25):

dP (X°) = —1dE,(X°) for X° - o0, (5.42)

i.e., such as extremely unstable strings [11].

B. HL > 1/2

In this case we only find string solutions outside
the horizon, as follows by inspection of the potential,
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Eq. (5.1). The solutions obtained from the stationary
string ansatz are all dynamical and they are in fact of
the same type as the r, strings discussed above. We
shall therefore not go into too much detail here. We per-
form from the beginning the redefinitions (5.24). Then
Eqg. (2.5) is solved by the Weierstrass function [compare
with Egs. (5.5)—(5.8)]:

(5.43)

- 1 - 2
H*r*(7) = ﬁ@(T —To; 92, 93) + 3>

with invariants

g2 = 4H(3 — H’L?), g3 =3H*(-3+H’L?),

(5.44)
discriminant
A =16H'L*(1 —4H?L?) , (5.45)
and roots
2
ey = %[—1 + 3iy/4H2L? — 1],
H2
€2 = T, (546)
2
es = %[—1 _ 3iy/AH?L2 1),

The real solutions in terms of Jacobi elliptic functions
take the form

1+ cn[2HVHLT, k]

H?*r?2(7) =1+ HL ,
r(7) 1—cn[2HVHLT, k]

(5.47)

where the elliptic modulus is now defined by

1 1
It follows that k € ]0, 1/+/2[ , where k — 0 corresponds
to HL — 1/2, while k — 1/4/2 corresponds to HL —
00. The azimuthal angle is obtained by integration of
Eq. (2.4). The result is most easily expressed in terms of

elliptic 8 functions,
1 | #n7 0] [ ma
= —=<{¢ — = — 1 s 5.49
o) = 5% {wz o (2w2) o } (5.49)

where w, = K(k)/(HvHL) and a is an imaginary con-
stant satisfying

91(1(;‘::))

gl(ﬂ:Tta)

iy o 1—4k?
avEr R T

i.e., y can be expressed as an incomplete elliptic inte-
gral. The further analysis of the solution, Egs. (5.47)
and (5.49), follows closely the analysis of the r -solution
for HL < 1/2. The radial coordinate, Eq. (5.47), is peri-
odic with period:

a =

(5.50)

. 2K(k)
" HVHL

For 7 € [0, T7], r goes from infinity toward the horizon
and back toward infinity. In the same 7 range, the string
size which is also here in the form of Eq. (5.26), contracts
from infinite size to zero size and then expands back to
infinite size. The azimuthal angle increases from ¢ = 0

to ¢ = Ad :

(5.51)

A= a

V2 = 4k? {K(k)_( 2

Generally the solution describes infinitely many strings.
The condition for the solution to describe only finitely
many strings is of the form (5.32), with A¢, substituted
by A¢, and leads to M/N € |1/v/2 —1/2, 1/2[. The
simplest examples are (N, M) = (3,1), (N,M) = (4,1),
etc., and the physical interpretation of these string solu-
tions is similar to the physical interpretation of the r
solution discussed before for HL < 1/2.

We close this section with a small remark on the line
element (2.11) for a(r) = 1 — H%r%. It is convenient to
introduce the fundamental quadratic form a(o),

le* =1- H?*r?, (5.53)
determining the physical string size (inside the horizon).

From the r equation of motion in de Sitter spacetime,
Eqgs. (2.8) and (5.1), follows

1-4k2\? &2
5 2H —3 y T3 . (5.52)
3 — 4k2)\/1— k2 3— 4k k2 1
dza 2 a 2172 —a

The redefinitions ¢/ = vV2HL Ho, a(o) = In(2HL) +
a(o') yield
d%a & e
m +e" —e ¢ = 0,
that is, the sinh-Gordon equation, as was proved more
generally by de Vega and Sanchez [6].

(5.55)

VI. SCHWARZSCHILD BLACK HOLE

Stationary strings in the background of a
Schwarzschild black hole (and its charged and rotating
generalizations) were already considered in Ref. [12]. In
this section we will describe all string solutions in the
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Schwarzschild black hole background obtained from the
ansatz (2.3). These will include also dynamical strings in-
side the event horizon. The string potential is obtained
from Eq. (2.7), for a(r) =1 —2m/r:

v --(1-2) (-2 -5,

see Fig. 5(a). The potential vanishes at the horizon r =
2m and for r = rq :

(6.1)

ro =m + vm?2 + L2, (6.2)

but it is easily seen from Eqgs. (2.9) and (2.10) that none
of the corresponding circular string solutions satisfy the
original second-order differential equations (2.2). Thus
there are no stationary circular strings in the background
of a Schwarzschild black hole. The line element for the
string solutions take the form

ds? = (1 - 27’") (—dr? + do?), (6.3)
which defines the invariant string length element. Notice
that inside the horizon 7 becomes spacelike while o be-
comes timelike, so that the world-sheet coordinates must
be redefined and the string solutions must be expressed
in better well-behaved spacetime coordinates. Only the
string solutions outside the horizon will be stationary. In-
side the horizon, the ansatz (2.3) will describe dynamical

J

2m? + L? m?
to = ———=F (¢Y_(r-),
o= A (v

) VM I E (w», )

v(r)

-1.5p

(6

FIG. 5. The potential V(r), Eq. (2.7), in two cases (a)
Schwarzschild and (b) (2+1)-black hole anti—-de Sitter space-
times. Notice the different asymptotic behavior in the two
cases.

propagating strings.

Let us first consider the solutions outside the horizon.
From the potential V(r) follows that they can only exist
for r > 7¢. The solutions were already described in [12]
but let us restate the results here in a somewhat different
way. Equation (2.5) is solved by the functionr_ = r_(o),
defined by inversion of the identity:

2

m2+L2

2
+mln (1\ﬂri —2mr_ — L2)(r2 — 2mr_) + ﬁ(rz_ —2mr_) — 1)

2
r2 —2mr_ — L2
+(r- —m)y | ————,

r2 —2mr_

where

Y (r—) = arcsin (\/E“Z“_T;_meé% ) (6.5)

and F' and F are the incomplete elliptic integrals of the
first and second kinds, respectively. The azimuthal angle
is then obtained from Eq. (2.4):

¢_<a>=L/0"T—g%

L2 m?
=t (d’—[”“’”’ m? 1 L ) :

(6.6)

Notice the special values

r_(—00) = 00, r_(+o00) =00, (6.7)

rT_ (0) = To,

(6.4)

with the corresponding angles

L2 m?2
_(x ==

(6.8)

$-(0) = 0.

The solution describes an infinitely long string extending
from spatial infinity toward the minimal distance 7o from
the black hole, and out toward spatial infinity again. The
angle between the two “arms” is given by

L2 m2
Ap_ =2
¢ \/m2+L2K< m2+L2)’

which changes continuously from 0 to m when L changes
from 0 to oo. There are no multistring solutions in this
case; when o runs from —oo to 400, the solution de-
scribes only one string. In the degenerate case L = 0,

(6.9)
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the formulas simplify considerably. Equation (6.4) for coordinates
the radial coordinate becomes
) uzﬁ/l——gﬁe"/(‘lm)sinh‘i—:ﬁ,
—o=7r_—4m+2mln 7'_2— m. (6.10) v=,/T— 5 e/(4") cosh ;t-, (6.11)
m
This string configuration extends from spatial infinity to ~ S© that (in the equatorial plane)
the horizon r = 2m, for o €] — 0o, +00], and the angle 39m3
(6.9) between the two arms vanishes, that is, the string ds? = e /™) (_du? 4 du?) + r2dp>.  (6.12)
is straight. r
Let us now consider the solutions inside the horizon. The radial coordinate r, = r,(7) is obtained from
We make the redefinitions (5.24) and introduce Kruskal Eq. (2.5):
|
. 2m24 L2 P m2 , . m2
Uy Y (re), mEyiz) VW HLE Yi(re), -
-2 2 r2 —2mr,
—mln (-*2‘ ;\/(7'_2'_ — 2m7‘+ — Lz)('rﬁ_ — 2mr+) - F(Ti —_ 2m1"+) + 1) + ('I’+ - m)\/m’ (613)
I
where 5 ) om? + L2 K( m2 )
To = —_———
(r+) m?2 + L2 r2 — 2mry m?+ L2 m* + L?
Y4 (ry) = arcsin 2
m?2 r2 — 2mry — L? —ov/m?+I2E m , (6.19)
m?2 + L2
(6.14)
the radial coordinate r4(7) goes from the horizon
The azimuthal angle takes the form r4(0) = 2m to the spacetime singularity r4 (75) = 0 and
: the solution cannot be continued. In the same range of
b (7) = L/ zd-T 7, the azimuthal angle goes from ¢4 (0) = 0 to
o Ti(x)
72 m2
L2 N m? ¢+ (fo) =24/~ K [t/ ——— | . (6:20)
oo LZF ("/’+[T’+(T)], mZ + L2 ) . m2 + L2 m2 + L2
(6.15) It is interesting to consider also the string length element,

Both the radial coordinate and the azimuthal angle de-
pend on the timelike world-sheet coordinate 7, only. In
Kruskal coordinates the solution is written as

w(F,5) = 1)1 = "0 grey/am) oy 2
2m 4m
o(7,5) = /1= ") e @/m) oqy O
2m im
¢ = ¢4 (7) (6.16)
That is,
o —u? = (1- DY e @r/em)
2m !
u o
— =t — 6.17
” anh py ( )
and the line element becomes
ds? = (2—"E - 1) (—d7? + d&?). (6.18)
L

When 7 goes from 7 = 0 to ¥ = 7, where

obtained from Eq. (6.18), during the fall of the string
toward the singularity:

dl+ = '\/2m/7’+ —1déG.

(6.21)

The physical string length is obtained by integrating this
equation over the range of &, but since r, depends on 7
only, the string length is proportional to 1/2m/r; — 1.
At the horizon the string length is therefore zero, i.e.,
the string starts as a point. During the fall toward
the singularity, the string length grows proportionally
to 1/,/7y and eventually grows indefinitely, see Fig. 6.
This kind of behavior for strings near the singularity of
a Schwarzschild black hole was originally found using a
string series perturbation approach [19,2]. Notice that
the string is straight for all ¥ but because of the 7 de-
pendence of the azimuthal angle, the string falls toward
the singularity in a nonradial way. An exceptional case
is obtained for L = 0. In that case the azimuthal angle
(6.14) is constant, while the radial coordinate is given by

2m—7‘i

TF= T4+ + 2m In (622)
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FIG. 6. The dynamical straight string inside the horizon of
the Schwarzschild black hole. When the string falls (nonra-
dially) toward the singularity, the string length grows indefi-
nitely.

The string thus falls radially from the horizon toward the
spacetime singularity for ¥ €] — oo, 0]. The dynamics,
for arbitrary L, is in many respects similar to what was
found for the 7 (7)-solution in de Sitter spacetime (in
the expanding phase of the de Sitter spacetime), however,
the solution in the Schwarzschild—black hole background
describes only one string; no multistring solutions has
been found in this background.

VII. (2+1)-DIMENSIONAL BLACK HOLE-AdS

It is interesting to consider also the stationary string
ansatz in the (2+1)-dimensional black hole anti-de Sit-
ter (BH-AdS) spacetime found by Banados et al. [13].
A general analysis of string propagation in the BH-AdS
spacetime was performed recently by the present authors
[2], based on the string perturbation series approach [20]
as well as on exact circular string configurations. Here we
will consider the new (stationary and dynamical) string
solutions (outside and inside the horizon, respectively),
obtained from the ansatz, Eq. (2.3). We will compare
these results with those obtained in Secs. IV and VI
in the equatorial plane of ordinary anti—de Sitter and
Schwarzschild spacetimes.

The line element of the (2+1)-dimensional BH-AdS
spacetime takes, in its simplest version, the form

2 2
2 _ r 2 r

This line element, where ¢ is identified with ¢ + 27, de-
scribes a black hole spacetime with mass M = 1 and

-1
1) dr? + r3d¢®. (7.1)

A. L. LARSEN AND N. SANCHEZ 51

angular momentum J = 0. There is a horizon at » = [
and the spacetime has constant curvature. Asymptoti-
cally it approaches anti-de Sitter spacetime with nega-
tive cosmological constant A = —1/12. A two-parameter
(mass M and angular momentum J) family of black holes
is obtained by periodically identifying a linear combina-
tion of ¢t and ¢ [13,21], but the simpler case described by
Eq. (7.1) is general enough for our purposes here. No-
tice that the line element (7.1) is in the general form of
Eq. (2.1) with a(r) = r2/1> — 1 (and 6 = 7/2). We thus
obtain the string potential, Eq. (2.7)

[see Fig. 5(b)]. The potential vanishes at the horizon
r =1 and for r = ry,

1/2
1+ /1+4L7/2
ro =1 ) )

(7.2)

(7.3)

and the situation looks quite similar to the case of the
Schwarzschild black hole background. In particular, it is
easily seen from Egs. (2.9) and (2.10) that there can be
no stationary circular strings in the BH-AdS spacetime.
The line element for the string solutions reads

2
ds? = (% - 1) (—dr? + do?), (7.4)
so that 7 becomes spacelike inside the horizon while
o becomes timelike. As in the background of the
Schwarzschild black hole, only the strings outside the
horizon will be stationary; the string solutions inside the
horizon will be dynamical. Equation (2.5) is solved by
a Weierstrass elliptic function [compare with Egs. (4.4)—

(4.7)]
r%(0) = l*p(0 — 00 g2, g3) + 313, (7.5)

with invariants

4 (12 —4 (212
92:I—6<§+L2), 93=ﬁ<?+L2>7 (7.6)

discriminant

16L*
and roots
1
e = a;[—]. + 3\/ 1 + 4L2/l2 ] Z €2
= W > e3
1
= gpl-1-3V1+4L2/1%]. (7.8)

We can write Eq. (7.5) in terms of a Jacobi elliptic func-
tion
r?(o) = P(v® — p?) + PuPns?(u(o — 00)/l, k], (7.9)

where we introduced the more compact notation [com-
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pare with Egs. (4.8) and (4.9)]

p?=4/1+4L2/12

It follows that the elliptic modulus k € ]1/+/2, 1], where
k — 1/4/2 corresponds to L/l — oo, while k — 1 corre-
sponds to L — 0. We still have not fixed the integration
constant og. It turns out that two qualitatively different
families of real solutions appear depending on the choice
of og. For 09 = 0 we find

vi=11+4?), k=-. (7.10)

TR

r2 (o) = B(v? — u?) + Pp®ns(uo/l, k], (7.11)
while, for o9 = w’ =il K'(k)/u,
r2 (o) = P(v? — p?) + 1*v? sn®(uo/l, k. (7.12)

The solution r2 (o) is always outside the horizon and de-

scribes stationary strings. The solution 73 (o), on the
other hand, is always inside the horizon and must be ex-
pressed in a different coordinate system. Let us consider
first the solution r_ (o) outside the horizon. The corre-
sponding azimuthal angle is obtained from Eq. (2.4):

_k Jo
1—k%k2]1

xII(1 — k2, po/l, k)}‘

¢_(o) = 2k2 —1

(7.13)

The expressions found here for the radial coordinate and
the azimuthal angle are formally quite similar to the ex-
pressions found for the stationary strings in the ordinary
anti-de Sitter spacetime, compare with Egs. (4.8) and
(4.10), but the elliptic modulus takes different values here
and the string configurations are actually very different.
The radial coordinate, Eq. (7.11), is periodic with a pe-

riod
_ 2lK(k)
H 9

T, (7.14)
where K (k) is the complete elliptic integral of the first
kind. For o € [0, T,], v goes from infinity toward r = rg
and back toward infinity. In the same range of o, the
azimuthal angle ¢_ goes from ¢_ =0 to ¢_ = A¢_:

2k2 -1

A= e

(1 — k2, k) — K(k)], (7.15)
compare with Eq. (4.12), i.e., A¢_ is the angle between
the two “arms” of the stationary string. It is interest-
ing that A¢_ goes to zero in both limits k — 1/v/2
and k£ — 1. In this sense the stationary strings in the
(2+1)-dimensional BH-AdS spacetime interpolates be-
tween the stationary strings in ordinary anti-de Sitter
and Schwarzschild spacetimes. The maximal angle be-
tween the arms is obtained for an intermediate value of
the elliptic modulus:

Max(A¢_) = 1.0023... for k =0.909....  (7.16)

As in ordinary de Sitter spacetime, the solution is actu-
ally a multistring solution. In the general case the so-
lution, Eqgs. (7.11) and (7.13), describes infinitely many

strings. In particular, following the argument of Secs.
IV-VI, the solution describes a finite number of strings
when an equation of the form (4.13), with A¢_ given
by Eq. (7.15), is satisfied. It follows that M/N €
[0, 0.1596...], i.e., the simplest examples are (N, M) =
(7,1), (N,M) = (8,1), etc. The solution therefore de-
scribes at least 7 different strings.

We now turn to the r, solution, Eq. (7.12), which
is always inside the horizon. As in the case of the
Schwarzschild black hole (inside the horizon) we make
the redefinition Eq. (5.24) and introduce the Kruskal-like
coordinates:

l—r . .t l—7r t
u:“m smhz, v—”l+r coshi, (7.17)

so that
ds® = (1 + r)?(—dv® + du?) + r2d¢>. (7.18)
The radial coordinate now takes the form
r2 (7) = P(v? — p®) + 1202 sn®[u7/1, K, (7.19)

and the corresponding azimuthal angle is obtained from
Eq. (2.4):

. 2k2 — 1 k? N

¢+(7) = —k 1 %2 Il (1 g ut/l, k) . (7.20)
We now follow closely the analysis of the 7, (7) solution
inside the horizon of the Schwarzschild black hole, see
Sec. VI. In Kruskal coordinates the solution is written

~ o~y l—'T_*_(‘F) . o
U(T,U) = m 51nh l N
~ N l— 7"+(7‘:) 5'
'U(T,U) = m COSh l 5
b= b (7). (7.21)
That is,
vz—u2=£:~1—'i—(f—) E=ta.nhi (7.22)
l+r(F) w l’ ’
and the line element becomes
2 ri ~2 ~2
ds*=(1- il (—d7* + d&°). (7.23)
When 7 goes from 7 = IK(k)/pu to ¥ = 7o, where
VI — k2
To = iF |:arcsin <I_kk— ) , k] s (7.24)
m

the radial coordinate 74 (7) goes from the horizon
ri[IK(k)/u] = 1 to r4(75) = 0, and the solution can-
not be continued because of the global causal structure
of the spacetime. In the same range of 7, the azimuthal
angle goes from
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b0/ = k) e (1

o I k) (7.25)

to

. 2k2 — 1 k2 .
$+(fo) = —k\[ T—5 11 (1 —z> Ho/l, k) . (7.26)

The string length element is given by

dly = /1 —r2 /12 dé.

At the horizon the string length is zero, i.e., the string
starts as a point. When the string propagates toward
r = 0, the string length grows but is always finite. This
illustrates the important difference between the point
r = 0 in the Schwarzschild black hole and in the (2+1)-
dimensional BH-AdS spacetime. For the Schwarzschild
black hole the point » = 0 is a physical curvature sin-
gularity, expressed by a power-law singularity in curva-
ture scalars. For the (2+1)-dimensional BH-AdS space-
time, on the other hand, the curvature is constant R, =
—(2/12)g,. everywhere, except probably at r = 0, where
there is at most a delta-function singularity. This dif-
ference shows up clearly in the string solutions close to
r = 0 : In the Schwarzschild-black hole background we
found that the string stretches indefinitely near r = 0,
which is not the case in the (2+1) dimensional BH-AdS
spacetime. Notice however that in both cases the string
is straight during the nonradial fall toward » = 0. The
infinite string stretching is a typical feature of string in-
stability [1,6-8,11,20] and a generic characteristic behav-
ior of strings near “strong enough” (stronger than delta-
function type) spacetime singularities [22].

(7.27)

VIII. SCHWARZSCHILD-dS AND
SCHWARZSCHILDS-AdS

Following the analysis of the preceding sections, it is
straightforward to consider also more complicated curved
spacetimes from general relativity and string theory. The
mathematics will however in most cases be quite compli-
cated but the qualitative results can in any case be read
off directly from the potential, Eq. (2.7). Let us illus-
trate this by the two examples of ordinary Schwarzschild—
anti-de Sitter (S-AdS) and Schwarzschild-de Sitter (S-
dS) spacetimes.

The line element of S-AdS spacetime is given by

ds? = — (1 _m Hzrz) dt?
T
2m -t
+ (1 -+ Hz'rz) dr?
T
+72(d6? + sin® 0 dp?);

(8.1)

i.e., it corresponds to a(r) = 1 — 2m/r + H?r? in the
notation of Eq. (2.1). The potential (2.7) takes the form

2 2 L2
V(r) = - (1__"1+Hzrz) (- -).
T T r
(8.2)
see Fig. 7(a). The potential vanishes at the horizon r =

7, and for r = rg, where r;, and 7o are the unique positive
zeros of the equations

2 2 L?
1- 2L HY2 =0, 1-"24H>»2- =0
Th To 7‘0

(8.3)

From the potential, Fig. 7(a), and the analysis of Secs.
IV, VI, and VII we can now easily describe the qual-
itative features of the stationary and dynamical string
solutions obtained from the ansatz (2.3). Inside the hori-
zon the solution will describe one single straight string
falling nonradially toward the physical singularity. The
string starts as a point at the horizon and stretches in-
definitely for » — 0. For r > rq, outside the horizon,
the solution is a multistring solution of the same type
as found outside the horizon of the (2+1)-dimensional
BH-AdS spacetime. The solution will describe infinitely
or finitely many strings depending on the value of the
parameter L.

In the case of S-dS spacetime, the line element is ob-
tained from Eq. (8.1) by changing the sign of H2. The
corresponding string potential is then given by

2
V(r):—(l— 2—m—H2r2) (1—2—m—H2r2—L—2),
T T T
(8.4)

see Fig. 7(b). The S-dS spacetime has two horizons pro-
vided v27Hm < 1. We will consider only that case.
Explicit expressions for the two horizons are given, for

V(r)
0.1
0.5 u 2.5 7
® N
-0.1
0.2
(a)
-0.3
FIG. 7. The potential V(r), Eq. (2.7), in the two

cases (a) Schwarzschild-anti-de Sitter (S-AdS) and (b)
Schwarzschild—de Sitter (S-dS) spacetimes. In S-dS space-
time, degenerate cases with less structure exist, while in
S-AdS the potential takes form (a) for all nonzero values of
the parameters (m, H, L).
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instance, in Ref. [2]. The potential, Eq. (8.4), obviously
vanishes at the two horizons, and depending on the value
of the parameter L, there can be additional (one or two
more) zeros between the horizons. In Fig. 7(b) we show
the most general case where the potential has four dif-
ferent zeros, and all the different types of string solu-
tions considered until now are present. Inside the inner
(Schwarzschild-like) horizon, the string solution in S-dS is
similar to the dynamical solution r (7) inside the horizon
of Schwarzschild or Schwarzschild—anti—de Sitter space-
times, Sec. VI. In the region between the two horizons a
truly stationary string of the type r_ (o) found inside the
horizon of de Sitter spacetime will be present, Sec. V.
Finally, outside the outer (de Sitter-like) horizon the so-
lution describes dynamical multistrings of the type r (7)
found outside the horizon of ordinary de Sitter spacetime,
Sec. V.

IX. CONCLUSION

In this paper we have studied the exact string solutions
obtained by the stationary string ansatz, Eq. (2.3), in a
variety of curved backgrounds including Schwarzschild,
de Sitter, and anti-de Sitter spacetimes. Many differ-
ent types of solutions have been found: closed station-
ary strings, infinitely long stationary strings, dynami-
cal straight strings, and multistring solutions describ-
ing finitely or infinitely many stationary or dynamical
strings. In all cases we have obtained the exact solu-
tions in terms of either elementary or elliptic functions.
Furthermore, we have analyzed the physical properties
(length, energy, pressure) of the string solutions, thus
this paper supplements earlier investigations on generic
(based on approximative methods) and exact circular
string solutions, important for the general understand-

ing of the string dynamics in curved spacetimes.

We close with a few remarks on the stability of the
solutions. Generally, the question of stability must be
addressed by considering small perturbations around the
exact solutions. In Ref. [15] a covariant formalism de-
scribing physical perturbations propagating along an ar-
bitrary string configuration embedded in an arbitrary
curved spacetime, was developed. The resulting equa-
tions determining the evolution of the perturbations are
however very complicated in the general case, although
partial (analytical) results have been obtained in special
cases for de Sitter [9,23] and Schwarzschild—black hole
[9,15,16] spacetimes. The exact solutions found in this
paper fall essentially into two classes: dynamical and
stationary. The dynamical string solutions outside the
horizon of de Sitter (or S-dS) and inside the horizon of
Schwarzschild (or S-dS, S-AdS) spacetimes, are already
unstable at the zeroth-order approximation (i.e., without
including small perturbations), in the sense that their
physical length grows indefinitely. For the stationary
string solutions the situation is more delicate. The ex-
istence of the stationary configurations is based on an
exact balance between the string tension and the local
attractive or repulsive gravity. For that reason, it can be
expected that the configurations are actually unstable
for certain modes of perturbation, especially in strong
curvature regions. This question could deserve further
investigations, but is out of the scope of this paper.
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