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Semiclassical quantization of circular strings in de Sitter and anti —de Sitter spacetimes
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We compute the ezact equation of state of circular strings in the (2+1)—dimensional de Sitter
(dS) and anti —de Sitter (AdS) spacetimes, and analyze its properties for the different (oscillating,
contracting, and expanding) strings. The string equation of state has the perfect Quid form P =
(p —l)E, with the pressure and energy expressed closely and completely in terms of elliptic functions,
the instantaneous coeKcient p depending on the elliptic modulus. We semiclassically quantize the
oscillating circular strings. The string mass is m = ~C/(vrHo. '), C being the Casimir operator,
C = L„„L""—, of the O(3, 1)-dS [O(2, 2)-AdS] group, and H is the Hubble constant. We find
n'mss = 4n —5H o'n, (n C No), and a finite number of states Nss = 0.34/(H o,') in de Sitter
spacetime; mzss —H n (large n g No) and N~qs = oo in anti —de Sitter spacetime. The level
spacing grows with n in AdS spacetime, while it is approximately constant (although smaller than in
Minkowski spacetime and slightly decreasing) in dS spacetime. The massive states in dS spacetime
decay through the tunnel effect and the semiclassical decay probability is computed. The semi-
classical quantization of ezact (circular) strings and the canonical quantization of generic string
perturbations around the string center of mass qualitatively agree.

PACS number(s): 11.27.+d, 11.25.Mj

I. INTRODUCTION AND RESULTS

The systematic investigation of string dynamics in
curved spacetimes started in Ref. [1] has given new in-
sight and produced new physical phenomena with respect
to string propagation in flat spacetime (and with respect
to quantum fields in curved spacetime) [2]. These results
are relevant both for fundamental (quantum) strings and
for cosmic strings, which behave, essentially, in a classical
way.

Among the cosmological backgrounds, de Sitter space-
time occupies a special place. On the one hand, it is rele-
vant for inflation, and on the other hand, string propaga-
tion turns out to be particularly interesting there [1—6].

Recently, a novel feature for strings in de Sitter space-
time was found: exact multistring solutions. That is, one
single world sheet generically describes two strings [4],
several strings [5], and even infinitely many [6] (diferent
and independent) strings.

Circular strings are specially suited for detailed inves-
tigation. Since the string equations of motion become
separable, one has to deal with nonlinear ordinary difFer-
ential equations instead of nonlinear partial difFerential
equations. In order to obtain generic noncircular string
solutions the full power of the inverse scattering method
is needed in de Sitter spacetime [5].

Cosmological spacetimes are not Ricci Qat and hence
they are not string vacua even at first order in o,". Strings
are there noncritical and quantization will presumably
lead to features such as ghost states. No definite answer

is available at present to such conformal anomaly efFects.
We think it is important in this context to investi-

gate the quantum aspects in the semiclassical regime,
where anomaly efFects are practically irrelevant. Semi-
classically, in this context, means the regime in which
II o.' &( 1, where H is the Hubble constant. We proceed
in this paper to semiclassically quantize time-periodic
string solutions in d.e Sitter and anti —de Sitter spacetimes
after dealing with Minkowski spacetime as an instructive
exercise. Time-periodic string solutions here include all
the circular string solutions in Minkowski and anti —de
Sitter spacetimes, as well as the oscillating string solu-
tions in de Sitter spacetime.

In this paper, we also complete the physical charac-
terization of all circular string solutions found recently
in de Sitter [6] and in anti —de Sitter spacetimes [9], by
computing the corresponding equations of state &om the
exact string dynamics.

The circular string solutions in de Sitter and anti —de
Sitter spacetimes depend on elliptic moduli II.. and k, re-
spectively. Prom the exact solutions we find their energy-
momentum tensor. It turns out to have the perfect Quid
form with an equation of state

P = (p —l)E,

where p in general is time dependent and depends on the
elliptic modulus as welI. We analyze the equation of state
for all circular string solutions in de Sitter and anti —de
Sitter spacetimes. In de Sitter spacetime, for strings ex-
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panding from zero radius towards infinity, the equation of
state changes continuously &om an ultrarelativistic mat-
ter type when r 0, P = +E/2 (in 2 + 1 dimensions)
to an unstable string type, P = E—/2, when r ~ oo. On
the other hand, for an oscillating stable string in de Sit-
ter spacetime, p oscillates between p(r = 0) = 3/2 and
p(r = rma„) = 1/2+ Ic /(1+ k ), where A,'C [0, 1]. Aver-
aging over one oscillation period, the pressure vanishes.
That is, these stable string solutions actually describe
cold matter.

In anti —de Sitter spacetime, only oscillating (stable)
circular string solutions exist. We find that p oscillates
between p(r = 0) = 3/2 and p(r = r „) = 1/2; i.e. ,
the equation of state "oscillates" between P = +E/2
and P = E/2—This. is similar to the situation in fiat
Minkowski spacetime. When averaging over an oscilla-
tion period in anti —de Sitter spacetime, we find that p
takes values from 1 to 1+ 1/2r for the allowed range of
the elliptic modulus. That is, the average pressure over
one oscillation period is always positive in anti —de Sitter
spacetime.

In general, positive pressure characterizes the regime in
which the string radius is small relative to the string max-
imal size, while negative pressure is characteristic for the
regime in which the string radius is large. In Minkowski

spacetime, the two regimes are of equal "size," in the
sense that the average pressure is identically zero. The
inHuence of the spacetime curvature is among other ef-
fects to modify the relative size of these two regimes.

In order to semiclassically quantize these string solu-
tions, we compute the classical action S,~ as a function
of the string mass m:

dS, i

CLT
(1.2)

where we choose T as the period in the physical time
variable (in general different from the world-sheet time).
The quantization condition takes the form

W(m)—:S,)(T(m)) + m T(m) = 22m, n C Ko. (1.3)

(1.4)

In Minkowski spacetime, this formula reproduces the
exact mass spectrum except for the intercept [see
Eq. (3.11)].

We find for de Sitter (anti —de Sitter) spacetime that
the mass is exactly proportional to the square root of the
Casimir operator C = L~„L~"—of the O(3, 1)—de Sitter
[O(2, 2)—anti —de Sitter] group:

TABLE I. Circular string energy and pressure in Minkowski, de Sitter, and anti —de Sitter spacetimes.

Circular string
Minkowski

r(r) = ~ba')cosr~
Oscillating between
0 and r „=~bn'

Energy

E = v b =const,

Pressure

P =
~ cos21)

Equation of state

P(r m 0) = +E/2, i.e.,

ultrarel. in 2+1 dim.
P(r mr „)= E/2—

Average values
de Sitter
(i) H'u"b ) 1/4
Strings expanding
from 0 towards

E(r -+ 0) = ~b,
E(r -+ oo) = r/n',

(P) = 0 Cold matter

P(r -+ 0) = ~b/2, P(r + 0) =+E/2
P(r + oo) = r/2n. ', —P(r m oo) = E/2—

E increases and P decreases as strings expand,
P becoming negative

(ii) H n' b & 1/4
Strings oscillating

between 0 and
+'rmax = & =

1 —41 —4H2u'2b /2

E(r -+ 0) = ~b,
E(rmax) Hn' 1—v2

P(r m 0) = ~b/2,
(

' —1i2)P(rmax) Ha' 1—vx

v « 1 (as in Minkowski space)

v —+ 1/~2 (as cold matter)

P(r -+ 0) =+E/2
P(r „)= (p —1)E

p = v + 1/2
P(r .„)= —E/2

P(rmax)

Average values

Anti-de Sitter
Strings oscillating

between 0 and
0&max = & =

—1 + Ql + 4H2n'2b/2

Average values

(k = v/Ql + 2v2

& [0, 1/~2])

E(r —+ 0) = " ~+,",
E(r „)=~", ,

(E) = „.'," Q(i —2k )j(1 —k )11
k(E)k((1

jr
2H n ' EC (1/ ~2) Ql —2 k 2

(P) =o

P(r m 0) = "2~+,

1—k2'
k

22SS~' ~

Cold matter

P(r -+ 0) =+E/2
P(r „)= —E/2

(P) = (~ —1)(E)«
k

7k((1 ~ +
(P)r, ~2

--—', (E)p ~, ]~~
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In Figs. 4 and 5, we give parametric plots of H o, 'W
as a function of H m n' for k E [0, 1] for de Sitter
spacetime and for k E [0, I/~2 [ for anti —de Sitter
spacetime, respectively. We And, for de Sitter spacetime,

This is diferent from the mass spectrum in Minkowski
spacetime. The level spacing is, however, still approxi-
mately constant, but the levels are less separated than in
Minkowski spacetime. Notice in particular that the level
spacing slightly decreases for larger and larger n. In de
Sitter spacetime there is only a Pnite number of levels
as can be seen from Fig. 4. The number of quantized
circular string states can be estimated to be

0.34

It is interesting to compare this result with the number
of particle states obtained using canonical quantization
[1]. One finds in this way a maximum number of states:

0.15
mBX H 0,'

which is of the same order as the semiclassical value (1.6).

It must be noticed that in de Sitter spacetime these states
can decay quantum mechanically due to the possibility
of quantum-mechanical tunneling through the potential
barrier; see Fig. 1(b). Semiclassically, the decay proba-
bility is, however, highly suppressed for H o.' (( 1 and
for any value of the elliptic modulus k, except near k = 1
where the barrier disappears, and for which the tunneling
probability is close to 1.

In anti —de Sitter spacetime arbitrary high mass states
exist. The quantization of the high mass states yields

I 2 ~ 2 I 2
XDAgs ~ H CI A

Thus the (mass) grows like n and the level spacing
grows proportionally to n. This is a completely diferent
behavior as compared to Minkowski spacetime where the
level spacing is constant. A similar result was recently
found, using canonical quantization of generic strings
in anti —de Sitter spacetime [9,10]. The physical conse-
quences, especially the nonexistence of a critical string
temperature (Hagedorn temperature), of this kind of be-
havior is discussed in detail in Ref. [10].

For both de Sitter and anti —de Sitter spacetimes we
find thus a strong qualitative agreement between the re-
sults obtained using canonical quantization, based on

TABLE II. Semiclassical quantization of oscillating circular strings in Minkowski, de Sitter, and anti —de Sitter spacetimes.

Stationary phase W(M) = S,~(T(M)) + MT(M)
Stationary phase point z

' ———M, determines the period T
Quantization condition W(M) = 2am, n E ¹

Minkowksi
Circular string
Classical action
Mass
Quant. condition

T 'T =
2 COS
A T

cl — 2m''
AT
7r cx

o.'m = 4n, n g Np

de Sitter

Classical action

Circular string Hr(r) = "—sn —,k
1+k~ 1+k2

s E(k) —K(k)
H2n'
2 kMass Hc)f. ' 1+k2

Quant. condition n'm = 4n —5H n n, n E no
Level spacing is still approximately constant, but levels are less separated than in Minkowski spacetime. Furthermore, it turns
out that H o' m E [0, 1] and H n'W E [0, 4v 2 —41n(l + v 2)], so that there is only a finite number of states:

2 ~2 —2 1n(1+~2) p, 34 f ~2 I

The states decay quantum mechanically with probability
4 R(k') —H( —(k'/k), k')

/ oc exp H' +1+k2

Anti —de Sitter

Classical action

Hr(r) = " cn, k
1—2k~ 1 —sk~

s (i —k~)EC(k) —E(k)~cl ~Q ~I
Q 1—2k2

Qi —k2
Mass a~' 1-2k~
Quant. condition cr'm = H cr'n, n E. No (for high states, k —+ gl/2)
Level spacing grows as n. Notice that H n' m, E [0, oo[ and H o.'W E- [0, oo[, so that there are infinitely many states

Agreement with canonical quantization in the string perturbation series approach.
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generic string solutions (string perturbation approach),
and the results obtained using the semiclassical approach,
based on oscillating circular string configurations.

This paper is organized as follows. In Sec. II we de-
scribe the time-periodic string solutions in Minkowski, de
Sitter, and anti —de Sitter spacetimes. We derive the cor-
responding equations of state and give the physical inter-
pretation in the various regimes for the diferent kinds of
string solutions (oscillating and nonoscillating). In Sec.
III we proceed to quantize the oscillating strings semi-
classically, deriving the quantum mass spectrum, and we
compare with the results obtained using canonical quan-
tization. A summary of our results and conclusions is
presented in Sec. IV and in Tables I and II.

(2.2)

+ r a(r) = bn', (2.3)

For simplicity we consider the string dynamics in a
(2+1)-dimensional spacetime. All our solutions can,
however, be embedded in a higher-dimensional space-
time, where they will describe plane circular strings. The
circular string ansatz (t = t(r), r = r(7), .P = o.) leads,
after one integration, to the following set of first-order
ordinary differential equations:

II. PERIODIC STRINC SOL'UTIONS
AND THEIR PHYSICAL INTERPRETATION

The evolution of circular strings in curved spacetimes
has recently been discussed from both gravitational and
cosmological points of view [3—9]. For completeness and
comparison we erst consider flat Minkowski spacetime.
We then investigate the string dynamics in de Sitter
spacetime (negative local gravity) and finally consider
anti —de Sitter spacetime (positive local gravity). We in-
vestigate the efFects of positive and negative local gravity
in the energy-momentum tensor of such circular strings.

The string equations of motion and constraints for a
circular string are most easily solved using static coordi-
nates:

a(r) = 1 for Minkowski spacetime,

a(r) = 1 —H r for de Sitter spacetime,

a(r) = 1+H r for anti —de Sitter spacetime.

Properties such as the energy and pressure of the strings
are more conveniently discussed in comoving (cosmolog-
ical) coordinates,

ds2=-(dX ) +a (X ) (1+ -", B')' (2.4)

where 6 is a non-negative integration constant with the
dimension of (mass) . The left-hand side of Eq. (2.3) is in
the form of "kinetic" + "potential" energy. The potential
is given by V(r) = r a(r), where

dpds' = —a(r)dt'+ + r'dP'.
a(r)

(2.1) including as special cases Minkowski, de Sitter, and anti-
de Sitter spacetimes:

a(X ) = 1, k = 0 for Minkowski spacetime,
HAa(X ) =e, k = 0 for de Sitter spacetime,

a(X' ) = cos HX, A: = H for anti ——de Sitter spacetime.

The spacetime energy-momentum tensor is given in (2+1)—dimensional spacetime by

2m''
drdo. (X"X"—X'"X' ) 8~ l(X —X(r, o)). (2 5)

After integration over a spatial volume that completely
encloses the string [8], the energy-momentum tensor for
a circular string takes the form of a fluid:

A. Minkowski spacetime

In this case Eqs. (2.2), (2.3) are solved by

T„" = diag( —E, P, P), (2 6) r(r) = v bn'cosr, t(r) = v bn'7", (2 9)
where, in the comoving coordinates (2.4),

E(X) = —,X, (2.7)

i.e. , the string radius follows a pure harmonic motion
with a period in world-sheet time T = 27t. . The energy
and pressure, Eqs. (2.7), (2.8), are

(2.8)

represent the string energy and pressure, respectively.

E = +b,

P=
2v bn'

~b
cos 27.

2

(2.10)

(2.11)
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H'v(r) (c)

0. 5

0. 5

FIG. 1. The potential V(r) = r a(r) in-
troduced after Eq. (2.3) for a circular string
in the three spacetimes: (a) Minkowski
spacetime, (b) de Sitter spacetime, (c)
anti —de Sitter spacetime.

The energy is constant while the pressure depends on the
string radius. For r i 0 (7 -+ a/2), that is, when the
string is collapsed, we find the equation of state P = E/2
correspondig to ultrarelativistic matter in 2 + 1 dimen-
sions. For r -+ ~bn' (r -+ u), that is, when the string
has its maximal size, the pressure is negative and we flnd
P = —E/2. This is the same equation of state that was
found for extremely unstable strings in inflationary uni-
verses [ll]. The circular string thus oscillates between
these two limiting types of equation of state. This illus-
trates that instantaneous negative pressure is a generic
feature of strings, not only for unstable strings in infla-
tionary universes, but even for stable oscillating strings in
flat Minkowski spacetime. Even in flat Minkowski space-
time we see that there is a positive pressure regime (when
the string radius is small relative to its maximal size)
and a negative pressure regime (when the string radius
is large). For the circular strings in Minkowski space-
time the two regimes are of equal size in the sense that
the average pressure equals zero [as can be easily shown
by integrating Eq. (2.11) over a full period]. The strings
thus, on average, obey an equation of state of the cold
matter type. The influence of the curvature of space-
time is, among other eKects, to change the relative "size"
of the positive pressure regime to the negative pressure
regime, as we will see in the following subsections.

B. de Sitter spacetime

(2.12)

r~ —Ht

H2r2 (2.13)

The energy and pressure then take the form

In de Sitter spacetiine the solution of Eqs. (2.2), (2.3)
involves elliptic functions. As can be seen from the po-
tential, Fig. 1(b), the dynamics in de Sitter spacetime is
completely diBerent from the dynamics in Minkowski and
anti —de Sitter spacetime. The inflation of the background
here gives rise to a Rnite barrier, implying the existence
of oscillating strings as well as contracting and expanding
strings, whose exact dynamics was discussed in detail in
Ref. [6 . The energy and pressure have been discussed in
Ref. [6]. In this subsection we further analyze the string
energy and pressure in de Sitter spacetime. The coordi-
nate transformation relating the line elements (2.1) and
(2.4), in the case of de Sitter spacetime, is given by

H2rr' —H ~bn'
H2r2 —1

(2.14)

(H4r4 2H2r2 H2bnI2)H2 ' + (3H4r4 2H2r2 + H2bn/2)H~b I

Ho. 'P =
2(l —H r )(H r4+ H2bn'2) (2.15)

Both the energy and the pressure now depend on the
string radius r and the velocity r'. The latter can, how-
ever, be eliminated using Eq. (2.3).

I et us first consider a string expanding &om r = 0
towards infinity. This corresponds to a string with r ) 0
and H bn' & 1/4; see Fig. 1(b). For r = 0 we find

I

E = ~b and P = ~b/2; thus, the equation of state
P = E/2. This is the same result as in Minkowski space-
time, i.e., like ultrarelativistic matter. As the string ex-
pands, the energy soon starts to increase while the pres-
sure starts to decrease and becomes negative; see Fig. 2.
For r m oo we find E = r/n' and P = r/(2n'); thus, —
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that the average pressure is zero as in Minkowski space-
tixne. Thus, in average the oscillating strings describe
cold matter.

spacetime [see Fig. 1(c)], and so we can only have os-
cillating string solutions. The maximal string radius is
given by

C. Anti —de Sitter spacetime —1 + Ql + 4H2 bn'2

2
(2.2o)

As an example of a Friedmann-Robertson-Walker
(FRW) universe with positive local gravity we now con-
sider anti —de Sitter spacetime. Here the circular string
potential goes to infinity even faster than in Minkowski

which can take any non-negative value. The comoving
coordinates, Eq. (2.4), are in the case of anti —de Sitter
spacetime given by

HX = 6 arccos g(l + H2r ) cos2 Ht —H r, (2.21)

[Qj. + H2r cos Ht —g(1 + H~r ) cos Ht —H2r2 ].Hr
(2.22)

The energy and pressure can be written as

H ri sin Ht + H~bn' cos Ht
Ho. 'E =

gl + H2r2/(1 + H2r2) cos2 Ht H2r2
(2.23)

[Hr'cosHt+ H +ha'r sinHt] —H r (1+H r )[(1+H r ) cos Ht —H r ]Hn'P =
2[H ri sin Ht + H +bn' cos Ht] gl + H2r2 g(].+ H2r ) cos2 Ht —H2r 2

(2.24)

~ [» 41/2[1+ 2v2
(2.25)

Using Eqs. (2.2), (2.3) we can then write down the energy
and pressure explicitly as functions of the string radius r,
only. For the present purposes it is, however, sufBcient to
consider some limiting cases. It is convenient to introduce
the parameter k:

I

average pressure for oscillating strings in anti —de Sitter
spacetime is, contrary to Minkowski and de Sitter space-
time, nonzero. No simple analytic expression for it has
been found for arbitrary k. The equation of state is of
perfect Quid type (P) = (p —1)(E) where p depends
on k. Approximate results can be obtained in the two
extreme limits. For k (& 1 we And

For k ~ 0 the string oscillates near the bottom of the
potential, while the other extreme corresponds to k ~
gl/2. For r = 0 we find

k3
Ha'(P) = —+ O(k ),32

while Eq. (2.28) gives

(2.29)

k/1 —k2
Ho, 'E = = 2Ho. 'P,

1 —2k2

thus the ultrarelativistic matter equation of state.
For r = r we find

(2.26)
and, therefore,

Hn'(E) = k + O(k ),

p = 1+ —+ O(k ).
32

(2.3o)

(2.31)

kHn'E =
1 —2k2

k
(2.27)

2/1 —2k2
In the limit k -+ gl/2 we find

Hn'(E) =-2k
T

—2k2 f k2

—k' pl —k'' (2.28)

corresponding to the equation of state P = E/2. This-
is exactly as in Minkowski spacetime: The string oscil-
lates between the two limiting types of equation of state,
P = E/2 and P = E/2 Anew p—henom. enon appears,
however, when we calculate the average values over a full
period. The average energy becomes

Ho'(P) =

and, from Eq. (2.28),

Hn'(E) = + O(QI —2k' ),
2K(gl/2 ) gl —2k2

(2.33)

1 + O(gl —2k2 ),
2vrK(gl/2 ) Ql —2k'

(2.32)

where T is the period in the world. -sheet time w and II
is the complete elliptic integral of the third kind. The

where R is the complete elliptic integral of the Erst kind.
This corresponds to
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~ = 1+ 1/~'+ O(l —2k'). (2.34)

III. SEMICLASSICAL QU'ANTIZATIGN

In this section we perform a semiclassical quantization
of the circular string configurations discussed in the pre-
vious section. We use an approach developed in field
theory by Dashen and co-workers [12,13], based on the
stationary phase approximation of the partition func-
tion. The method can be only used for time-periodic
solutions of the classical equations of motion. In our
string problem, these solutions, however, include all the
circular string solutions in Minkowski and in anti —de Sit-
ter spacetimes, as well as the oscillating circular strings
(H2bn'2 ( 1/4; cf. Sec. IIB) in de Sitter spacetime.

The result of the stationary phase integration is ex-
pressed in terms of the function

Numerical evaluation of (E) and (P) shows that p mono-
tonically grows from p = 1 until p = 1+ I/vr2 when k

grows &om zero to I/v 2, so that the average pressure is
always positive.

This concludes our analysis of the various types of
equation of state for circular strings in Minkowski, de
Sitter, and anti —de Sitter spacetimes. The results are
summarized in Table I.

27t o.'

T T
do d~ g„(X"X"—X'"X' ), (3.4)

0

X =A~,
AT.I = cos cos
2~ T) qT)'
AT . (2~o l f2m~lX = sin cosT) (T)'

(3.5)

(3.6)

(3.7)

where A is an arbitrary constant [A = v bn' in the no-
tation of Eq. (2.9)] and T became the period in the 7

variable too. For this solution in Minkowski spacetime,
we find, from Eq. (3.4),

S,i ——— T .
A2

2mo. '

Equation (3.2) then takes the form

A2M= T,
7t O.'

(3 8)

(3.9)

and then the quantization condition (3.3) yields

where the world-sheet coordinate o runs from 0 to T.
That is,

X"(o.+ T, ~) = X"(o., r).
In this parametrization the circular string solution (2.9)
takes the form

W(m) = S,i(T(m)) + m T(m), (3 1) 4A'
M = n, net. (3.10)

where S,~ is the action of the classical solution, m is the
mass, and the period T(m) is implicitly given by

dS, )

dT
—m. (3.2)

In string theory we must choose T to be the period in a
physical time variable. For example, when a light cone
gauge exists, T is the period in X = n'pw. The bound
state quantization condition then becomes [12,13]

o.'m = 4n, n g Np. (3.11)

If we subtract the intercept —4 in Eq. (3.11), this is
the well-known (exact) mass formula for closed bosonic
strings in Hat Minkowski spacetime.

We must identify the mass with the variable conjugated
to the physical time X . Since M is conjugated to w and
X = A7, m—:M/A is the string mass. Therefore the
semiclassical string spectrum results:

W(m) = 2am, n 6 Kp, (3.3)
B. de Sitter spacetixne

for n "large. " The method has been successfully used in
many cases from quantum mechanics to quantum field
theory. For integrable field theories the semiclassical
quantization happens in fact, to be exact. It must be
noticed that string theory in de Sitter spacetime is ex-
actly integrable [14].

To demonstrate the method and to fix the normaliza-
tion we first consider circular strings in Bat Minkowski
spacetime. We then perform the same analysis for de
Sitter and anti —de Sitter spacetimes, and then after, we
compare with approximate results obtained using canon-
ical quantization [1,10].

A. Minkowski spacetime

k
sn , k

Ql + k2 Ql + k2
(3.12)

Equation (2.2) is then integrated to

(Ht 7. II , k . 313
v'1+ k2 (1+k'' v'1+ k2' )

The period in comoving time, which from Eq. (2.12)
equals the period in static coordinate time, is then given
by

Using the notation introduced in Eqs. (2.16), (2.17),
the oscillating strings in de Sitter spacetime are given by
[6]

The string action in the conformal gauge in Minkowski
spacetime is given by

4k k2

Ql+ k' 1+k'' )
(3.14)
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Notice that the expressions for the periods in the physi-
cal time X and in the world-sheet time w are different.
The period in the physical time can be further rewritten
in terms of incomplete elliptic integrals of the first and
second kinds:

2 k
m =

Hn' 1+ k2 (3.20)

Then, identifying the string mass m as the conjugate to
the comoving time 4, Eq. (3.2) leads to

1
P = arcsin 1+ k2

(3.16)

The classical action over one period becomes

HT = + 4K(k)E(P, k) —4E(k)P(P, k), (3.15)
4k%(k)

1+k'
where

The string solutions in de Sitter spacetime enjoy con-
served quantities associated with the O(3, 1) rotations
on the hyperboloid. Using hyperboloid coordinates, the
only nonzero component for the circular string solutions
under consideration here is given by Lip ———Lpi ——~C
[6]:

8 E(k) —K(k)
QI+ k' (3.17)

k
Lip ——vC = 2~ 1+ k2' (3.21)

A straightforward calculation gives
where C = —L„„LI" is the Casimir operator of the
group. Hence, the mass is exactly linear in ~C

dT
dk

as well as

4 2E(k)
QI+ k' (3.is)

sr Ho, ' (3.22)

dS, i 8 k 2E(k)
H. (1+k ) i (3.i9)

The physical meaning of such a type of "linear" Regge
trajectory deserves further investigation.

The quantization condition (3.3) finally gives

H2n'Ql + k2
E(k)—K(k) k[K(k)E(P, k) —E(k)E(P, k)]

1+k2 QI+ k'
= 27m. (3.23)

This equation determines a quantization of the parameter
k, which by Eq. (3.20) gives a quantization of the mass. A
full parametric plot of H o, 'W as a function of H I, o.'

for k E [0, 1] is shown in Fig. 4. In the whole k range
a good approximation is provided by the second-order
polynomium:

(2~2 —2 ln(1 + ~2) ~
Nq = 1+ Int

7rH2n' (3.26)

For H o.' (& 1, which is clearly satisfied in most interest-
ing cases, we get

W = 1.6 m n'+ 0.53 H n'(m n') . (3.24)
0.34

H2 (' (3.27)

Expanding in H o.', the quantization of the mass be-
comes

~m -4n —5H ~ n + - ncNO.2 I 2

This is different from the result obtained in Minkowski
spacetime. The level spacing is, however, still approxi-
mately constant, but the levels are less separated than in
Minkowski spacetime. Notice also that the level spacing
slightly decreases for larger and larger n, and that the
Minkowski result is recovered for H = 0.

In de Sitter spacetime there is only a finite number of
levels as can be seen &om Fig. 4. This is due to the finite
height of the potential barrier. The number of quantized
circular string states is easily estimated using Eqs. (3.23),
(3.24) and Fig. 4:

7 oce (3.28)

where S@ is the Euclidean action of the classical solution
in the classically forbidden region. Defining t = it~, 7 =
i7@, and S@ = iS, we find from Eqs. (2.2) and (2.3),

~b n'

1 —H2r2 ' (3.29)

It should be stressed, however, that these states are not
truly stable stationary states because of the possibility of
quantum-mechanical tunneling through the barrier. The
probability of decay is given by

2('") =, (i H, )(d~~)
(3.30)

We thank 3. Garriga for raising this question to us. Then the Euclidean action takes the form
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H2a'8"

1.5
FIG. 4. Parametric plot of 0 n'TV as a

function of H m o.', Eqs. (3.20), (3.23),
for k C [0, 1] in de Sitter space-
time. Notice that H m n' C [0, 1] and
H o."W C [0, 4~2 —41n(1 + ~2)]. For
W = 27m (n ) 0) there can only be a finite
number of states.

0. 5

0. 2 0. 4 0. 6 0. 8
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2' o.'

2' 2

1 —H'r' («~J (3.31)

The integral can be expressed in terms of complete ellip-
tic integrals of second and third kinds: QA, ~o oc exp

4 vr k2 4
H2o. ' 2 2 k(1 ——k ——ln —+ 0 (k*))

(3.33)

4 E(k') —ll( —(k'/k)', k')
~2O, I gl+ k' (3.32)

where k' = gl —k2. For H n' (( 1 the quantum-
mechanical tunneling is highly suppressed for any value
of k except near k = 1, as follows by analyzing Eq. (3.32)
in a little more detail. For k —+ 1, where the barrier dis-
appears, the decay probability becomes unity. For k ~ 0,
near the bottom of the potential, the decay probability
is

For k identically zero, the decay process can be inter-
preted as a creation of strings with probability 7/, o oc

exp[ —~, , ]. This k =0 term coincides with the result
found by Basu, Guth, and Vilenkin [15] in the context of
a cosmic string nucleation scenario.

Let us now return to the number of states, Eq. (3.27).
It is interesting to compare the results here with the
results obtained using canonical quantization of generic
strings. By using a string perturbation series approach
for H o/' (& 1, it was shown by de Vega and Sanchez [1]
that the mass formula in de Sitter spacetime takes the
form

2 02 2~&2 2n —H m, o.'

Qr/2 H2m2~t2 ~ Qr/2 H2m2~12
n&0 n&0 R

where

(3.35)

(~", ) (~', ) "(~",")'(~,' )'10)
with mass implicitly given by

(3.36)

2n2 —a2~2 ~12 2 H27n2 2

o.'m = 24) + 21V
gn' —H'm'c " gl —H'm'o"

n&0

(3.37)

It follows that real mass solutions can only be defined up
to some maximal mass of the order n'm2 —1/(H2n').
To be a little more specific consider physical states in
the form

I

For H o, ' &( 1 we find real mass solutions to this equation
only for

N&N ..= 0.15
H2O. ' (3.38)

C. Anti —de Sitter spacetime

The calculations here are very similar to the calcu-
lations of Sec. IIIB, but the results will turn out to

Thus, along a trajectory in the Regge plot, we find only
N states. This is the relevant quantity to be compared
with the number of exact circular string states K~ in the
potential, and the two numbers are in fact of the same
order; compare with Eq. (3.27).
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be completely different. In the notation of Eqs. (2.20),
(2.25) the oscillating strings in anti —de Sitter spacetime
are given by [9]

P = arcsin
1 —A:2

k' = Ql —k'. (3.43)

k
Hr(7. ) =

1 —2k2

7
cn , k (3.39)

The classical action over one period becomes

8 (1 —k2) K(k) —E(k)
Ql —2k2

(3.44)

In this case Eq. (2.2) leads to: A straightforward calculation gives

Ht(~) = k
1 —2k2 (

, IIi , k I.
1 —k2 ( I —k2' QI 2k2' )

(3.4o)

dT
[2E(k) —K(k)], (3.45)

(1 —k2) (1 —2k2)

as well as

Also in anti —de Sitter spacetime, from Eq. (2.21), the
period in comoving time equals the period in static coor-
dinate time:

dS, i 8k 2E(k) —K(k)
dk H~n' (1 —2k2) s&2

The mass is obtained from Eq. (3.2):

(3.46)

1 —2k2 ( k

1 —k' ql —k'' )
(3.41) 2k Ql —k2

m =
Ho. ' 1 —2k2

(3.47)

It is rewritten in terms of incomplete elliptic integrals of
the first and second kinds:

HT = 2~ + 4kK(k) —4K(k) E(P, k')
1 —2k2

1 —k2

As in de Sitter spacetime, we find here an exact linear
relation between the mass and the square root of the
Casimir operator ~C = I zo (in hyperboloid coordinates)
of the group:

+4[a (k) —E(k)]E(P, k'), (3.42) m =
vrHa'

(3.48)

where The quantization condition (3.3) finally gives

~= ', ,
-' ', '+"' -'-' -'KkE k -Kk-Ek F k =2-- 3-49

H2n' 2 1 —2k2 gl 2k2 1 —2k2

1
m = +O(1&,Hn'(I —2k2)

(3.5o)

27r (+0 (3.51)

This equation determines a quantization of the parameter
k, which by Eq. (3.47) gives a quantization of the mass. A
parametric plot of H n'R' as a function of H m o.' for
k 6 [0, I/~2[ is shown in Fig. 5. The curve continues
forever to the right (contrary to the case of de Sitter
spacetime, Fig. 4), so that arbitrarily high mass states
exist. In anti —de Sitter spacetime, this is also clear from
the potential, Fig. 1(c). Asymptotically (k ~ gl/2) we
find, from Eqs. (3.47), (3.49),

o, 'm =H n'n. (3.53)

Thus the (mass) grows like n and the level spacing
grows proportionally to n. This is a completely difFerent
behavior as compared to Minkowski spacetime where the
level spacing is constant. A similar result was found re-
cently, using canonical quantization of generic strings in
anti —de Sitter spacetime [10]. The mass formula in anti-
de Sitter spacetime takes the form (3.34) but with H ( 0
(reminiscent of the formal relation between de Sitter and
anti —de Sitter line elements in static coordinates). Then,
the square roots in the denominators are well defined for
any value of o.'m and arbitrary high mass states can be
constructed. By considering states of the form (3.36) for
very large % [X )) I/(H2n')] it was shown that [10]

i.e.,

o, 'm 4H o.' N, (3.54)

27t
W = —m.

H
(3.52)

The quantization of the high mass states then takes the
form

in qualitative agreement with the result obtained here
for circular strings, Eq. (3.53). It should be noticed that
the circular string oscillations in anti —de Sitter space-
time (and in de Sitter spacetime) do not follow a pure
harmonic motion as in Hat Minkowski spacetime, since
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expressed in terms of 3acobi elliptic functions they are
in fact very precise superpositions of all &equencies. The
states Eq. (3.36), involving only one frequency, should
therefore not have exactly the same mass as a circular
string, and so we can only expect a qualitative agree-
ment for the results obtained using the two diferent ap-
proaches, and that was indeed what we found.

depending on the elliptic modulus. We have quantized
the time-periodic (oscillating) string solutions within the
semiclassical (stationary phase approximation) approach.

The main results of this paper are summarized in Ta-
bles I and II. The semiclassical quantization of the exact
(circular) string solutions and the canonical quantization
in the string perturbation series approach of the generic
strings, give the same qualitative results.

IV. CONCLUSION

We have computed exactly the equation of state of
the circular string solutions recently found in de Sitter
[6] and anti —de Sitter [9] spacetimes. The string equa-
tion of state has the perfect fluid form P = (p —l)E,
with P and E expressed closely and completely in terms
of elliptic functions and the instantaneous parameter p

ACKNOWLEDGMENTS

A.L. Larsen was supported by the Banish Natural Sci-
ence Research Council under Grant No. 11-1231-1SE.
Laboratoire de Physique Theorique et Hautes Energies
is Laboratoire Associe au CNRS UA 280. Observatoire
de Paris is Laboratoire Associe au CNRS UA 336.

[1] H.J. de Vega and N. Sanchez, Phys. Lett. B 197, 320
(1987).

[2] H.J. de Vega and N. Sanchez, in String Quantum Grav
ity and the Physics at the Planck Scale, Proceedings of
the Erice Workshop held in 1992, edited by N. Sanchez
(World Scientific, Singapore, 1993), pp. 73—185, and ref-
erences therein.

[3] H.J. de Vega and N. Sanchez, Phys. Rev. D 4'7, 3394
(1993).

[4] H.J. de Vega, A.V. Mikhailov, and N. Sanchez, Teor.
Mat. Fiz. 94, 232 (1993).

[5] F. Combes, H.J. de Vega, A.V. Mikhailov, and N.
Sanchez, Phys. Rev. D 50, 2754 (1994).

[6] H.J. de Vega, A.L. Larsen, and N. Sanchez, Nucl. Phys.
B427, 643 (1994).

[7] H.J. de Vega and I.L. Egusquiza, Phys. Rev. D 49, 763
(1994).

[8] H.J. de Vega and N. Sanchez, Phys. Rev. D 50, 7202
(1994).

[9] A.L. Larsen and N. Sanchez, Phys. Rev. D 50, 7493

(1994).
[10] A.L. Larsen and N. Sanchez, Phys. Rev. D (to be pub-

lished) .
[ll] N. Sanchez and G. Veneziano, Nucl. Phys. B333, 253

(1990); M. Gasperini, N. Sanchez, and G. Veneziano, Int.
J. Mod. Phys. A 6, 3853 (1991); Nucl. Phys. B364, 365
(1991).

[12] R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D
ll, 3424 (1975).

[13] H.J. de Vega and J.M. Maillet, Phys. Rev. D 28, 1441
(1983).

[14] H.J. de Vega and N. Sanchez, Phys. Rev. D 47, 3394
(1993).

[15] R. Basu, A. Guth, and A. Vilenkin, Phys. Rev. D 44,
340 (1991).

[16] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals Se-
ries and Products, 4th ed. (Academic, New York, 1965).

[17] Handbook of Mathematical Functions, edited by M.
Abramowitz and I.A. Stegun (Dover, New York, 1964),
p. 599.


