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Geometric entropy of nonrelativistic fermions and two-dimensional strings
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We consider the geometric entropy of free nonrelativistic fermions in two dimensions and show
that it is ultraviolet finite for finite Fermi energies, but divergent in the infrared. In terms of the
corresponding collective field theory this is a nonuser turbative effect and is related to the soft behavior
of the usual thermodynamic entropy at high temperatures. We then show that thermodynamic
entropy of the singlet sector of the one-dimensional matrix model at high temperatures is governed
by nonperturbative effects of the underlying string theory. In the high-temperature limit the "exact"
expression for the entropy is regular but leads to a negative specific heat, thus implying an instability.
We speculate that in a properly defined two-dimensional string theory, the thermodynamic entropy
could approach a constant at high temperatures and lead to a geometric entropy which is finite in
the ultraviolet.

PACS number(s): 04.70.Dy, 11.25.Pm

I. INTRODUCTION

Recently the entropy of entanglement between differ-
ent regions of space in quantum Beld theories has been
intensively studied [1—6]. The motivation for this is its
direct connection to the question of information loss due
to black holes and black hole entropy [7—12]. A signifi-
cant feature of this entanglement entropy, or "geometric
entropy" is that it is ultraviolet divergent in typical Beld
theories. This has been interpreted to imply that at least
at the semiclassical level information loss due to the for-
mation of a horizon is inevitable in quantum Beld theo-
ries. The divergence of the entropy is a reHection of short
distance singularities in quantum Beld theories. Alterna-
tively [13—16] the divergence is related to the behavior of
the usual thermodynamic entropy at high temperatures
since, as we shall see below, the geometric entropy eBec-
tively involves an integral of the thermodynamic entropy
density over all temperatures.

One may hope that in string theories this divergence
disappears because of a soft ultraviolet behavior [11].
However, to leading order in the string perturbation ex-
pansion, the thermodynamic &ee energy of a string is
equal to the sum of the free energies of the physical modes
of the string and one would obtain the same divergence in
each term of the sum. Furthermore, unlike in a field the-
ory of a finite number of Belds, the thermodynamic &ee
energy of &ee strings is itself divergent at the Hagedorn
texnperature. This is an infrared diveregence and might
signal an instability of the theory and one might obtain
a finite answer once one takes into account interactions
and shift to a stable vacuum [17]. As argued in [13,14]
the geometric entropy in string theory is addicted by this
Hagedorn transition and what appears as an ultraviolet
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divergence in each term of the sum over all string modes
may be interpreted as an in&ared problem in the full
answer.

The need to include string interactions calls for a
formulation of the problem in some well-defined and
tractable string field theory. While this appears to be
an almost impossible task at present, there is one string
theory where a tractable nonperturbative formulation ex-
ists, at least for some bulk quantities. This is the two-
dimensional string defined via the one-dimensional ma-
trix model [18]. The singlet sector of the matrix modeli
may be written as a two-dimensional collective field the-
ory of the density variable. The Quctuations of the collec-
tive Beld represent a massless particle which is the only
propagating degree of &eedom of the two-dimensional
string and the coupling is proportional to the inverse
of the Fermi energy. For nonperturbative considerations
it is better to write the model as a field theory of nonrela-
tivistic fermions in the presence of an inverted harmonic
oscillator potential and no self-interactions. The idea,
then, is to consider a geometric entropy in this model
and use exact nonperturbative answers to understand
stringy eKects. Hopefully this will teach us something
about higher dimensional string theories as well.

In this paper we take the Brst step in this program. We
first consider the problem of free nonrelativistic fermions
in two dimensions. By constructing the explicit expres-
sion for the ground-state wave functional and the cor-

As we will see soon the nonsinglet contributions are irrele-
vant for a calculation of the geometric entropy in the ground
state.

The relationship between the collective field and the mass-
less scalar of the effective field theory is rather subtle and
not completely clear at this moment. See [23,24] for a recent
discussion.
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responding geometric density matrix we argue that the
geometric entropy has no ultraviolet divergence for fi-
nite Fermi energies. In terms of the collective Geld the-
ory this is a nonperturbative phenomenon. In fact the
result follows &om the softer behavior of the ordinary
thermodynamic entropy at high temperatures (compared
to relativistic fermions). We then consider the high-
temperature limit of the "exact" expression for the ther-
modynamic partition function of the singlet sector of
the one-dimensional matrix model [21]. We will show
that the genus expansion breaks down at high enough
temperatures and hence the geometric entropy of this
string theory is essentially nonperturbative. A naive
high-temperature expansion leads to a regular behavior
of the entropy, but the specific heat turns out to be neg-
ative, signifying a nonperturbative instability.

II. FjR.EE NONKELATIVISTIC FEB,MIONS IN
TWO DIMENSIONS

Consider a theory of fields P(z, t) in 1 + 1 dimen-
sions. The ground-state wave functional may be writ-
ten as @0[$1„g~],where $1, (P~) denotes the field P for
z ( 0 (z ) 0). The density inatrix which gives expec-
tation values of operators localized in the x ) 0 region
ls

n(4R 6) f+WI@ 40'(1, 4'Rf @o(4L,PRI.

As shown in [3,4] the quantity Trp may be represented
as an Euclidean path integral over a cone with a deficit
angle 27r(1 —n). The geometric entropy may be then
written using a "replica trick" as

xe —
*"*[b(k)8(~k~ —k~) + b (—k)8(k~ —

~k~)] (3)
A

and similarly for gt. The operators b, bt satisfy the
standard anticommutation relations (b(k, t), bt (k', t) ) =
h(k —k'). The ground state is then described by the filled

Fermi sea b(k) ~0) = 0.
In terms of the coherent states of the b oscillators,

b(k)ib(k)) = b(k)ib(k))

(b(k)~bt(k) = b(k)(b(k)~

where b(k), b(k) are Grassmann numbers, the ground-
state wave functional is given by

dk-
@o[b(k),b(k)] = exp —— —b(k)b(k)

2 — 2'
The Grassmann fields appearing in the path integral are,
however, not b(k) and b(k). Rather, they are the combi-
nations

g(k) = b(k)0(ski —ky) + b(—k)8(ky —ski) (6)

and similarly for g(k). The Fourier transforms of these
fields are the original fields g(z). For reasons which will
be clear in a moment we will use a new field y(q)
@(k~ + q). Then the wave functional (5) becomes

-
~q

@o = exp ——
I

—X(V)X(V)
2 ( ~ 27l

Sg ———pin p=
~

1 —n
~

lnTr p"
dn) (2)

aq—x(v)x(v)
~2K

(7)

For relativistic systems this establishes the equality of
the geometric entropy with the usual thermodynamic en-
tropy of the Geld in Rindler space at the Rindler tem-
perature, and hence the quantum correction to the en-
tropy of a large mass black hole. For nonrelativistic
systems the Rindler Hamiltonian would depend on the
Rindler time. However, the geometric entropy defined
above makes sense and Trp is still a path integral on a
cone.

A. Wave functienals, density matrices, and
geemetrie entropy

Consider a system of N~ &ee nonrelativistic fermions
contained. in a box: —L ( z ( L. The dispersion relation
for the single particle states is given by e(k) = 2k where
k is the (spatial) momentum which is quantized as k =

with integer or zero n. However, below we will often
use continuum notation. The second quantized fermion
field operator can be expanded in terms of quasiparticle
operators b(k) and bt(k):

The inverse Fourier transform of y(q), denoted by y(z),
is related to the original field g(z) by y(z) = e'"~ @(z).
Since this relationship is local we can compute the geo-
metric entropy using these Geld. s.

In (7) the first term may be written as an integral over
position space of a loca/ quantity g(z)y(z) and does not
contribute to the geometric entropy. The only Inomen-
tum modes which contribute to the geometric entropy
are those in the flied Fermi sea as in the second term
in (7). The Fermi momentum thus roughly acts as an
ultraviolet cutoff and this is the essential reason why the
geometric entropy turns out to be Gnite.

We can proceed similarly for a relativistic Weyl
fermion. For example, for right-moving fermions the
Fermi momentum is zero and the Dirac sea consists of all
negative momenta. It is easy to see that the wave func-
tional is the expression (7) where the limit of integration
—2k~ in the second term is replaced by —oo. Clearly,
in the limit of large k~ the nonrelativistic expression re-
duces to the relativistic expression. This simply reBects
the fact that the excitations very close to the Fermi level
behave as massless relativistic particles with the velocity
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of light replaced by the Fermi velocity.
To compute the geometric entropy we now intro-

duce the following technique which may be trivially
generalized to other situations (e.g. , relativistic bosons,
fermions, etc.). We first expand the field eigenvalues in
terms of modes which are localized to the left region
(x ( 0), fr, (u) and those localized to the right region
(x ) 0), fR(a)) as follows:

the wave functional explicitly in terms of fr, and fR and
obtain the density matrix for fields localized in the x ) 0
region by simply functionally integrating over f&, fr,

p(fRi() ), = f 22fr 22' @o(fa, fc) @alfie fc)

It is easy to evaluate the integral I'~(~, ~') for p = oo.
The result is

x(*) = 0(*) d~( )'-f~(~) (ur, u') = 2vri sech(m. a))b(cu —a)'). (15)

f —xl
+0(—x) der

lka)
From this we can make the first consistency check on our
technique. Using (15) one gets the wave functional for
relativistic fermions:

x(q)

x(q)

x(—q)

d(d f ( )+f ( )]G(q )

dc'
[fr, (p2) + ie fear((u)]G(q, —~),

dc'

2
If~(~)+ie f~(~)]G(q ~)

d(d [ie--fr, (~) + f&(~)]G(q, —~), (9)

where we have defined

. Ki )'
gqa)

q ) o. (10)

Note that G(—q, p2) = i e G(q, pi), which has been used
in writing (9).

The ground-state wave functional may be now rewrit-
ten explicitly in terms of fr„ frr

Op[fr„ f~] = exp {—2[I(oo) + I(oo) —2I(2k')]), (11)

where we have defined

lg
I(w) —=

2 x(q)x(q),

I(v) —=
2 x(q)x(q) =

2 x(—q)x( —q).
lg

(12)

where a denotes the lattice spacing (or some other ultra-
violet cutoff). The factor of arises from the dimen-

sion of the field X(x) under rescalings of x. To obtain the
expression for Xt(x) replace fr„ fJr by fr„ fear, and ~ by
—pr in the integrand of (8).

The fields x(q) and xt(q) may be now expressed in
terms of fr, and fR We ge.t the following expressions, all
valid for q ) 0:

——exp —2m du tanh veau R w R u

fr, (~—)fi, (u)] +i sech 7ru[fr, (u) fR(u)

f~(~)f—r (~)]) . (i6)

After a trivial rescaling of the fields by a constant this
is exactly the answer obtained by Euclidean path inte-
gral methods in [6]. As discussed above, (16) is also the
answer for nonrelativistic fermions exactly at k~ ——oo.

The density matrix and its various powers in this rela-
tivistic limit may be obtained as in [6] and the geometric
entropy may be calculated using the replica trick to ob-
tain the result

Sg ln(L/a) .

I(2k@) (2k@ ——) 2(0)y(0).

It may be easily seen that for large N = —the function
G(0, u) is peaked at u = 0, falls to zero at a)

and then oscillates rapidly around zero. This means that
the mode X(0) expressed as an integral over pi essentially
receives contribution &om a few values of u around u =
0. To the lowest order we can then approximate the wave

This expression has an ultraviolet as well as an in&ared
divergence. This result may be understood in a very sim-
ple way. The geometric entropy is a measure of the entan-
glement of the modes fr, and fR It is clea. r from the wave
functional that the modes fr, (p2) and fR(w) mix for a/I
values of u. This means that all the ~ modes contribute
to the geometric entropy, which should be then propor-
tional to the total number of (2)'s. From (8) it follows that
for large I the number of allowed u's is proportional to
ln(I/a) —hence the answer (17).

For small values of k~ the integral I(2k~) may be ap-
proximated as

In evaluating I(p) we need to perform the integration

~ dqI'~ (p2, p2') = —G(q, (u) G(q, —(u').
0 27C

In the presence of a finite box size 2L the lower limit
of the q integral is really &. Using (9) one may write

It may be easily verified from the definitions that a rescaling
of 6elds by a constant does not change the geometric entropy,
as one would expect.
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functional by

+'f (o)f.(o) -'f.(o)f.(o)] (19)

eo]fo, fe] exp —f & w]f o( w)f o( w)+ fe(w)fe(w)]

+2ln
~ ~ [ f~—(0)f~(0) —fr, (0)fL, (0)
r'k~1 ')

)

In (19) the original integrals over w have been replaced by
sums and the resulting factors of lnN have been suitably
absorbed by a redefinition of the Gelds.

In (19) the left and right modes inix only for ur = 0.
For small but Gnite k~ only a few modes around ~ = 0
mix, and these alone contribute to the geometric entropy.
I et us evaluate the entropy due to the u = 0 mode alone.
The final result will be this contribution multiplied by a
factor of order unity. The unnormalized density matrix
for this mode is easily seen to be

p( fIf, f&) = exp' —(1 —2sech g) [fR(0)f~(0) + f&(0)f&(0)] + 2sech q[f~(0) f&(0) + f&(0)f~(0)]), (20)

where we have deGned

kFL
sech g =

kFL

By a redefinition of the fields fji -+ (2tanh g) 2 f~ one
may rewrite the density matrix in a form which facilitates
the calculation of Trp for any n. The Gnal result for the
geometric entropy is

S~ = 21n(2cosh g) —2i1 (tanh g). (22)

For k~L vr one has g —+ +ao and the leading order
expression for the geometric entropy follows from (22):

The total geometric entropy for small k~ is Sg mul-
tiplied by a factor of order unity. As advertised above
the result does not involve the ultraviolet cutoff essen-
tially because only a few modes contribute to the entropy,
rather than all of the ln N modes. In a similar fashion we
expect that for finite k~ the role of the ultraviolet cutoff
is replaced by k~.

2
W~ =I f. (z), f. (z) = zO, f3 (z), (24)

of the behavior of the standard thermodynamic entropy
at high and low temperatures. For example, a &ee mass-
less boson in d-space dimensions at temperature T =

&
has an entropy density s = &~. This diverges for low P,
or high temperature for all d. In our problem we have
to put P = 2vrx and integrate this entropy density over
x, so that there is a divergence of the geometric entropy
&om the lower limit of integration. This is the ultraviolet
divergence in the entropy. In the corresponding Rindler
problem, the divergence arises because the local temper-
ature is very high near the horizon and the corresponding
contribution to the entropy density is large. For d = 1
there is an additional in&ared divergence coming &om
large x. Thus using an ultraviolet cutoff e and an in-
&ared cutoff L in the integral over x one has S
for d ) 1 and S ln( —) for d = 1.

Consider now our system of N~ &ee nonrelativistic
fermions in one spatial dimension in the grand canon-
ical ensemble with an inverse teinperature P = z and
fugacity z. The fugacity is determined in terms of N~ by
N~ = z(9, ln Z (where Z is the partition function) which
leads to

B. Thermodynamic and geometric entropies

There is an alternative way to view the quantity Trp .
Consider dividing up the region x ) 0 into small cells.
In the thermodynamic limit the path integral which rep-
resents Trp would be a product of path integrals for
each individual cell. However, the path integral for the
cell centered at the point x is the standard thermody-
namic partition function at a temperature T(x) =

2
Thus the geometric entropy may be obtained by simply
calculating the thermodynamic entropy density at a tem-
perature T(x) and integrating the result from x = 0 to
x = oo. This is the procedure used to compute the genus
one contribution to the entropy of strings in [13,14].

The ultraviolet divergence of the geometric entropy in
relativistic Geld theories may be now understood in terms

where the function fs is defined as

OO

fs(z) = dx ln (1+z e ).
7r

The expression for the entropy follows &om usual ther-
modynamics and is given by

(3fs (z)S=N~ ' —lnz
2 i z j (26)

The function f i (z) is a monotonically increasing func-
2

tion of z. Thus for large values of ~& (i.e. , low tem-
peratures or high densities) one may use the standard
expansions of the functions f, (z) for large z [19] to ob-
tain the leading order term in the entropy density:
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sr 2 13+4

L 61n z 360(ln z)s
nian which governs the fiuctuations ((r, t) is given by

6P+2ey
8m

45 ps k~s

II. u
——. — d7. II~ + (8 ()'—

2 7l & Po

The leading term is the same expression for a &ee rela-
tivistic boson or a &ee relativistic fermion in two dimen-
sions, apart from a factor of /2e~. The reason is simple.
For a given temperature and size of the system, large
values of ~& mean large Fermi momenta. In this case
the excitations are restricted to particle-hole excitations
near the Fermi level. The dispersion for these excita-
tions are given precisely by E(k) = /2ey ~k~ which is the
same as that of a massless relativistic boson in two di-
mensions. The factor of /2e~ in the dispersion relation
explains the same factor in the entropy density. What
is more signiBcant for our considerations is the fact that
the same result applies for a given p~ and size, but low
temperatures.

On the other hand, for small values of ~& one has~NF
to use the power series expansions of f (z) for small z
[1S] and one easily gets, for the entropy density,

x [11,(a.g) 11, + —,'(a.g)']

vr ~ (3po
(~o)'&
2'4 (30)

where IIg denotes the field momentum. Note that the
Hamiltonian already comes in the normal ordered form
[20] and leads to finite answers. The density thus behaves
as a scalar Beld with in general a position-dependent cou-
pling given by ~. For free fermions V(x) = 0. Then

Pp

po
——/2@~ and 7 = " . The coupling is a constant

and equal to 2 . For large p~ compared. to typical en-2pF
ergies, one has a free relativistic scalar field, which is why
in this limit we obtained the relativistic answer for the
entropy. For small p~ the theory is strongly coupled and
the perturbation expansion does not make sense. Thus
the Bniteness of the entropy demonstrated above is a non-
perturbative efFect in this collective field theory.

Np
L

2vr
(28)

To obtain the geometric entropy one has to integrate
s(2vrx) over all positive x. lf we use the low-temperature
expansion we would get an ultraviolet divergent answer
from the behavior of the integrand near x = 0. In fact
it may be easily checked that the lowest order answer
agrees completely with the direct calculation of the ge-
ometric entropy of relativistic fermions discussed above.
However, to treat the region x = 0 we have to use the
high-temperature behavior in (28). This shows that the
integrand has an integrable singularity at x = 0 whereas
there is a logarithmic divergence coming &om large values
of x. Thus the geometric entropy is finite in the ultravi-
olet. This is in marked contrast to relativistic bosons or
fermions. Essentially as one approaches the point x = 0
the temperature becomes large compared to the scale set
by the Fermi energy. Thus the Fermi energy provides a
cutofF to the relativistic behavior for large values of x.

C. Interpretation in collective field theory

The true signiBcance of this result can be appreciated
if one rewrites the model in terms of the collective field
theory of the density of fermions p(x, t). Consider a
more general system of N~ fermions in an external static
potential V(x). The density p(x, t) may be expanded
around the "classical" average value

p(x, t) = «(x) + 0.((x, t),
1« = —V'2[ ~ —V(x)],

(2S)

where p~ is the Fermi level. Introduce the "time of
fiight" variable w(x) = —J ~

l. Then the Hamilto-

III. MATRIX QUANTUM MECHANICS AND
TWO-DIMENSIONAL STRINGS

Let us now consider the one-dimensional matrix mod. el
which provides a nonperturbative deBnition for the two-
d.imensional noncritical string. This is defined by the
action

A=A dtTr 2 BgM t +VM t (31)

where M(t) is an N x N matrix and the potential func-
tion V(M) has to be chosen such that it has a quadratic
maximum. The detailed form of the potential is not im-
portant in the double scaling limit. As is well known the
singlet sector of this model may be written exactly in
terms of nonrelativistic fermions @(x,t) where x denotes
the space of eigenvalues of the matrix M. These fermions
have no self-interactions, but move in an external poten-
tial V(x). Let us denote the Fermi energy by py. Then
as the coupling g =

& of the theory approaches a crit-
ical value g the Fermi level p~ approaches p which is
the energy at the top of the potential hump. The dou-
ble scaling continuum limit of this problem is given by
p, = p —p~ ~ 0 and A ~ oo with e = Ap = fixed. This
is known to describe the two-dimensional string. In this
limit only the quadratic hump of the potential is rele-
vant and one has a problem of nonrelativistic fermions in
two dimensions in an external potential V(x) —xz, the
inverted harmonic oscillator. The collective Beld theory
Hamiltonian is given by (30) with this potential. This is
now a version of string Beld theory and the string cou-
pling is g, q

The geometric entropy of this model in the ground
state may be calculated in principle by the technique
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Ch „(t/~) {nt/r p)
Bp 2n. t sinh(t/r) sinh(nt/rP)

1+—' l---7
27r 2

(32)

The infinite constant p is necessary for (32) to reproduce
the correct WEB expansion in &, but would be unimpor-
tant in what follows. The &ee energy F is then obtained
by integrating the equation

BF = A (p —p, ). (33)

Recalling that the number of fermions is N = Ag one may
write down the expression for the entropy using standard
relations in the grand canonical ensemble

The secoiid term in (34) arises because we are considering
derivatives with fixed p rather than fixed %.

The above expressions have an important duality sym-
metry. From (32) it follows that

BE n~
(35)

It then follows from (33) that the canoiucal partition
function PI' is invariant under this duality transforma-
tion.

The standard genus expansion is obtained by consid-
ering K to be large and expanding the hyperbolic sine
functions in a power series expansion. The result for this
asymptotic expansion is

discussed above. The expansion for the fermion fields
is no longer in terms of plane waves, but in terms of
the eigenfunctions of the Schrodinger operator in the in-
verted harmonic oscillator potential, which are parabolic
cylinder functions. The main modification would be to
replace the plane waves e'~ by parabolic cylinder func-
tions in the definition of G(q, u) in. (10). The resulting
expressions are rather diKcult to analyze.

VVe have seen, however, that the divergence of the
geometric entropy is related to the high- and low-
temperature behaviors of the ordinary thermodynamic
entropy. This is what we now examine.

Evaluation of the complete thermodynamic partition
function of the matrix model. is a formidable task since
this includes contributions &om the nonsinglet states.
However, if we are interested in computing the geomet-
ric entropy for the ground 8tate, which is a singlet, the
trace involved in Trp" is a trace over singlet states alone.
The thermodynamics in the singlet sector has been com-
pletely solved and we can use the known results of [21].

Let us define 4 = g, —g and let F denote the &ee
energy. Then the chemical potential p is determined by
the equation

1
l +=X-(P)5~ (pr2)m (36)

where the functions f (P) are symmetric under the du-

ality transformation ~ —+ —and has the formp

(37)

C(m, k) are numbers related to Bernoulli coefficients.
The m = 1 in the sum in the above expression is the
one-loop contribution in string theory. The correspond-
ing one-loop &ee energy is

in@ fp n)
12nP in P) (38)

This result is identical to the &ee energy of an ideal gas
of massless bosons in one spatial dimension of size ln p
apart from a constant which is in fact the finite one-loop
correction to the ground state energy of the system. This
is expected since the only propagating mode of the two-
dimensional string is a massless scalar. The same result
is obtained by performing the Polyakov path integration
in the continuum d = 2 string theory [22] and is in fact
the result of the modular invariant integral

p']n —m~~'
exp

)

See [16] for related remarks.

where w is the complex modular parameter on the torus
and the integration is over the fundamental domain. The
term in the sum with m, n = 0 is the zero-temperature
&ee energy and is separately modular invariant. The
temperature-dependent term evaluates to the second
term in (38). As noted above this is the contribution
&om a single massless scalar. This is nevertheless modu-
lar invariant as it should be since it follows &om a string
theory. Note further that unlike in higher dimensions
the one-loop answer does not have a Hagedorn behav-
ior at any finite temperature simply because the two-
dimensional string has only one propagating degree of
&eedom.

The contribution to the geometric entropy &om the
one-loop term alone gives the standard logarithmically
divergent answer for a &ee relativistic boson in two di-
mensions. One may regard the entire divergence to be
infrared since the answer is modular invariant, as argued
in [14]. However, the answer is really the same as a sin-
gle boson. The string interpretation then gives a relation
between the in&ared and ultraviolet cutofF in terms of
the cutofF in the modular parameter Im7.

Returning to our description of the usual thermody-
namics of the matrix model let us record below the genus
expansion for the thermodynamic entropy:
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1 1 1 78 = — [ln p+ 1]+— + s + . . . (40)3 A2 18 90

p, 27t 2 48p2
= ——Re @[-'(1+iK)] + Re 4 "[-'(1+iK)]

115roP (41)

where 4(x) denotes the digamma function. It may be
checked that if one now considers the large K asymptotic
expansion of the digamma functions in (41), the result
agrees with the large-P limit of the genus expansion in
(36).

Since we have duality invariance —-+ —we can deducep
the high-temperature behavior &om the low-temperature
expansion (41). Using (35) and (41) one gets

0& 1 1 5 . ~P~
2E ~J

1 (+ Re @" —
/

1+i48~s 2 q ~ )

11520vr5 2 ( vr j (42)

The expansion in (42) is now valid for small P. For
very high temperatures P « — it is senseless to per-
form asymptotic expansions of the digamma functions in
(42) for large values of the argument. Rather one could

The asymptotic expansion (36) makes sense for small
temperatures, i.e. , large P. Indeed, for large P, & ap-
proaches a constant, and the leading correction &om all
the terms in the sum in (36) is of order &, , as is clear
from (37). The leading term in the f'ree energy is then
seen to be of order &, as well and has contributions &om
all genus.

We have seen, however, that the ultraviolet divergence
of the geometric entropy is related to the high tempera-
ture behavior of the &ee energy. The asymptotic expan-
sion of (32) leading to the genus expansion (36) clearly
breaks down for high temperatures. More specifically for
P & —one should not expand the hyperbolic functions
in (32) in power series. This means that for high tem-
peratures strong coupling effects (in the sense of string
theory) become important. Indeed the genus expansion
in (36) contains ever-increasing powers of —with higherP
and higher genus giving rise to higher and higher powers.
It is clearly necessary to look at the high-temperature
limit for arbitrary values of the string coupling g,q.

Before considering the behavior at high temperatures
let us look at the behavior at low temperatures, P )& —,
but independent of the genus expansion. This means we
expand the factor (~t/~P)/sinh(mt/rP) in (32) in a power
series, but not the first factor. This gives a power series
in &, for all values of K. A straightforward evaluation of
the integrals yields the first few terms

perform a Taylor expansion leading to the result

BA 1 y p II ] 2

Bp 2' 48vr
=-—+(-)+ + (-) [1+3 ]
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Alternatively one may work with the full expression
(32). For high temperatures one may expand the factor

(art/KP)/sinh(vrt/rP) in powers of e s . One gets

1 ( ~(2n+1)Re 4' — 1+ +iK
~
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For small P we can use the asymptotic expansions for
4"(z) for large z and thus obtain an expansion for ~&+ in

powers of P2 The result agrees entirely with the expan-
sion (43).

The expression for the entropy is obtained by integrat-
ing the expression (43) and using (34):

&'@"(2) [2„2
48

ps @IIf/
(

1
) [7K'+ 5+4 + rc ] +

1440 (45)

Note that 4'"(2) and 4""(z) are negative so that the
leading contribution to the entropy is positive.

One important feature of the high-temperature limit
is that there is no term proportional to the "volume, "
which is ln p in this model.

Contrary to the results of the genus expansion the en-
tropy has a regular behavior at high temperatures. How-
ever, the specific heat C„= —PI is negative. This
means that the system is unstable. We should not re-
ally trust the above thermodynamic expressions for all
temperatures.

We believe that this instability is related to an inherent
nonperturbative instability of the model defined naively
as an inverted harmonic oscillator. In fact it is quite
unclear how one should define the matrix model so that
it satisfies all the basic physical requirements [23]. In a
properly defined model, e.g. , with infinite walls at large
~x~, there should be no instability of the kind discussed
above. One possible scenario could be that the specific
heat should remain positive, but the entropy saturates
at high temperatures. It is also possible that there is a
phase transition in the singlet sector itself at P —.Such
a phase transition is distinct &om the usua1 Kosterlitz-
Thouless transition in this model which is driven by
the nonsinglet states and which is a perturbative phe-
nomenon.

What is clear &om the above discussion, however, is
that the genus expansion is a bad guide to the behavior
of the thermodynamic entropy at high temperatures and
that nonperturbative e8'ects are of crucial importance in
a discussion of the geometric entropy.
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IV. DrsCUSSXam

Even if we obtain a physically reasonable expression
for the thermodynamic entropy it is still not clear how
one could use this result to obtain the geometric entropy.
This is because in this theory interactions are not trans-
lationally invariant and it is far &om obvious how one
could extract an entropy density which we expect to be
position dependent as well. From the point of view of the
direct calculation of the geometric entropy discussed in
the earlier part of this paper this issue is related to the
fact that the entropy would depend on the region of space
which is integrated out to obtain the density matrix.

To obtain the geometric entropy of the underlying
string theory, one further needs to address the question
of the exact correspondence of the collective field and
the massless scalar of the string theory. The point is,
the massless scalar of the string theory seems to be re-
lated to the collective field in a nonlocal (in space) way
[23]. Hence the geometric entropy obtained by integrat-
ing out the string theory scalar field in some region of
the I iouville space is very diferent IIrom that obtained

by integrating out the fermions or the collective fields in
some region of the x or v. space. Nevertheless our results
strongly indicate that in all these quantities nonpertur-
bative strong coupling eKects play a crucial role.

Finally to really understand black hole entropy in this
string theory one needs a clear understanding of the black
hole solution in the matrix model. There have been sev-
eral suggestions about this [25], but the situation is rather
unclear. In particular there is no contact with known
black hole solutions of the low-energy effective Geld the-
ory with nontrivial tachyon backgrounds [26]. All these
issues are intimately tied with a deeper understanding of
the nature of space of time in the matrix model.
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