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We study the time evolution of the reduced density operator for a class of quantum Brownian
motion models consisting of a particle moving in a potential V(x) and coupled to an environment
of harmonic oscillators in a thermal state. Our principal tool is the Wigner function of the reduced
density operator and for linear systems we derive an explicit expression for the Wigner function
propagator. We use it to derive two generalized uncertainty relations. The first consists of a sharp
lower bound on the uncertainty function U = (Kp) (b,q) after evolution for time t in the presence
of an environment. The second, a stronger and simpler result, consists of a lower bound at time t on
the quantity A = U —C„~, where C„~ = —(ApAq+ AqAp). (A is essentially the area enclosed by
the 1 —o contour of the Wigner function. ) In both cases the minimizing initial state is a correlated
coherent state (a nonminimal Gaussian pure state), and in the first case the lower bound is only
an envelope. These generalized uncertainty relations supply a measure of the comparative size of
quantum and thermal Quctuations. We prove two simple inequalities, relating uncertainty to von
Neumann entropy, —Tr(p ln p), and the von Neumann entropy to linear entropy, 1 —Trp . We also
prove some results on the long-time limit of the Wigner function for arbitrary initial states. For
the harmonic oscillator the Wigner function for all initial states becomes a Gaussian at large times
(often, but not always, a thermal state). We derive the explicit forms of the long-time limit for
the free particle (which does not in general go to a Gaussian), and also for more general potentials
in the approximation of high temperature. We discuss connections with previous work by Hu and
Zhang and by Paz and Zurek.

PACS number(s): 05.40.+j, 03.65.Bz, 42.50.1 c

I. INTB.ODU CTION

Quantum Brownian motion (QBM) models have been
the subject of a number of studies over many years [1—15].
Many reasons for the interest in these models may be
found: they permit the possibility of studying in some
detail the approach to equilibrium in nonequilibrium sys-
tem; they arise in studies of macroscopic quantum ef-
fects; and they are related to the question of dissipation
in tunneling. Most recently, they have been studied in
the contexts of quantum measurement theory, decoher-
ence, and the quantum to classical transition. It is these
contexts towards which the present work is directed. We
are, in particular, interested in the emergence of classical
behavior in open quantum systems.

The quantum Brownian motion models belong to an
important class of non equilibrium systems in which there
is a natural separation into a distinguished subsystem 8
and the rest (the environment). The distinguished sub-
system 8 is often referred to as an open quantum system.
One is interested in the behavior of 8, but not in the de-
tailed behavior of the environment. 8 is most completely
described. by the reduced density operator p obtained by
tracing out over the environment states. One's goal is
then to obtain an evolution equation for p, which will in
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general by nonunitary, &om which one may calculate the
probabilities of any observables referring to 8 only. In
the one-dimensional QBM models studied in this paper,
8 consists of a particle of mass M moving in a potential
V(x). 8 is linearly coupled to an environment, consist-
ing of a large number of harmonic oscillators in a thermal
state at temperature T, and characterized by a dissipa-
tion coefBcient p.

Given such a model, there are many interesting ques-
tions one can then ask about it. Under what conditions is
there suppression of interference between localized wave
packets? Under what conditions does the Brownian par-
ticle evolve approximately classically? How big are the
fluctuations about classical predictability? Are these
fluctuations larger than the inescapable quantum fluctua-
tions? Is there a generalization of the uncertainty princi-
ple to include environmentally induced fluctuations, rep-
resenting the smallest amount of noise the system must
su8'er? What sort of states are most stable in the face of
these fluctuations? Does entropy or uncertainty increase
as time evolves? Toward what sort of states does the sys-
tem evolve in the long-time limit? Does the system tend
towards thermal equilibrium in the long-time limit?

Many of the above questions have been addressed be-
fore [16,14,17—19,15,20,21] and some of them will be the
topic of the present paper. We are particularly interested
in generalizations of the uncertainty principle. The meth-
ods we will develop, however, will be applicable to most
of the other questions listed above, and in fact, a spin oK
of our work is a simple method for fj.nding the long-time

0556-2821/95/51(12)/6870(16)/$06. 00 Oc1995 The American Physical Society



51 GENERALIZED UNCERTAINTY RELATIONS AND LONG-TIME. . . 6871

limits of arbitrary initial states, for linear systems.
There are a number of reasons why it is of interest to

obtain generalizations of the uncertainty principle. First,
on general grounds it is desirable to know how the usual
uncertainty principle is modi6ed in the face of environ-
mentally induced Buctuations. This paper therefore con-
tributes to the extensive body of work which is concerned
with the fundamental question of modifications and gen-
eralizations of the uncertainty principle (see, for example,
[22] and references therein). A modified uncertainty re-
lation which incorporates the effects of environmentally
induced fluctuations was previously derived in [16]. The
uncertainty relation derived there was an information-
theoretic relation in terms of the so-called Wehrl entropy.
The aim of the present work is to derive such a relation
in terms of the usual uncertainty function

and also related functions.
Second, in a number of recent papers, Hu and Zhang

have computed the time evolution of the uncertainty
function (1.1) in the presence of a thermal environment,
and thus estimated the comparative size of quantum and
environmentally induced effects [14]. Their computation
concerned only Gaussian initial states, and it therefore
becomes an interesting issue to see what can be said
about arbitrary initial states.

Third, in the context of the decoherence program it is
of interest to know what sort of states suffer the least
amount of noise under evolution in the presence of an
environment [18,21]. Such states are regarded as the
most "predictable" or "stable" states. These states were
found, in [18,21], by seeking the class of states that gener-
ated the least amount of von Neumann entropy entropy
(or linear entropy) after evolution for a fixed period of
time. The present work offers an alternative characteri-
zation of these states —they are the states that minimize
the generalized uncertainty relations considered here. A
further question of interest is to discover the connection
between these two different measures of uncertainty, and
this we also consider.

Finally, as shown by Hu and Matacz [23], the inHuence
functional formalism (used here) has applications to sta-
tistical processes in cosmological and black hole space-
times. In particular a quantum Brownian motion model
can describe a particle detector coupled to a scalar field
around a black hole, and can describe the dynamics of
the Geld modes of a gravitational wave or inflation field
in cosmological models. Our results may therefore be of
relevance to these considerations.

Our starting point is a study of the dynamical evo-
lution of the reduced density operator, and this is most
conveniently carried out in the Wigner representation. In
particular, the tool we found to be of greatest use in the
Wigner function propagator. The reason why the Wigner
representation is so clarifying is that, at least for linear
systems, the unitary part of the evolution corresponds to
transporting the initial Wigner function along the clas-
sical phase-space trajectories. It is therefore possible to
cleanly separate the unitary effects from the nonunitary
effects induced by the environment.

A' = (Ap) (Aq)' —-'(Apd q+ 4q4p) (1.2)

where Aq = q —(q) and likewise for Ap. A is essentially
the area enclosed by the 1 —0. contour of the Wigner
function, and satisfies a strengthened version of the usual
uncertainty principle, A & 5/2 [24]. The time evolution
of A turns out to be much simpler than that of U, and
the lower bound on it at any time is the time evolution
of a particular initial state, hence this result is stronger
than the first one. In both cases the minimizing initial
states is a correlated coherent state, a nonminimal Gaus-
sian pure state, of the form g(x) = e ~ +'sl, where a, b

are real. (This is clearly some kiiid of squeezed coherent
state, but we choose to follow the nomenclature of [24].)
The detailed forms of the lower bounds on U and A are
discussed in Sec. V, in the case of an Ohmic environment
and the connection with the work of Hu and Zhang [14]
ls discussed.

In Sec. VI, we discuss the connection of these mea-
sures of uncertainty with von Neumann entropy, S[p] =
—Tr(p ln p). We prove an inequality relating uncertainty
to von Neumann entropy, which in the regime of large un-
certainty has the form, U ) A2 ) h2e s. We also exhibit
the connection with the linear entropy, SI, ——1 —Trp .
These results make the connection with the work of Zurek
et aL [18,21].

In Sec. VII, we show that our expression for the time
evolution of the Wigner function, for linear systems,
readily permits the computation of the long-time limit
of an arbitrary initial state. For the harmonic oscillator
in a certain class of environments, all initial states go to a
Gaussian Wigner function in the long-time limit, not al-
ways a thermal state. We discuss how some of our results
may be generalized to systems with more general poten-
tials, and we consider the case of the long-time limit of
arbitrary initial states for the damped &ee particle. We
summarize and discuss our results in Sec. VIII.

In the presence of an environment, the Wigner function
propagator may be calculated exactly for linear systems,
and it is just a Gaussian. It permits the explicit calcula-
tion of all moments of p and q at any time for arbitrary
initial states in terms of the moments at the initial time.
We describe the features of quantum Brownian motion
models in Sec. II, and we calculate the Wigner function
propagator for linear systems in Sec. III.

In Sec. IV, we use the results of Sec. III to derive
generalized uncertainty relations for quantum Brownian
motion models. Two relations are derived. The first is
a lower bound over all initial states on the uncertainty
function (1.1), at an arbitrary time t Thi.s lower bound
represents the least amount of noise, both quantum and
environmentally induced, the system must suffer after
evolution for time t in the presence of an environment.
The lower bound is not the time evolution of a particular
initial state, but is actually an envelope —the initial state
achieving the lower bound at time t is different for each
time. The second relation is a lower bound on the related
quantity,
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II. QUANTUM BROWNIAN MOTION MODELS

We are concerned in this paper with the class of quan-
tum Brownian models consisting of a particle of large
mass M moving in a potential V(z) and linearly cou-
pled to a bath of harmonic oscillators. (This section is
entirely review of standard material [25,8,12,26].) The
total system is therefore described by the action

s...[*(O,q. (O] = f a[oM*' —v(*)]

+) f dt[oom j
n

~o(* *') = f ~q ro-(* V- *'V-)
n

(2.2)

It is convenient to introduce the (nonunitary) reduced
density matrix propagator J defined by the relation

p( os) = f do&ou &o( ou,
l
toouo, )Op (oooy )o (2.3)

(xf, yX, tlzo, yo, O)

Under the assumption that the initial density operator
for the total system factorizes, p = psystern (3 pbath~ the
reduced density operator propagator is given by the path-
integral expression

——m„w„q —C„q„z] . (2.1)
Z

DzDy exp
l

—S[z] ——S[y] + —W[z y] I
(2.4)

qh

Quantum mechanically, the total system will be
described most completely by the density matrix,
pq(z, q~, x', q' ). However, we are interested solely in the
behavior of the large particle, and hence the relevant
quantity is the reduced density matrix, obtained by trac-
ing over the environmental coordinates:

where

S[o] = f Ch[-o'Moo —V(T)] (2.5)

and W[x(t), y(t)] is the Feynman-Vernon influence func-
tional phase:

W[x(t), y(t)] = — ds ds'[x(s) —y(s)]rl(s —s') [x(s') + y(s')]

t
+Z d8

0
ds'[*(s) —y(s)]v(s —s') [*(s') —y(s')] . (2.6)

The kernels )7(s) and v(s) are defined by choices is

v(s) = ddt f ku']
I(w) coth

l l
costs,

'7t q2kT)
(2.7)

( u)'5
l(to) = Moto (

—
) oxp]—

(d A )
(2.11)

Here

cL

n(s) =
d ~(s) .

d~ I(cu)
~(s) = COS &8

0 7l (d

(2.8)

(2.9)

Here, A is a cutoK, which will generally be taken to be
very large, sometimes infinite, and ~ is a &equency scale,
which may be taken to be A. We will concentrate almost
entirely on the case of the Ohmic environment, 8 = 1,
with occasional reference to the supra-Ohmic and sub-
Ohmic cases, 8 & 1 and 8 ( jj. , respectively.

In the Ohmic case, (2.8) is

and I(u) is the spectral density

AC„'
I((u) = ) 8((u —~„) (2.1o)

A
p(s) = Mp, (, exp( —-'A' s'),

and thus, when A is very large,

(2.12)

The kernel v(s) contributes a phase to the path in-
tegral (2.4), efFectively modifying the action of the dis-
tinguished system. It leads to dissipation and frequency
renormalization in the e8'ective equations of motion. The
kernel )7(s) damps contributions from difFering values of x
and y. It is responsible for noise (and also for the process
of decoherence discussed elsewhere). These two kernels
are completely determined once a form for the spectral
density (2.10) has been specified. A convenient class of

p(s) = Mph(s) . (2.13)

We will work in this limit, unless otherwise stated. It
should be noted, however, that this limit sometimes leads
to a violation of positivity of the density operator at very
short timescales (of order A i) [27]. We will say more
about this later.

In the limit in which (2.13) holds, the real part of the
influence functional phase (2.6) may be written
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dsMp(z —y) (x —y)
~ = &(t)(y + B(t)(t(p + &(t)(o . (2.21)

dsMph(0) (x —y ) + Mp[z(0) —y(0) 2] .
0

(2.14)

Here, the b(0) is understood in terms of (2.12) at s = 0
for large A. It is easily seen that the terms involving it
may be absorbed by defining a renormalized potential in
the path integral (2.4):

Explicit expressions for the coeKcients A, B, C and K,
K, I, % are given in the Appendix.

III. THE W'IGNER FUNCTIGN PRGPACATQK

Instead of the density operator, it is often convenient
to work with the Wigner function, defined by

VR(x) = V(z) —Mph(0)z' . (2.i5) 1 i
~(p q) = d(exp

l

——p( I p(q+ -', (, q —-', () .
2vrh h

For a harmonic oscillator of &equency ~0, considered be-
low, we therefore define a renormalized &equency, u~,
with u&2 —— u() —2p8(0). The terms involving the
end points x(0), y(0) are clearly negligible and will be
d.ropped.

The noise kernel (2.7) is nonlocal for large A, except
in the so-called Fokker-Planck limit, kT &) hA, in which
case one has

(2.16)

An evolution equation for p may be derived. Its ex-
pected most general form is

h' (B'p B'p)
2M (,Bx2 By2 rM I B, —B, I+[VR(z) —VR(y)]p

(Bp-'«(t) (*—y) I(Bz By)
—il (t)h(t) (x —y) p

+hr(t)f(t)(z —y) l
+ —

l

.
(Bp Bpi
i, Bz Byr

Opih —=—
Ot

(2.17)

I'(t) = p, h(t) =, f(t) = 0 .2MkT
(2.18)

The propagator J may be evaluated. exactly for the
case of the simple harmonic oscillator, V(x) = 2M'()z .
We will also be interested in the Bee particle, u0 ——0.
Introduciiig X = x + y, ( = x —y, it may be shown that
[8,26]

J(Xf (f tlXo (o o) = 1V (i-
~h qh h)

where

(2.19)

S = K(t)Xy(y + K(t)Xp(p —li(t)Xp(t —N(t)Xy(p

(2.20)

The coefIicients I'(t), f (t), h(t), are in general rather
complicated nonlocal functions of time, and appear to
be known only in two particular cases. First, explicit; ex-
pressions for them may be found in [26] for the case of
linear systems. Second, in the Fokker-Planck limit, for
any potential V(x), one has [8],

Its inverse is

(3.1)

K(p, q, tlpp, qp, o) =

and one has

1
d(d( e ('Is)i& e('ls—)no&o

2mb

x J(q + ~(, q —2(, tlq()

+-,'(o, qo —-', (o, o) (3.3)

w(q, q, q) = f zp aq qq(po, q,oqlqo, q o)w(qo, q, o). (3.q)

By performing the Wigner transform of the evolution
equation for p, Eq. (2.17), one may derive an analogous
equation for the Wigner function. It is

p OR", OR' O+ V' (q) + 2I'(t) —(pW)M Oq Op Op

O R' O2R'
+hr(t)h(t), + hr(t)f(t)

Op OQOp

~. (ih) 1 (2q+i)
B2"+iW

&-l(2)l (2k+i). () B„"+V q

(3.5)

It follows that the Wigner function propagator also obeys
this equation, together with the initial conditions

K(p, q, olpo, qo, 0) = S(~ —po) g(q —qo) .

Consider the right-hand side of the Wigner function
evolution equation (3.5). The first two terms are a Liou-
ville operator, and if the equation had only these terms,
R' would evolve along the classical Bow in phase space.
The third term is the dissipative term. It modifies the
Bow along which R' evolves, and. also causes a contrac-

(i ) f x+yb
p(z, y) = dpexp

I p(z —y—) l

~
l s, l

(32)
r

(See [28,29] for properties of the Wigner function. )
The evolution of the reduced d.ensity operator is de-

scribed by the (generally nonunitary) propagator, J,
Eq. (2.4). Correspondingly, one may introduce the
Wigner function propagator, K (p, q, t

lp p, qp, 0), defined
by
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K(p, q, typo, qp0) = b(p —p')8(q —q'), (3.7)

where p' = p'(pe, qo, t) and q' = q'~(po, qo, t) are the
solutions to the classical equations of motion,

p = -&'(q),
I

(3.s)

(3.9)

tion of each area element. The fourth and fifth terms
are diffusive terms, and produce an expansion of each
area element. They are responsible for noise, and also
for the destruction of interference, by erasing the struc-
ture of the Wigner function on small scales. The last
term, the power series, together with the first two terms
make up the unitary part of the evolution. Hence, up
to corrections of order A, , unitary evolution corresponds
to approximately classical evolution of the Wigner func-
tion. It is partly for this reason that the evolution of a
quantum system is most conveniently undertaken in the
Wigner representation. The higher corrections can often
be argued to be negligible, e.g. , if the Wigner function
does not develop too much detailed structure on small
scales. There are, however, important examples where
they cannot be neglected, e.g. , in chaotic systems [30].

To illustrate the simplicity of evolution in the Wigner
representation, we write down the solution for the propa-
gator, in the case in which the diffusive terms, dissipative
terms, and higher-order terms in A, are ignored. It is

K pp' = —po —2(LN —KK)—.
N N

Now, for what follows, it is important that the trans-
formation from po, qo to p', q', defined by Eqs. (3.15)
and (3.16) is not a canorucal transformation, since the
Jacobian of the transformation is

g(pcl qcl)

a(pe, «) (3.17)

This is because the classical evolution is dissipative,
which tends to cause the phase-space cell to shrink. This
shrinking effect can be compensated for by a scaling
transformation of p', q'. In particular, the variables,

p
—1 cl I p

—1 cl (3.1s)

where A = (L/N) ~, are related to po, qo by a canonical
transformation. Using these new variables, the propaga-
tion of the Wigner function may be written

W(p, q, t) = GPO 'qo
g( ~C B2)i/2 ( P)o'«) )

x exp[ —n(p —Ap') —P(q —Aq')
—e(p —Ap') (q —Aq')] . (3.19)

Now one may perform the canonical transformation of
integration variables Rom pp, qp to p'q',

satisfying the initial conditions p' = pp, q' = qp at t = 0.
For the case of linear systems coupled to an environ-

ment, described in the previous section, the density oper-
ator propagator is given explicitly by (2.19)—(2.21). The
Wigner function propagator may be computed, yielding

W(p, q, t) =

(3.20)

ld I ~I f 1 I 0""'
n(4~C —B2) i&2

x exp[ —n(p —Ap') —P(q —Aq')

—e(p —Ap') (q —Aq')],

K(p, q, t~pp, q00) =
~A(4AC —B2) i&2

x exp[ —n(p —p') —P(q —q')
—e(p -p')(q —q')] (3.10)

(3.»)

4(AN'+ BNK + CK')
h(4AC —B~) (3.12)

2(NB + 2CK)
h(4AC —B2) (3.13)

and q~i pci M j~i are the solution to the classical 6eld
equations with dissipation and with a renormalized fre-
quency)

where

W'(p', q', 0) = W(po, qo, 0) . (3.21)

Now the point is that the quantity W' defined by this
transformation is still a Wigner function, i.e., it is the
Wigner transform of density operator, p', say. In fact, it
is readily shown that p is related to the original p by a
unitary transformation. This would not be true of the
transformation from pp, qp to p', q' .

Equation (3.20) is the main result of this section: a
simple expression for the evolution of the Wigner func-
tion for linear systems Rom an arbitrary initial state.
The (nondissipative part of the) classical evolution has
been absorbed into a canonical transformation of the ini-
tial state, and the effects of dissipation and diffusion are
contained in the coefficients n, P, e, A.

It is sometimes convenient to write the signer func-
tion propagator in the alternative form

q+2+q+M~q = 0

matching pp, qp at t = 0. Explicitly,
Jh

Pp X
2A N (3»)

ipse q'I |PO'I q07 )

x exp[ —p(po —p' ) —v(qo —q')
-~(po- p:)(« - q')] (3 22)

where
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A

h(4AC —B2) '

4(AK2 + BLK + CL )
h(4AC —B2)

2(LB + 2AK)
h(4AC —B2)

(3.23)

(3.24)

(3.25)

We have the usual uncertainty principle

(&q') (»') &—
2

(4.6)

with equality if and only if p is a coherent state, i.e., if
and only if

p K
q0 = — + —q,

Kp' = —p —2(LN —KK) —.0

(3.26)

(3.27)

We will use these expressions in the following sections.

IV. GENERALIZED UNCERTAINTY RELATIGNS

We now show how the results of the previous section
may be used to derive generalized uncertainty relations
for quantum Brownian motion models, for linear systems.

p0, q0 are again solutions to the classical field equations
with dissipation, but now matching the final conditions
p, q at time t:

W'(p', q', 0) = exp
l

— p' —,
l

(4.7)

l)2
28'

(4.9)

and inserting the minimum value in (4.7), we obtain

(where Eq' is, so far, an arbitrary parameter). It follows
that the uncertainty function at time t satisfies

Ug =—(Aqg)'(»g)'

44q'2

with equality if and only if the initial state is given by
(4.7). Since Aq is arbitrary, we may minimize over it
The minimum is at

A. A lower bound on the uncertainty function

Ah
(Aqg)(»g) & + s„sq .

2
(4.10)

~(v, q, ~) = fe~(~qo, ,

1
dP0dq0 exP

27l 8

x W'(p', q', 0),

p(p, y, E) = j qwd(p, q, o
1

dP0dq0 exP
2%8

x W'(p', q', 0),

)' (q —Aq') ' i

(4.1)

(»
—&p')' &

2s2

(4 2)

where

Prom the Wigner function propagator, one may obtain
expressions for the distributions at p and q at time t:

In terms of the coeKcients of the nonunitary propagator,
(3.11)—(3.13), this reads

hI.
(Aqg)(»g) & + (ACN + BCNK

2N 2¹
+C2K2) 1/2 (4.11)

20
W(po qo 0) = exp — [Kpo —2(LN —KK)qo]

~h h'I.N

This the first main result of this section: the uncertainty
at time t satisfies the generalized uncertainty relation
(4.11), with equality if and only if the initial state is
given by (4.7) with Aq' given by (4.9).

Consider now the conditions for equality. Prom (4.7)
and (3.21), the minimizing initial Wigner function is

2o. z 2P
8 8

4ckp —e 4o!p —e
(4.3)

2o2LN (2l

—pp+ Kqp l
(4.12)

From these results, it is straightforward to compute the
variances of p and q at any time t:

(Aq() = A (Aq') + s

(»g)' = A'(»')'+ s„',

(4.4)

(4 5)

where (Aq'), (»')z denote the variances of q and p
in the canonically transformed initial Wigner function
(3.21), or equivalently, in the unitarily transformed ini-
tial density operator pp. (The variances are generally not
invariant under such transformations of the state. )

Inverting the Wigner transform, one finds that the min-
imizing state is a pure state:

r2 &'4
4'(x) =

l

—
l

exp[ —(a+ ib)x ] .j (4.13)

This is a so-called correlated coherent state [24], dis-
cussed below. The coefBcients a and 6 may be computed
from (4.12) but will not be needed here so are not given.

It is important to note that the initial state (4.13) min-
imizing the uncertainty at time t is different for each mo
ment of time. That is, the lower bound (4.11), is not the
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time evolution of a particular initial state. It is actually
an envelope. The iriitial state (4.13), which depends on
t, will minimize the uncertainty at time t but generally
not at other times. This is because, although the efFect of
difFusion is generally to increase the uncertainty as time
goes on, there are competing efFects that may reduce it.
In particular, wave-packet reassembly (the time reverse
of wave-packet spreading) and dissipation may cause the
uncertainty to decrease. This point is discussed further
in [16], where an analogous lower bound on the Wehrl
entropy (discussed below) was proved.

B. A sharper levver bound

As stated, the lower bound on the uncertainty (4.11) is
sharp, in the sense that at each moment of time there ex-
ists an initial state at which the lower bound is achieved.
But it is only an envelope because the initial state achiev-
ing it is difFerent for each moment of time. It turns out
that an ixnprovement of this result is possible.

First, we note that the conventional uncertainty rela-
tion, bpAq ) h/2, may be generalized to the stronger
result [24]

principle (4.14). We thus obtain, for the Wigner function
area at time t, the inequality

521.2 A2
(4.18)

Equality is achieved when the initial state belongs to
the four-parameter family of correlated coherent states.
Most importantly, the inequality is sharp at every mo-
ment of time for one and the same initial state. It is not
an envelope. Equation (4.18) is the second main result
of this section.

The simplicity of the time evolution in terms of the
Wigner area is easy to understand. For linear systems,
the area is preserved under unitary time evolution. For
the nonunitary case considered here, therefore (4.17) ex-
presses entirely the efFects of the environment, with the
efFects of unitary evolution completely factored out. In
this respect it is similar to the von Neumann entropy
discussed in the next section. Indeed, for Gaussian
states, the von Neumann entropy is a function only of
the Wigner area. Some rather difFerent, but not unre-
lated. generalizations of the uncertainty principle may be
found in [22,31].

h2A'—:(Ap) '(Aq) ' —C„' (4.14)
V. EXPLICIT FORMS OF THE LOWER BOUNDS

where C„~ is the correlation between p and q:

C„q = 2(b.pAq+ bqAp)

dpdqpqR' p, q —p q (4.i5}

1 x'
@(x)=,( exp ~

— — 1—2vrrI»«( 4g'
zr

(1 r2) 1/2

—-(~'+ l~l')
2

(4.i6)

where q, r are real parameters [r = Czq/(ApAq) and rI =
Aq], and a is a complex parameter.

We have, however, already seen a correlated coherent
state —it is the state minimizing the uncertainty relation
(4.11). It is therefore plausible that a stronger version
of (4.11) might be possible in terms of the Wigner func-
tion area (4.14). Indeed, computing the correlation &om
(3.19), one finds the remarkably simple result

A,' =,A,'+, (4AC —a') . (4.i7)

This give the Wigner function area A at an arbitrary
time t, Aq, in terms of its value at time t = 0, Ao. It is
remarkable because A at time t depends on only its value
at t = 0, and not on any of the other moments of the
initial state. Now at t = 0, Ao satisfies the uncertainty

where Aq = q —(q), Ap = p —(p). The quantity A
defined by (4.14) is essentially the area enclosed by the
1 —o. contour of the Wigner function. Equality in (4.14)
is achieved when the state is a correlated coherent state,

We now give the explicit forms of the lower bounds
(4.11) and (4.18), in a variety of situations. There are
a very large number of difFerent situations and regimes
that our results may cover, depending on the choice of t,
T, p, and w (harmonic oscillator in the under- and over-
darnped case, inverted harmonic oscillator, &ee particle).
We will not present here a completely exhaustive search
of the parameter space, but concentrate on the cases that
contain some interesting physical results. In particular,
most of the following results are the underdamped case.
The cases not covered here are readily derived, should
the reader be interested.

Consider first the case of short times, t && p . Then
for high temperatures, (4.11) and (4.18) become, respec-
tively,

r t' 8~apkT, ){Sq,)(ap, ) & — 1 —2pt+
3

t2

h,' ( 8 +2I 272
(5.2)-4& 3 h'

These relations are in fact valid for any potential. They
represent the initial growth of fluctuations, starting from
the purely quantum fiuctuations at t = 0.

The pt term in each expression indicates an initial de-
crease of fluctuations, in apparent violation of the uncer-
tainty principle. This violation occurs, in Eq. (5.1), for
example, on a time scale less than h/kT This is because.
these expressions have been derived by taking the infi-
nite cutoff limit in Eq. (2.13), which as previously stated
can lead to violations of positivity of the density opera-
tor on time scales less than A [27]. The expressions are
therefore not valid for t ( A . The high-temperature
limit used in deriving (5.1) means kT )) AA. Combining



GENERALIZED UNCERTAINTY RELATIONS AND LONG-TIME. . . 6877

these inequalities, we see that (5.1) is valid only for times
t ) A i )) h/kT, for which violations of the uncertainty
principle will not arise.

To illustrate explicitly that it is the infinite cutoff limit
that is responsible for violations of the uncertainty prin-
ciple, we compute the lower bound (4.11) leaving the cut-
off 6nite in the expressions for the various coeKcients in
the propagator (2.19)—(2.21). The important point is to
keep A finite in Eq. (2.12). Expressions (Al) —(A4) and
(A14) are no longer valid, and the correct expressions for
these coeKcients, in the short-time limit, are given by
Eqs. (A28) —(A32). One thus obtains, in the short-time
limit, the lower bound.

Hu and Zhang [14].
In the weak-coupling regime, for all temperatures and

times (except very short times), Eq. (4.18) becomes, us-

ing (A18)—(A20),

, Khu))Az & — 4~~ + oth2
~ ~

(1 — 2~~) 2

4 i2kT)
(5 8)

An expression may also be derived for arbitrary coupling
and high temperatures, using (All) —(A13), but this is
rather complicated and will not be given.

In the long-time limit, for any coupling and tempera-
ture,

pkTA 3(aq, )(ap, ) ) —+ t'+. . .
2 2' (5.3) (5.9)

for which there is clearly no violation of the uncertainty
principle.

Ignoring the positivity-violating terms in (5.1) and
(5.2), the remaining terms given an indication of the time
scale on which the thermal Huctuations become impor-
tant in comparison to the quantum ones. It is

In the high-temperature limit this becomes

k2T2
Ug ——+ )

~a

and, in the weak-coupling limit,

(5.10)

I pkT)
(5 4)

2t'Rul
Ug = A, ) —coth' — 4 g2kT)

(5.11)

As noted in [32], this is the time scale on which quantum
Buctuations become comparable to Nyquist noise.

A related result was derived by Hu and Zhang [14].
They showed that for the initial state consisting of a
Gaussian of width o, the thermal Quctuations become
comparable with the quantum ones on a time scale of
order

VI. INEQUALITIES RELATING UNCERTAINTY
TO ENTROPY AND LINEAR ENTROPY

S[p] = —Tr(p lnp) (6.1)

The von Neumann entropy of the reduced density op-
erator,

h2

MpkTcr2
(5.5)

hs~ At
0

2sp m
(5.6)

Hence the width of the initial state which minimizes the
uncertainty at the time (5.4) when thermal and quantum
Buctuations are comparable is

(see also [16]). This was observed to coincide with the
time scale characteristic of decoherence for that initial
state [33].

The two results (5.4) and (5.5) are, in fact, consistent,
and this may be seen as follows. Note that (5.5) con-
tains the initial width o. but (5.4) does not. As discussed
earlier, the initial state minimizing the uncertainty U at
time t is actually an envelope. There is a different initial
state doing the job for each t, so the state depends on t.
The minimizing initial state is the Gaussian (4.7) with
width o given by (4.9). For small t one has

is often discussed in the present context, in asso-
ciation with uncertainty, decoherence, and correla-
tions of the distinguished systems with its environment
[18,19,21,34,17]. Zurek, Paz, and Habib, for example,
looked for classes of initial states, which under evolu-
tion according to a master equation of the form (2.17),
generate the least amount of entropy at time t. They
regarded such states as the most stable und. er evolution
in the presence of an environment. They argued that the
initial states doing the job are coherent states, at least
approximately.

One of the reasons for looking at the von Neumann en-
tropy is that it is constant for unitary evolution, thus for
open systems such as those considered here, it is princi-
pally a measure of environmentally induced effects. The
signer area considered in Sec. IV also has this prop-
erty. The results of Sec. IV thus agree with the claims
of Zurek et aL (except that it is really the correlated
coherent states, rather than the ordinary coherent states
which are the most stable, although this distinction is not
very important). It would be useful to find a connection
between. these two measures of stability or Quctuations.

n(r 5"
m E&kT)

(5.7) A. Uncertainty vs von Neumann entropy

Inserting this value of o into (5.5), one finds that tg coin-
cides with (5.4). Our results are thus in agreement with

The connection between uncertainty and the von Neu-
mann entropy may be found ind. irectly, by considering
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first of all the phase-space distribution detK = ((aq)'+ o,') ((bp)'+ o.„') —C„', , (6.9)

~(p q) = (zlplz)

where

(*lz) = (~lp q)

(6.2) where Lq, Ap are the quantum-mechanical variances of
the state p. On the other hand, an elementary prop-
erty of the Wehrl entropy, following &om the concavity
of Shannon information, is [37]

i/4
exp — + —px (6 3)

1(»Q) & S[p] . (6.10)

dpdg
2vrh.

p(q p) =1. (6.4)

It is readily shown that p(p, q) is also equal to

are the standard coherent states. The function p, (p, q) is
normalized according to

Hence combining the upper and lower limits (6.8) and
(6.10), one obtains

((&q)'+,') ((&p)'+ „') —&„', & ~'" '-'~ . (6.11)

Finally, since the parameter oz is arbitrary (and a.„o
&/2), we may minimize the left-hand side over it, with
the result

y, (p, q) = 2 dp'dq' exp
2g

(q —q')'~ ~ (
t I)

0
(6.5)

where W~(p, q) is the Wigner function of p and O.„tT~ =
zh. Equation (6.5) is sometimes known as the Husimi
distribution [35], and is positive even though the Wigner
function is not in general (see also [36]).

There exists an information-theoretic measure of the
uncertainty or spread in phase space contained in the
distribution (6.5), namely the so-called Wehrl entropy
[37]

(6.12)

This is the exact form of the connection between the
uncertainty and entropy for a general mixed state p.

In the regime where quantum Huctuations are more
significant than thermal ones, it is appropriate to use the
lower bound (6.7) rather than (6.10) (since S[p] goes to
zero if the state is pure), and this is formally achieved
by setting S = 1 in (6.12). One then deduces the usual
uncertainty principle form (6.12) [although not the gen-
eralized version including the correlation, (4.14)].

In the regime where thermal (or environmentally in-
duced) fluctuations are dominant, one would expect
ApAq )& 5/2 and S )& 1, and (6.12) then gives

I(P, Q) = — — p(p, q) lnp, (p, q) .dpdg

2mb
(6 6)

—----—& —& e
bpAq A

A.
(6.13)

This is the Shannon information of (6.2). I(P, Q) is large
for spread out distributions, and small for very concen-
trated ones. Because of the uncertainty principle, one
would expect a limit on the degree to which p, (p, q) may
be concentrated about a small region of phase space, and
hence a lower bound on (6.6). Indeed, a nontrivial theo-
rern due to I ieb shows that

This is the simplest form of the connection between the
uncertainty and the von Neurnann entropy: the entropy
is bounded &om above by the logarithm of the number
of phase-space cells the state occupies.

To see how sharp these equalities can be, consider the
case of a Gaussian signer function. It may be shown
that the von Neumann entropy of a Gaussian is

I(P, Q) & 1 (6.7) (6.14)

with equality if and only if p is the density matrix of a
coherent state, lz')(z'l [38]. In [16], the Wehrl entropy
was used as a measure of both quantum and thermal
fluctuations, and a lower bound analogous to (4.11) was
derived.

The reason for studying this quantity is that it pro-
vides the link between the von Neumann entropy and
the uncertainty measures U and A. On the one hand, an
elementary property of Shannon information is

~A&
S[p] = ln

l

—
lqh)

(6.15)

and hence we have equality in (6.13).

where p = 2A/5 and A is the area of the Gaussian
Wigner function (see Ref. [17] for example). For large

ttIe, q) ( ie (
—(Bet EC)'~*) (6.8) B. von Neum. ann entropy vs linear entropy

where K is the 2 x 2 covariance matrix of the distribution
p(p, q) [39]. Equality holds if and only if p, (p, q) is a
Gaussian. From (6.5), one has

In practice, the discussion of Zurek et ol. , and indeed
many discussions of von Neumann entropy, often concern
the so-called linear entropy,
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SL, —1 —Trp' . (6 16)

p = ) p„in}(ni . (6.17)

We use Jensen's inequality (see Ref. [39], for example),
which states that if f is a convex function, and X a ran-
dom variable,

How is this related to von Neumann entropy? I et the
density operator be

where, recall, p', q' are the value of the classical solu-
tions (with dissipation) at time t matching the initial
data pp, gp at t = 0. This expression allows us to com-
pute the moments at any time t in terms of the initial
moments. By computing the long-time limits of these
moments, the form of the long-time limit of the Wigner
function may be obtained, since it is completely deter-
mined by its moments.

A. The harmonic oscillator

(f(X)} & f ((X}) (6.18)

) p„& exp ) p„ ln p„ (6.19)

and thus

where (. . ) denotes the mean over X. Take f to be the
exponential function, and. X to be lnp . Then,

For the harmonic oscillator, simplifications occur.
Consider first the case of the harmonic oscillator in an
ohmic environment. One has p' = Mj' and q' satisfies
Eq. (3.14). Either from Eq. (3.14), or f'rom the explicit
solution (3.15) and (3.16), it is easily seen that p' —+ 0
and q' —+ 0 in the long-time limit. All dependence on
po and qo drops out of the exponential in (7.1), and one
obtains the following expression for the asymptotic value
of the Wigner function:

T}.-p' & e-~t« . (6.20)

In terms of the linear entropy

SL, =1 —Trp +1—e (6.21)

~~(» q) = &(4&&»),&, exp( —~p' —Pq' —epq) .

(7.2)

Equality in (6.21) is reached for pure states, when S =
SL, ——0, and for very mixed states, when S is very large
and SL, ~ 1.

VII. LONG-TIME LIMITS

The coefficients n, P, e are given by the long-time limits
of (3.11)—(3.13). Using results (A21)—(A23) in the Ap-
pendix, one 6nds

One of the particularly interesting questions for
nonequilibrium systems of the type considered here is
whether they settle down to a unique state after a long
period of time. It turns out to be particularly straightfor-
ward to answer this question for linear systems, using the
Wigner function propagator described in Sec. III. Com-
bining (3.4) and (3.10), we have the expression

2Mh[Fg —(p/(u)F2]
'

Mu)R

25[Fg + (p/~)F2]
'

a=0,

(7.3)

(7.4}

W(p, q, t) =

(7 1)

~( ~~ ~2) ~(2 pO qO (pO) qO) )

x exp[ —o.(p —p')' —P(q —q')
-e(» —»') (q —q')1

with Fq and F2 given by (A24) and (A25). These rela-
tions represent the exact form of the long-time limit in
the ohmic case.

It is useful to compare the result (7.2) with the Wigner
function of the harmonic oscillator in a thermal state:

/~R l r'~R) M~R,
Wz (p, q) = tanh

i „ i
exp —tanh

i „ i q + p (7.5)

The long-time limit (7.2) coincides with the thermal
Wigner function (7.5) in the high-temperature limit,
and in the weak-coupling limit, as may be seen &om
Eqs. (A26) and (A27) in the Appendix. Note, however,
that the asymptotic state is not always a thermal state.

It is also of interest to compute the uncertainty in q in
the long-time limit. It is

(~')*-=M. (~+ ~}
t' hv i

dv coth
~

0 i,2kT )
1 2+vX—

M (~ —v2)2+ 472v2 (7.6)
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t

q(t) + ~pq(t) — ds g(t —s)q(s) = 0,
0

(7.7)

where (q(t —s) is dissipation kernel (2.10) for an arbitrary
spectral density I(~) An .explicit representation of the
solutions may be obtained using Laplace transform, and
the solution is given in terms of the contour integrals

This is in agreement with the Quctuation-dissipation re-
lation [40]. Equation (7.6) was given in [8], for the special
case of a Gaussian initial state, but not surprisingly coin-
cides with this more general result because every initial
state goes to a Gaussian.

For the harmonic oscillator with a nonohmic environ-
ment, it may be shown, using the more general treatment
of [26], that q'i in the Wigner function propagator in (7.1)
is the solution to the integrodifFerential equation

zero eigenvalues. It follows that there are no stationary
solutions. One cannot therefore necessarily expect all
initial states to tend towards a unique final state in the
long-time limit. Still, it is of interest to ask whether one
can say anything at all about the general form of the
solution for long times.

Evolution of the damped &ee particle has been consid-
ered extensively before (see, e.g. , [12,42]). Here, however,
we are interested in one particular point that has not
previously been addressed, namely the long-time limit
of arbitrary initial states. Because we are interested
in understanding this general point, rather than a de-
tailed calculation, we will for simplicity work in the high-
temperature limit (although our conclusions can be gen-
eralized to other cases).

Consider Eq. (7.1) for the damped free particle. For
large t, one has, in the high-temperature limit,

+ZOO+6 zt
p'(t) = dz

z2 + M —'zj (z) + (u'

x (zp, —z'Mq, ), (7.9)

+ZOO+6 zt

z~+M 'zp(z)+~~ (M )
(7.8)

1 M
2MkT' 2kT

MkT
2h

t )

2Mkrpt
h

cl cI PO
P =O~ 0 =90+ 2M'

1
2krt ' (7.12)

(7.13)

(7.14)

I((u) = Mg ~"0(A —(u) . (7.10)

It has been argued that this class of spectral densities
actually gives a very general picture of the long-time limit
[12], and it may then be shown that, to leading order in
~ A,

where p(z) is the Laplace transform of p(t) defined by
Eqs. (2.8) and (2.9). Instead of the class of spectral den-
sities (2.11), let W(p, q, t) =

ir A(4AC —B') 'i2
g 4p)

x dqgo(q) exP P l
q+ —P —q l

2P )
(7.15)

where

Introducing q = qp+pp/(2M'), Eq. (7.1) may be written

if 0(r &2,
sin( 2 mr)

7(~) = i ~'w ln (1+ —,) if r = 2,
2Mg„A

~(r —2)

(7.11)

Using these results, and the change of variables zt = y, it
is then straightforward to show that q'i(t) and p'i(t) both
go to zero at t ~ oo. The long-time limit of the Wigner
function is therefore again the Gaussian (7.2) (although
the coefficients n, P, e, are not the same as before, and
we do not give them here).

These results are consistent with the proof in [15] that
the Wigner function of a single member of a chain of
coupled harmonic oscillators tends towards a Gaussian
Wigner function in the long-time limit, under certain rea-
sonable conditions on the environment. We believe that
the proof given here, however, is somewhat simpler and
more direct.

qo(q) = dpo~
l
J o, q-t' po

2M'' (7.16)

dqW(p, q, t) =
( exp

l

—
l

. (7.17)

Hence the distribution of momenta approaches a Boltz-
mann distribution for all initial states. The remaining
question is, what we can say about the q distribution in
the long-time limit?

Let y = q+ (e/2p)p = q —(p/2M'). Then the integral
in the expression for the Wigner function (7.15) is

The integrand of (7.16) is still a Wigner function, since
the shift in the q argument can be compensated for by a
unitary transformation of the density operator.

If we integrate out q, and noting that e /4P + 0 for
large t, we obtain

B. Lang-time limit far the damped free particle

In the &ee-particle case, using the general methods of
[41], it is readily shown that the phase-space operator
on the right-hand side of Eq. (3.5) does not have any

(7.18)

( e
g(v t) = dqgp(q) exp ~ P I

q+ p —q I—
) )

dqgp(q) exp l-(' (y —q)' )
4Dt
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where D = kT/(2M'). g(y, t) obeys the difFusion equa-
tion

Og 6 g
Bt By2

(7.19)

(y'), = 12D't'+ 12Dt(y')o + (y')o (7.20)

From (7.18) or (7.19), one may compute all the moments
of y at time t in terms of their initial moments. One has,
for example,

(y —(y))' &

(4 Dt)'i' q 4Dt (7.21)

This suggests that, for large times, the Wigner function
approaches the asymptotic form

From the explicit expressions for the moments such as
this, it is straightforward to show that the leading-order
behavior of all moments of the form (y") as t -+ oo are
correctly reproduced by the Gaussian distribution

( p' & & M~ & I (p)o&W(p, q, t) = ~ p l~- „ I
~ I —,k, I q-, —«). —

&)
(7.22)

Hence the distribution of p is a Boltzmann distribu-
tion, as noted above, and the q distribution, obtained
by integrating out p, is peaked about the value q

(q)o + (p)o/(2M'), which is the asymptotic value of q
under classical evolution, starting &om the initial values

(q)o (p)'
The result (7.22) can, however, be rather misleading,

and has limited value as an approximation to the Wigner
function at large times. To understand this, write the
Wigner function for large times as

W(p, q, t) = Ws (p, q, t) + Wi (p, q, t) +, (7.23)
where R'g is the leading order approximation to the
Wigner function for large t and Wq is the next to lead-
ing order term. When a stationary solution exists, R g
is the stationary solution, and hence is independent of
tixne. Furthermore, the next term IVY is proportional to
e "' where Aq ) 0 is the erst nonzero eigenvalue of the
operator appearing on the right-hand side of (3.5) [41]. It
follows that all moments of (7.23) are given by their mo-
ments in TVg plus an exponentially decaying term. Even
if the moment of TVs vanishes, the correction given by TVq

goes to zero for large t A11 momen. ts of (7.23) approach
the stationary moments like e

Now consider the free-particle case. Here there is no
stationary solution, so Wp is time dependent. The next
correction R"q does not decay exponentially fast. There
are certain moments [e.g. , ((y —(y)) )] that are zero for
R'g and take their leading contribution &om R'q. Such
moments grow with time, as may be seen &om (7.20), so
unlike the stationary solution case, they are not well ap-
proximated by their moments in R'g. Also, even for the
moments which are well approximated by the moments
in R'g for large t, the rate of approach to the regime in
which that approximation is valid depends on the initial
conditions. It does not proceed at a universal rate.

Therefore, although Eq. (7.23) is the formal solution
to the Wigner function equation for large t, it is not very
useful. In practice it will be more useful to work directly
with the equations for the moments.

C. General potentials

Finally, we sketch the case of more general potentials.
We have calculated the Wigner function propagator only

I

for linear systems. To compute the long-time limit of the
Wigner function for more general potentials, we resort
to the evolution equation (3.5). It is sometimes argued
that the power series involving third and higher deriva-
tive terms may be neglected. For example, in the uni-
tary case, Omnes has considered the evolution of phase-
space projectors according to (3.5) [43]. He has shown
that when the corresponding classical dynamics is regu-
lar, their evolution is described to a good approximation
by the first two terms on the right-hand side of (3.5) if the
phase-space cell projected onto is sufBciently large and
regularly shaped. Also, Paz and Zurek have argued that
the di6'usive terms may smooth out the Wigner function,
suppressing contributions f'rom the higher-order terms
[30]. The most general conditions under which these ex-
tra terms may be neglected is not known, but when they
can be neglected, and in the high-temperature limit, the
Wigner function evolution equation then is

OW p OW, OW
Bt M Bq Bp

0 8 TV
+2p —(pW) + 2MpkT

Bp Op
(7.24)

f p2
( )=

2MkT
VR(q) l

kT (7.25)

where N is a normalization factor. This will be an ad-
missable solution, i.e., a Wigner function, only if the po-
tential is such that exp[ —VR(q)/kT] is normalizable. This
requires VR(q) + oo as q + +oo faster than ln~q~. In
that case, the stationary distribution is then the Wigner
transform of a thermal state, p = Z ~ e /'", where
Z = Tr(e ~" ), for large teinperatures. The general
results of [41] then show that all solutions to (7.24) tend
to the stationary solution (7.25) as t -+ oo. Hence, to the
extent that Eq. (7.24) is valid, all initial states tend to-
wards the thermal state in the long-time limit. The ques-
tion of the validity of (7.24) is not likely to be straight-
forward, and will be considered in more detail elsewhere.

These claims are substantiated by the results of [44],

This is the Kramers equation, whose properties are well
known [41]. For example, it possesses the stationary so-
lution
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in which it was argued (using the quantum state dif-
fusion approach to open systems), that a wide class of
initial density operators evolving according to (2.17) in
the high-temperature limit approach the form

p(') = f ~~ &~ f(r q ~)l@,q)W, ql (7.26)

on a very short time scale related to the decoherence
time. Here, ~@„q) is a generalized Gaussian coherent
state and f (p, q, t) is a positive, normalized solution to
the Fokker-Planck equation (7.24). This result is valid
even for general potentials, as long as the length scale on
which the potential varies is much greater than the width
of the coherent states. This result may also be of use in
extending the results of Sec. IV, so far valid only for linear
systems, to more general potentials. These possibilities
will be explored elsewhere.

VIII. SUMMARY AND DISCUSSION

We have studied the evolution of open quantum sys-
tems described by the evolution equation (2.17). We
were concerned with two particular questions: general-
ized uncertainty relations for this class of nonequilibrium
systems and long-time limits. Our results may be sum-
marized as follows.

(1) For any linear system whose evolution is described
by the propagator (2.19)—(2.21), the uncertainty U and
the Wigner function area A have the sharp lower bounds
(4.11) and (4.18), respectively. These represent the least
possible amount of noise the system must sufFer after
evolution for time t in the presence of an environment.
These expressions are valid for all types of environment
(i.e., for all choices of spectral density). Also worthy of
note is the particularly simple expression (4.17) of the
evolution of the Wigner function area A.

(2) For the particular case of the Ohmic environment,
the explicit form of the lower bounds is given in Sec. V.
These explicit expressions give the comparative sizes of
quantum and thermal Huctuations, generalizing the work
of Hu and Zhang [14].

(3) For the linear systems considered here, these
generalized uncertainty relations achieve equality for
Gaussian pure initial states of the form (4.16). Such
states are therefore the ones that su6'er the least amount
of noise under evolution in the presence of an environ-
ment, substantiating the results of Zurek et aL [21,18,19].

(4) The uncertainty is connected to the von Neumann
entropy via the relation (6.12), and the entropy is con-
nected to the linear entropy by the relation (6.21).

(5) For a harmonic oscillator in a wide class of en-
vironments all initial states tend towards a Gaussian
Wigner function in the long-time limit. It is the same
as a thermal state for an ohmic environment in the high-
temperature limit or the weak-coupling limit. This proof
of the long-time limit is much simpler than a previous
proof by Tegmark and Shapiro [15] (although not quite
as general).

(6) For the &ee particle, the Wigner function tends to
a nonstationary Gaussian state, although this is not a

very useful expression because it does not give a correct
approximation to all the moments for large times.

The reason we were able to prove results (1) and (4)
with such ease was our use of the Wigner function prop-
agator, in terms of which the quantum evolution takes
a particularly transparent form. We comment that the
detailed methods used here could well be of use in related
calculations. For example, it might be possible to discuss
decoherence of arbitrary initial states using the Wigner
function propagator derived in Sec. III. These and other
related questions will be pursued in future publications.
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APPENDIX

In this appendix we give the explicit forms of the coef-
6cients A, B,C and K, K, L, N appearing in the explicit
expression for the propagator, (2.17). The following re-
sults are taken &om Caldeira and Leggett [8], and from
Hu and Zhang [14], with minor elaborations and exten-
sions.

We first give the forms of the coeKcients for the har-
monic oscillator in the underdamped case, uR ) p. Let

We work in the underdamped case,
P ( COR.

Then we have

K(t) = —2M'+ 2M~ cot~t, (A1)

K(t) = +2M'+ 2M') cot&st, (A2)

(A3)

N(t) = (A4)

Also,

where

e
—2vt

A„(t) =
2 dw ds sin w7 cos v(r —s)

sin ut
x sinu8e~~ +'~ (A6)

Similarly,

A(t) = dv exp
~

—
2 ~

v coth
~ k ~

A„(t),Mp ( v2) I'hv )
7I 0 A') g2kT)

(A5)
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Mp ( 'l
(hvar

B(t) = dv exp
I

—
I

v coth
I I

B„(t),
0 A2p (2kT j

where
(A7) Mp ( v

C(t) = dv exp
~

—
I

v coth
I I

C (t),
VC 0 A' q2kT )

B-(t) = 26
dv ds sinus& cosv(r —s)sin' ~t

2

x sin~(t —s)e~~ +'l, (AS) where

(A9)

C„(t) =
2 dw ds sin ur (t —7 ) cos v(7 —s) sin w (t —s)e~

sin ~t (A1o)

We have included, for completeness, the explicit depen-
dence on the cuto6' in the expressions for A, B, and C,
and this is sometimes required, although we will gener-
ally work with the case A ~ oc. The integrals for A,
B, and C have been evaluated by Hu and Zhang [14],
and we will make heavy use of their results. The re-
maining integrations over v to yield A, B, and C cannot
be carried out in general, but asymptotic expansions are
possible in various regimes of interest, and. these we now
give.

1. High-temperature limit

and, for long times,

MkT
2h sin

MkT~~t

i t

MkTe2~tC=
2h sin2(ut (p2+ ~2) (A17)

1 — (7 cos 2ldt + id+ sill 2(aft)
1 2

+ (d

(A15)

hidcosset+, 2
sin &t+ (d + M

(A16)

MkT -2t 1 2A =
2 1 —e ~ — (p cos2(ut

2h sj.n ut + (d

+up sin 2ut) — e+ (d
(A11)

In the much-studied high-temperature (Fokker-
Planck) limit, one has coth(hv/kT) = kT/hv, and the
integrals (A5)—(A10) may be evaluated exactly for any t,
with the results

2. Weak-coupling limit

In the weak-coupling regime, p (( w, but for arbitrary
temperature, one has, from Hu and Zhang [14],

M~ (Ru)
coth

I I
1 ——sin 2~t —e

4 sin wt &2kT) cu

(A1S)

MkT~~t —(1 —e ~
) cosset

5 sin'~t
1

(p (1+e ~
) cosa)t

Q2 + ~2

B= Mere~' ( Ru l
coth

I I

—sin ~t —cos ~t
2 sin ~t (2kT)

+ —san wt + cos ut e
—2gt (A19)

+~7(l —e ~') sin ~t) (A12)
Mcue2~' ( her ) 'YC =

2 coth
I I

1 — 1+ —sin~t e
4 sin ~t &2kT) (d

(A2o)

MkTe2&t

2h sin ut p +~
where terms of order p /w2 have been neglected. The
long-time limits of these expressions are easily seen.

—2pte+ (p cos art —tug sin 2wt)
ry2 + ~2

At short times, one has

2MqkTt
3h

(A13)

(A14)

3. Long-time limit for arbitrary temperature
and coupling

It is also possible to determine the exact form of the
long-time limits of A, B, and C, without assuming high
temperature or weak coupling. This is necessary in order
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M
(w cos wt —pw sin 2wt) t"s + —Ps)

'y

2~R2 sin' ~t (d

( 2p'l
+w sm wt

~
i+,

~

tis — Iis ), —
J (d

(A21)

yB =
s (pw sinwt —w o cts)wI"s + —Ps)sin

(A22)

to give a completely general statement about the long-
time limits of arbitrary initial states, as in Sec. VII. From
Hu and Zhang, they are

kT
Fg = , F2 = 0

h ' (A26)

and the results (All) —(A13) are recovered. In the weak-
coupling regime,

(Ru)
—,w coth~ [t I"2 0 (A27)

and the results (A18)—(A20) are recovered

uble, but can be evaluated in the high-temperature and
weak-coupling regimes. In the high-temperature regime,

C= s (Fs+ —ps) (A23) 4. Very short-time limit with finite cutofF

OO (hv)
Ez —— dv v coth

2K p (2kT) (p'+ (co+ v)'

For 6nite cutoK, and in the very short-time limit, t (&A, and at high temperature, kT )& Ru, one has

(A28)

+,~'+ (~ —v)') ' (A24) and

CAD fhv) ~ ~+v
I"2 ——— dv v coth

[

p (2kT) I pz+ (u) + v)z

+ 2p'+ (ur —v)') (A25)

The integrals F~ and F2 do not appear to be exactly sol-

K=-M
2t

K=-
2t

I =—M
2t

%=-M
2t

MpA3
45~

+
MpA3 3

4'
11MpA3 3

180vr
MpA3 3
180m

(A29)

(A30)

(A31)

(A32)
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