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Black holes in three-dimensional topological gravity
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We investigate the black hole solution to (2+1)-dimensional gravity coupled to topological matter,
with a vanishing cosmological constant. We calculate the total energy, angular momentum, and
entropy of the black hole in this model and compare with results obtained in Einstein gravity.
We 6nd that the theory with topological matter reverses the identification of energy and angular
momentum with the parameters in the metric, compared with general relativity, and that the entropy
is determined by the circumference of the inner rather than the outer horizon. We speculate that
this results from the contribution of the topological matter fields to the conserved currents. We also
briefly discuss two new possible (2+1)-dimensional black holes.

PACS number(s): 04.70.Dy, 04.60.Kz

I. THE (2+1)-DIMENSIONAL BLACK HOLE

It is a peculiar feature of general relativity in 2+1 di-
mensions that any solution of the Einstein field equations

(J
2

41+ 1 —
i ) ) (1.4)

G„„=8mGT„„—Ag„ and an inner horizon at r = Jl/2r+, i.e. ,

with a vanishing stress-energy tensor, has a constant cur-
vature. Despite this limitation, Banados et al. [1] have
made the interesting observation that when A = —1/l
0, the Beld equations have a black hole solution, charac-
terized by the metric

ds = Ndt + N —dr + r (N~dt + dP)

(1.2)
—oo&t&oo, 0&r&oo, 0&P&27r,

with lapse and angular shift functions

r' J' JN'(r) = —M+ —+, N~(r) =—
2r2

As a space of constant curvature, this geometry can be
obtained directly from anti —de Sitter (AdS) space by
means of appropriate identifications, as discussed in [2].
When M ) 0 and

~
J~ & Ml, the solution has an outer

event horizon at r = r+, where
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+ + 2r+r
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[Note that in 2+1 dimensions G has dimensions of an
inverse mass, so M = Gx(conventional mass) is dimen-
sionless. ]

The parameters J and M have been shown to be the
quasilocal angular momentum and mass of the black
hole [3]; alternatively they can be expressed in terms of
Casimir invariants in a gauge-theoretical formulation of
(2+1)-diinensional gravity [4]. The parameter M can
also be expressed in terms of the initial energy density of
a disk of collapsing dust in AdS space [5].

For later reference, it will be useful to display the first-
order formulation of Einstein gravity and the first-order
form of the black hole solution. We suppose that M
is a smooth orientable three-manifold whose cotangent
bundle has SO(2,1) as its structure group. The fibers of
T*M are three-dimensional vector spaces which come
equipped with a "natural" metric g b and volume ele-
ment e ~ . A smooth frame field, or triad, on M is a
set of three independent one-form fields E, and a spin
connection w on Ms is an SO(2, 1) connection. In terms
of these fields, the Einstein action takes the simple form
[6]
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L= —— E AR
1

M3

The stationary points of I are determined by the field
equations

——~.b.E A E A EA

where the curvature B [u] is

(1.6)

B [A]=0,
D(~)B = 0,
D(~)C = 0,

D(~)E + -e Bb A C = 0 . (2.2)

Btt[&] = d(t)tt + 4 ettbt (t) A (t) (1.7)

We use the convention e = +1, and our units are such
that 8~G = 1. Variation of I with respect to ~ yields
the condition

Because of the term in Bb A C in the last equation of
motion, the triad E is not, in general, compatible with
the spin connection A . Nevertheless, the equations of
motion above determine a Lorentzian geometry on TM:
if we define a one-form field Q by the requirement

D E =dE +2~ ~bAE =0, (1.8) "'(q, r E.—B, r C.) = 0, (2.3)

E' = Jv'(v) —t (
—+dt —v dd),

E' = —d[gv2(r) —1],
E* = v(v) (v~dtt —:dt)

l

and the compatible spin connection

(1.10)

(u' =0,
= —2v(v) dt — dd)—2= P+ P—

l2 l

where v~(r):= r2 —r2 /r+2 —r2 .

II. HCEA. CRAVITY

which is the usual relationship between E and the con-
nection (that is, the condition that ~ be torsion-free).
Variation with respect to the triad yields

R =A~ bE AE',
which is equivalent to Eq. (1.1) upon insertion of Eq.
(1.8).

The black hole (1.2) can be now described by the space-
time triad

then the equation of motion for the E can be written as

dE + 2e 'ur hbE, =0, cu:=A +Q . (2.4)

Equation (2.4) may be recognized as the condition that
the frame field E be compatible with the (nonflat) spin
connection ~ . We may thus interpret BCEA theory as
a model of (2+1)-dimensional gravity with a triad E
and a connection ~ coupled to matter fields B and C .
Alternatively, the model may be viewed as a "telepar-
allel" theory of gravity, with a triad E and a flat, but
not torsion-free, connection A, again coupled to rnatter
fields B and C . In either case, the geometry is deter-
mined by the metric g„„=g bE ~E

The action functional I is invariant under a 12-
parameter group whose infinitesimal generators are [7]

bB = D(g) p + 2~ 'Bbr, ,

8C = D(g)A + 2e 'Cbr, ,

bE = D(~)( + 2e '(Ebr, + BbA, + Cbp, ),
= D(~)r . (2.5)

This group may be recognized as I(ISO(2,1)), where the
notation IG denotes the semidirect product of the Lie
group G with its own Lie algebra ZG. Like the ac-
tion for ordinary Einstein gravity in three dimensions [6],
the BCEA action can be obtained &om a Chem-Simons
functional, now for the gauge group I(ISO(2,1)).

There is another three-dimensional theory of gravity
that admits the asymptotically AdS black hole as a so-
lution. This theory, developed by two of the present au-
thors [7], minimally couples topological matter to Ein-
stein gravity in 2+1 dimensions, in effect replacing the
cosmological constant by a simple set of matter fields.
We shaH caH this model "BCEA theory. "

We start with a triad E and a spin connection A as
in the last section, but without imposing the torsion-free
condition (1.8). Now let B and C be two additional
one-form "matter" fields. The action for BCEA theory
is

(E A B [A] + B A D(~)C ), (2.1)

where D(~) is the covariant derivative with respect to the
connection A and the curvature B [A] is given by (1.7).

III. THE BLACK HOLE SOLUTION IN HC'EA.
THEORY

and

B = r+dP + dt, —
l

B = —ld(v + Qv2 —1),
B = +dt —r dP, —

l

We shall now demonstrate that the asymptotically
anti —de Sitter black hole of Sec. I is also a solution of
BCEA theory. The computation is simplest in the gauge
A = 0, for which the field equations for B' and C reduce
to the condition that the one-forms B and C be closed.
It is then easy to show that
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CP BO

gi = d(v —Qv2 —1),
C2

l
(3.2) j[g] = 8[4, ~,4] —~[4, ~,4] . (4 4)

for some two-form n. Combining Eq. (4.2) and Eq. (4.3),
we see that dj[g] = 0 when the equations of motion are
satisfied, where

together with the black hole triad of Eq. (1.10) and the
connection A = 0, satisfy the BCEUF equations of mo-
tion.

Recall that for pure gravity, I = lAl ~ is a parameter
appearing in the action. In BCEUF theory, on the other
hand, l appears as a constant of integration. The need
for such a dimensionful constant is clear without it, the
two terms in (for example) B would not have the same
dimension but its value is arbitrary. It is an interesting
open question whether other integration constants ap-
pear in the most general circularly symmetric stationary
solution of BCEUF theory. We know that two parameters
(r+ and r ) appear in pure gravity; since the dimension-
ality of the moduli space of BCEUF theory is twice that
of pure gravity [7], we might expect one more parameter
in addition to l, but we do not yet have a proof of this
assertion.

As discussed above, the triad E determines the space-
time geometry, so the solution given by Eqs. (1.10),
(3.1), and (3.2) still has an interpretation as a black
hole. To obtain more information, we can investigate
the conserved quantities, or Noether currents, associated
with the symmetries of the solution. For the conventional
black hole, for example, the charge and mass are the con-
served charges associated with spatial translations and
rotations at infinity, and the entropy is the charge asso-
ciated with an appropriate Killing vector at the horizon.
It is instructive to understand the analogous statements
for the BCEUF solution.

jK] = el»&c&l —~. L (4.5)

(2 is the Lie derivative, and the centered dot denotes
contraction of a vector with the first index of a form. )
The Noether charges now have simple physical interpre-
tations: if t" generates an asymptotic time translation
and p" generates an asymptotic rotation, then Wald has
shown [8] that the canonical energy and angular momen-
tum are

(+[t] —~ &)

(4.6)

Here the integrals are taken along a circle of constant
time and infinite radius, and G is defined by the condition

The two-form j[g] is the Hodge dual of the usual
Noether current associated with the symmetry generated
by g; its integral over a Cauchy surface C gives a con-
served charge q[g]. Note that when j is exact, that is,

j = dQ, then the integral that gives q[g] reduces to an
integral at BC. This is the case when the symmetry group
is the group of diÃeomorphisms, and explains why the en-

ergy in general relativitity can be written as an integral
at spatial infinity.

We now specialize to the case of diÃeomorphism in-
variance. Let bye = ZqP be a diffeomorphism generated
by a vector field (. It is then easy to show that

IV. NOETHER CURRENTS bp t-G = t . O[$, hog], (4.7)

We shall follow the methods of Wald, which we briefly
summarize for the case of a three-dimensional spacetime
(see [8] for details).

A. Noether charges in the manner of Veld

Let L[P] be a Lagrangian three-form (in three-
dimensional spacetime), where P represents an arbitrary
set of fields. Under a variation bP,

for variations bp lying within the space of solutions of the
equations of motion.

The derivation summarized here is valid for an arbi-
trary difI'eomorphism-invariant Lagrangian. In particu-
lar, Noether charges can be obtained for both first-order
(triad) and second-order (metric) gravity. As we shall see
below, however, Wald's further derivation of black hole
entropy as a Noether charge requires added assumptions,
which do not hold for the first-order systems we are con-
sidering.

6L =:-6@+dO[P, hP], (4.1)

where the field equations are = = 0 and 0 is a boundary
term, constructed locally from P and bg, that determines
the symplectic structure of the theory. For the action to
be invariant under a symmetry transformation

B. Noether charges for Einstein gravity

For the first-order Einstein action of Eq. (1.6), it is
easy to see that

4 ~4+~,4, g«,
it is clearly necessary that

bgL = dn[$, Hag], (4.3)

8= 2E n, b~

and a simple computation gives a current (4.5) of

jK] = d&K] &X] = —
—,'«. ~- .

(4.8)

(4.9)
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The canonical energy (4.6) for the black hole solution
of Eqs. (1.10) and (1.11) is then easy to calculate: we
obtain

(4.10)

while the canonical angular momentum Q is

The charges are thus determined by the constants r~, as
one might expect.

As a special case, we may consider transformations
parametrized as in (4.1S), that is, I(ISO(2,1)) transfor-
mations that correspond to difFeomorphisms. We find
conserved charges

g=vrJ. (4.ii)
~ r2+r2

= —7rMl(& +
l

(4.i9)

C. Noether charges for the HC'EA system

l. A

8 8
ZqC

2 E

=D(( A ),
= D(( B )+ —,'e s'Bs((. A,),
= D(g C ) + 2e 'Cs(g A,),
= D($ E ) + 2e '[Es(p A, ) + Cs(( B,)

+B~(C.C.)] (4.12)

For the BCEA system, there are two sets of symme-
tries that may give rise to interesting Noether charges,
the diffeomorphisms and the I(ISO(2, 1)) transformations
(2.5). These symmetries are not independent. On shell,

To determine the canonical energy, we must add in the
term t G of Eq. (4.6), but it is not hard to check that
this gives no further contribution. The charges associ-
ated with asymptotic time translations and rotations are
the mass and angular momentum, as expected, but in
the wrong order —the mass appears as the charge for
(4', while the angular momentum is the charge for (~.
We note here that the same values of the total energy
and angular momentum emerge &om a Regge- Teitelboim
analysis [9].

A possible interpretation of this result is to attribute
the mass and charge of Eq. (4.19) to a combination of
the black hole and the "matter" fields B and C. That is,
we can write

and the transformation (4.12) are precisely the gauge
transformations (2.5) with parameters

M, , l ——Mbh+MB C,
Jtotal = Jbh + JB—C (4.20)

A, p =(.B, A =(.C, ( =(.E
(4.i3)

with

JB-C
MB-C (4.2i)

The diffeomorphisms are thus equivalent to I(ISO(2,1))
gauge transformations on shell, as one expects in a topo-
logical theory.

From the Lagrangian (2.1), it is evident that

0 = ,'(E n, SA. +—B whC. ) .

For the transformations (2.5), it then follows that

j[g] = dQ[g], Q[g] = ,'(E r + B A——),

on shell. The conserved charge is thus

(4.14)

(4.i5)

q[g] = 0[g] = —— (E r + B A ) .
c 2 oo

(4.i6)

(4.i7)

In particular, consider the BCEA black hole. For the
integral (4.16) to exist, we must restrict ourselves to pa-
rameters with the asymptotic behavior

It is perhaps not surprising to find that the B and C 6elds
carry angular momentum —they are, after all, sources of
torsion in the field equations (2.2). We do not, how-
ever, have a good explanation for the extremal condition
Ma c = —Ja c/i.

D. Thermodynamics

In the first item of [8], Wald shows that black hole
entropy can also be derived as a Noether charge. Unfor-
tunately, that derivation breaks down in the first-order
formulation. In particular, Eq. (24) in [8] has no non-
trivial solutions for Q. Indeed, for the P component of Q
in pure first-order gravity, we must solve the variational
equation:

(4.22)

q[r, A ]= —m( —vpr + r2r+)
(r2 r2 )i/2

+sr(Apr+ + A2r ) . (4.is)

where 7" and A are constants (or possibly functions of
P). Then

This is not integrable.
However, we can still use the erst law of thermody-

namics to determine an entropy for the BCEA system.
To do so, we choose a constant OH such that the Killing
vector

(4.2S)
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vanishes at the horizon. The surface gravity K is then

(4.24)

and the first law of black hole dynamics takes the form

(4.25)

For the (2+1)-dimensional black hole (1.2), in particular,
it is easily checked that

The relationship to standard thermodynamics may then
be established by means of the Euclidean path integral:
it is shown in Refs. [1,10] that the black hole temperature
obtained from the path integral is P = 27r/r, so (4.25) is
just the erst law of thermodynamics.

For the black hole in Einstein gravity, (4.10) arid (4.11)
gives

The entropy (4.25) is thus

Rather, the cosmological constant can be replaced by a
suitable distribution of "matter. " In itself, this is perhaps
not a very surprising observation, although the division of
mass and angular momentum between the metric and the
B and C fields is rather unexpected. But it is certainly
interesting that even such a simple system of topological
matter can give rise to a black hole.

One may also examine the BCEUF model in second-
order form, using (2.3) and (2.4) to express the connec-
tion A. in terms of the fields E, B, and C in the
action. In this case, it turns out that the B and C fields
contribute to the Noether current at spatial infinity, but
not at the event horizon. The result is that, as in the
first-order form, the locally constructed expression for
the entropy does not satisfy the erst law of thermody-
namics. This is probably generic in models where matter
Gelds are coupled to the spin connection, i.e., to first
derivatives of the metric.

The BCEUF system is, in fact, quite powerful, and our
results suggest an interesting direction to search for ad-
ditional black hole solutions. As noted in Sec. I, the
standard (2+1)-dimensional black hole can be obtained
from anti —de Sitter space by a set of identifications. It is
natural to ask whether this procedure can lead to black
hole solutions if we begin with a difFerent homogeneous
geometry.

Homogeneous Riemannian metrics have been classified
by Thurston [ll], and their Wick rotated metrics provide
a useful starting point. Our preliminary results are that
"black-hole-like" solutions can be obtained from at least
three of these geometries, H (which gives the usual black
hole), H x E, and SOL. In particular, if we let

agreeing with the conventional expression in our choice
of units. For the BCEUF black hole, on the other hand,
(4.19) gives

the metrics

(5.1)

ds = f (r)dt + —dr 2 + dg2f (r)

(obtained from H x E by identifications) and

(5.2)

(5.3)

Once again, the parameters of the conventional black hole
have been interchanged: this time, the roles of r+ and r
are reversed.

V. CC)NCI USION

We have seen that the (2+1)-dimensional black hole
does not require a negative cosmological constant.

(obtained from SOL) satisfy the RCEA equations of mo-
tion for suitable choices of B and C. We do not yet un-
derstand the detailed behavior of these solutions, but we
believe them to be of some interest.
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