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Inflatio, supergravity, and superstrings
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The positive potential energy required for in8ation spontaneously breaks supersymmetry and in
general gives any would-be inQaton an e8'ective mass of the order of the inBationary Hubble param-
eter thus ruling it out as an inHaton. In this paper I give simple conditions on the superpotential
that eliminate some potential sources for this mass, and derive a form for the Kahler potential that
eliminates the rest. This reduces the problem of constructing a model of inQation in supergravity to
that of constructing one in global supersymmetry with the extra conditions W = W~ = g = 0 dur-
ing inflation (where W is the superpotential, the inHaton E &p, and Wy g 0). I then point out that
Kahler potentials of the required form often occur in superstrings and that the target space duality
symmetries of superstrings often contain B parities which would make TV = W~ = 0 automatic for

= 0.

PACS number(s): 04.65.+e, 11.25.Mj, 12.60.Jv, 98.80.Cq

I. INTRODUCTION II. BASIC FORMULAS AND NOTATION

The approximate isotropy of the cosmic microwave
background radiation implies that the inHation [1,2] that
inBated the observable Universe beyond the Hubble ra-
dius must have occurred at an energy scale V /

4 x 10is GeV [3], and it is thought that physics at energies
below the Planck scale is described by an effective N = 1
supergravity theory [4]. Thus models of inHation should
be constructed in the context of supergravity. However,
this immediately leads to a problem. The positive po-
tential energy V ) 0 required for inBation spontaneously
breaks supersymmetry, which would generally be ex-
pected to give effective masses +8m.V/mpi H to any
would-be inflatons. But inHation requires ~V" /V~ (( 1,
i.e. , the efFective mass of the inBaton must be much less
than the inBationary Hubble parameter H.

Natural inHation [5] avoids this problem by assuining
the inBaton corresponds to an angular degree of freedom
whose potential is kept Bat enough by an approximate
compact global symmetry. The model of Holman et al.
[6,2] assumes the form of supergravity that gives min-
imal kinetic terms and fine-tunes a parameter in the
superpotential to eliminate the troublesome mass term.
Solutions to this problem which work for gP chaotic in-
Hation have also been proposed [7,1,8], but they rely on
forms for the supergravity Kahler potential that have no
independent motivation. In this paper I will propose a
solution for inBaton fields which are not purely angular
degrees of 6.eedom, which requires no fine tuning, and
which uses a well-motivated form for the Kahler poten-
tial. Some aspects of this solution have been investigated
in [9].

After inBation V disappears and so supersymmetry is
restored modulo whatever breaks supersymmetry in our
vacuum.

This is no longer regarded as realistic.

I will use the following conventions in this paper:
mpt//8m = 1, a prime will denote the derivative with
respect to the canonically normalized inflaton Geld o, a
bar will denote the Hermitian conjugate, P will represent
a vector whose components P are complex scalar fields,
and subscript P will denote the derivative with respect to
P, so, for example, W4, represents the vector with com-
ponents OW/DgP.

A. Global supersymmetry

In global supersymmetry [4] the scalar kinetic terms
are

where P = (P, P, . . .) and the P are complex scalar
Gelds. The scalar potential is

V=~W4~ + —) g D (2)

with

D- = 4Q-4+(-,
where the superpotential W(P) is an analytic function of
P, a labels the gauge group generators Q, g is the gauge
coupling constant, and the real constant ( is a Fayet-
Iliopoulos term that can be nonzero only if Q generates
a U(1) gauge group. The first term is called the Ii term
and the second the D term. I will assume that the E term
gives rise to the inBationary potential energy density and
that the D term is Bat along the inBationary trajectory so
that it can be ignored during inBation. It may however
play a vital role in determining the trajectory and in
stabilizing the noninBaton fields.
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B. Supergravity

The scalar 6elds in a supergravity theory are the co-
ordinates of a Kahler manifold. The metric on a Kahler
manifold is K&& where the Kahler potential K(P, P) is a
real function of P and its Hermitian conjugate P. The
scalar kinetic terms are

(4)

the E-term part of the scalar potential is

V~ = e (Wp+ WKp) K~~ (W~+ WKp) —31W1

3H—K: V~, (12)

and I will assume that they have been attained for all
epochs of interest. The canonically normalized infiaton
0. is defined by

2
—do = dPK@~ dP. (13)

The conditions necessary for inQation can be expressed
in terms of the potential as

i.e. , the energy density of the Universe should be domi-
nated by the scalar potential. The dynamics of the scalar
fields then rapidly approaches the slow-roll equations of
motion

and the D-term part is /V'l ' VII

V (i4)

VD = —) (Ref b) 'D~Db,
where a prime denotes the derivative with respect to o.

D =KyQ P+(
where f b(&p) is an analytic function of p transforming
as a symmetric product of two adjoint representations of
the gauge group. Only the combination

G(P, P) = K+ ln1W1

is physically relevant and we are always free to make a
Kahler transformation:

K(4' 4') ~ K(» &) —I"(4') —I" (&)

w(y) ~ ~ i~lw(y).

III. THE PB,OBI EM

At any point in the space of scalar fields we can make
a holomorphic field redefinition such that P = 0 and the
scalar fields have canonical kinetic terms at that point.
Any purely holomorphic terms in the Kahler potential
can then be absorbed into the superpotential using a
Kahler transformation. Then, in the neighborhood of
that point, the Kahler potential will be

K = 141'+

where the ellipsis stands for higher-order terms. There-
fore, from Eq. (5),

C. In8ation

V=exp +

x([w&+ W(P+ .) (1+ . ) W&+ W(P+ )I

(16)

I assume the effective action during inflation [1,2] to
have the form

d x~g B+.g" 0„$K—~—~ B„P—V (P, Q)

= V1~ o + V1y o 1/1 + other terms. (17)

Thus at P = 0 the exponential term gives a contribu-
tion V to the e8'ective mass squared of all scalar fields.
Therefore,

and make the usual Hat Robertson-Walker ansatz

VII
= 1+other terms,

V

ds = dt —a(t) dx, P = P(t) .

The Hubble parameter H is defined as H = a/a. infla-
tion requires H/H « 1, or eq—uivalently 3H V,

Strictly speaking H/H ( 1 is all th—at is required. How
ever realistic models satisfy H/H&( 1. See [10] —for a m'ore

detailed discussion.

where the prime denotes the derivative with respect to
the canonically normalized inflaton field. But 1V"/V1 «
1 is necessary for inflation to work. So a successful model
of inflation must arrange for a cancellation between the
exponential term and the terms inside the curly brackets.
This will require fine-tuning unless a symmetry is used
to enforce it. Natural inflation [5] uses an approximate
compact global symmetry. I will use a combination of a
discrete Bsymmetry and a noncompact global symmetry.
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IV. A SOLUTION (28)

Divide the vector of scalar fields P into two separate
vectors p and g with the inflaton contained in p:

and

& = —»f(v, p)+u(x, x), (29)

P = ((p, g), inHaton g p.

Then, during inflation, g is constant and so without loss
of generality we can set

where f and g are real functions, and C is a positive
definite Hermitian matrix. This gives the inflationary
potential

=0. (2o)

When we want to distinguish noninflaton y fields from
the inflaton we will denote them by y:

and the Kahler potential is required to have the general
form

y ~ (p, inHaton g' y. (21) ~= —»f(p, p)+ ' +e(x x)+&(4" 0')
V') 'P

Note that y is constant during inflation.
Now the key point of the solution is to assume that

W=W~=O andWggO

(31)
= —ln f(V, V ) —0 |-"(X,X) 0 +~(X X)+&(0' 0') .

(32)

during inflation. Then the scalar potential Eq. (5) sim-
plifies to

V = e TVgK: W~. (23) V. SIMPLE EXAMPLES OF SUITABLE KAHLER
POTENTIAI S

Now it becomes possible to choose a form for the Kahler
potential that cancels the inflaton dependent corrections
to the global supersymmetry potential in a natural way.

For simplicity, assume that

A. SU(m, 1)/[SU(m) x U(1)]

The simplest example of Eq. (31) is

K-@l~ ——0, (24) K= —lnX, X=1—
~P~ (33)

~ = &(v,P)+ 0&(v,P) 4 + & (0', 0'), (25)

where A is a real function and B is a positive definite
Hermitian matrix.

Note that Eqs. (22), (24), and (25) become automatic
if we impose the symmetry (an B parity)

so that y and g have no mixed kinetic terms during in-
flation. Then, using a Kahler transformation to remove
any remaining terms linear in g, and expanding about
v/r = 0, we get

The corresponding Kahler manifold is SU(m, 1)/[SU(m)
x U(1)], where m is the number of components of P. It is
a maximally symmetric space with constant Riemannian
curvature. Such coset spaces form the basis of no-scale
supergravity [11],though it is important to note that the
Kahler potential in Eq. (33) only corresponds to part of
one sector of a no-scale model. Now

and, from Eq. (5),
(p-+y, W-+ —W, K-+ Jt, (26)

which also helps to stablize @ at 0 because Vy = 0 is also
automatic.

From Eqs. (23) and (25),

V = e WyB TV~, (27)

and so to eliminate the inflaton dependent corrections to
the global supersymmetry potential we require

(35)

Let P = (p, vP), and assume W = W~ = @ = 0. Then the
kinetic terms are

X2 ~~V' (X + 'PP) ~ P ~

and the potential is

(37)

In fact, any unbroken discrete (or continuous) B symmetry
of the form W m e' 0W, @ —+ e' 0@, g —+ e' y, 8 g 80
would sufBce.

Thus for ~p~ (( 1 we have canonical kinetic terms and
the potential has the global supersymmetry form, though
with the additional requirements W = W~ = @ = 0.
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B. SO(m, 2)/[SD(m) x SO(2)]

Another example of Eq. (32) is

To obtain the effective potential during inflation we
minimize the potential [Eq. (2)] for fixed p as follows.
For Ixil + IX2I & A the potential is minimized for

1 —) yy-+-, ) yy-
cx= 1 ex=1

(38)
gi ——gq ——0,

and so the B parity ensures that

(45)

The corresponding Kahler inanifold is SO(m, 2)/
[SO(m) x SO(2)]. For example, if m = 2, rp = P, and

we get

I

« —-Ivl') —IIII' +o(0', P), (»)
2

or if m = 3, p = (y'+ iy') /i/2, X = (y' —iy') /~2,
and @ = Ps we get

It = —ln (1 —
lv I') (1 —lxl') —l@l' + &(4', 0')

(4o)

Therefore

v = Iwy, l
+ Iwy, l

+ gD-
= &ilv I'Ixil + &2 Ix2I'"

2

Now if

Iv I' ~ «, («' —Ix.l'),

(46)

(47)

(48)

VI. MC)DEL BUILDING the potential is minimized for

The solution described in Sec. IV suggests a natural
strategy for inflationary model building. Construct a
globally supersymmetric model which gives rise to in-
flation and satisfies Eqs. (20) and (22), at least to some
approximation —see Sec. VIB. Then extend to super-
gravity by choosing a Kahler potential of the form of
Eq. (32). However, as we shall see in Sec. VI C, it inay
not even be necessary for the globally supersymmetric
model to give rise to inflation.

Then

Now if

X~ =0.

«' = «2 Ix~1'"+ ~g' («' —Ix*1')

A2A"

(50)

(51)

(52)

A. An example of a suitable globally
supersy~metric m.o gael

Consider the following globally supersymmetric model:

W = &ivxili+ &2X202,

the potential is minimized for

a11d so

2 2n —2

g

$2+2n (54)

D = A' —Ixil —Ix2I + I&il + n 142I' .

This model is invariant under the B parity

g2 -+ -gg, W -+ —W,

and the U(l) gauge symmetry

(42) Thus, from Eqs. (49) and (53), for

(55)

(43)

Xi ~ e Xi X2 ~ e X2

@2 m e'" g2.

For example an "anomalous" U(l) often appears in string
theory [12] with A 10 —10 GeV if the dilaton is fixed
near its usual value.

we have a positive potential energy density and a flat
potential for the inflaton Beld p.

The above globally supersymmetric model satisfies the
conditions Eqs. (20) and (22) [Eqs. (45) and (46)] and
so if the Kahler potential is of the form of Eq. (32) then
the supergravity corrections will not spoil the flatness of
the inflaton's potential (which is exactly flat in this case
but there are many possible sources for a small slope for
the inflaton's potential —see the next section). Also, it
is easy to check that the supergravity corrections do not
spoil the stability of the model.

Alternatively to Eq. (52), if n = 1 and gA/A~ & 1 then
the potential is minimized for y2 ——0 and
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V= —g A
2

(56) ~, I~vl'. (60)

In this case the inQationary potential energy density is
dominated by the D-term part of the scalar potential
which might provide an alternative solution to the prob-
lem discussed in Sec. III. i(pi = tanh

2
(61)

For simplicity assume the phase of p is constant. Then
the canonically normalized. inQaton 0. is given by

B. The slope of the inflaton's potential

The solution described in Sec. IV is unlikely to hold
exactly in realistic models. Small deviations from it lead
to small contributions to the slope of the infm. aton's po-
tential. In some cases these could dominate the contri-
butions coming &om the globally supersymmetric model
and so electively determine the slope of the inHaton's
potential. For example, if W = W~ = @ = 0 but
K = Ko + 8(&p, y) where Ko is of the form of Eq. (32),
then we get V = e Vo where Vo is the potential which
would have been obtained if K = Ko had been used.
We thus get a contribution of b' to V'/V and of b" to
V"/V —(V'/V)2. See [9] for an explicit example. Also,
W g 0 or W~ g 0 would typically give a contribution to
V"/V of order iWi2/iW@ i2 or iW~i2/i' i2, respectively.

Now during inflation o )) 1 and so

i(pi = 1 —2e

Therefore

dV
(63)

2 dv
cr =a — ln dl~l

2
IvI=~

(64)

to give the infIationary potential

The coefFicient of the exponential can be absorbed by the
redefinition

V=V( 1 —e (65)

C. Inflation without inflation in the global
supersymmetry limit

Another example of a globally supersymmetric model
satisfying Eqs. (20) and (22) is

which has only one free parameter Vi ——Vi~~~ i and
that is determined by the Cosmic Background Explorer
(COBE) normalization to be Vi ~ = 6 x 10is GeV. It is
also straightforward to calculate the spectral index of the
density perturbations produced during inHation [13,10],

W = &f(V) x"0,

D = A'- IXI'+nial'

For AA" 2]f (y) i jg « 1 it gives a potential

V=A A "if(p)i

(57)

(58)

(59)

f ~l ) V//
ii=1 —3i —

i
+2 -=1 ——=096,IV) V N

which is the same as P chaotic in8ation. However, the
ratio of gravitational waves to density perturbations is
[13,10]

This will not give rise to inHatiov. in the global supersym-
metry limit for a generic function f(p) However, in. the
supergravity theory with the Kahler potential discussed
in Sec. VA, the kinetic terms are noncanonical and di-
verge as iyi approaches one, but the p dependence of
the potential is unchanged from the global supersymme-
try limit. Therefore, transforming to the canonically nor-
malized inBaton field stretches out the potential and so,
assuming that f (p) does not diverge as ip[ -+ 1, we will
get a Hat potential.

To illustrate this, consider the following simple exani-
ple. For the case of only one p field Eq. (36) reduces
to

(V') 3&=6
I

—
i

= —-10-',
qV) ¹

(67)

compared with R = 6/& = 0.1 for P chaotic in8ation.
It is interesting that these results are quite robust, at

least for a single inflationary degree of freedom. For ex-
ample, if we had instead chosen the Kahler potential of
Eq. (39), we would have got the inHationary potential
V = Vi (1 —e ) which also gives n = 1 —2/K 0.96
but slightly larger Vi =—7 x 10's GeV and R = 6/1V
yo

—2.5

Which requires iyi « 1 for consistency.
Note that p is defined only for i&pi & 1.

Note that this is the potential during inflation (a )) 1).
When in8ation ends (8 1), the neglected, model dependent
(i.e. , f dependent) terms become important.
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VII. SUPERSTRING EXAMPLES B. More orbifold compactifications

A. Orbifold compactifications

The Kahler potential of the untwisted sector of the low-
energy effective supergravity theory derived &om orbifold
compactiHcation of superstrings always contains [14]

K = —tn (S+ 5') —) ln (T; + T; —
~P ~*), (68)

where S is the dilaton, T; are the untwisted moduli asso-
ciated with the radii of compactiHcation, and P; are the
untwisted matter fields associated with T;. Now if we
divide the scalar fields into p, g, and y fields as

A Kahler potential of the form

K = —ln (T + T) (U + U) —(B + C) (C + B), (74)

TandUE(p, (75)

often occurs in orbifold compactifications [14,16,17]. In
particular, it can arise in orbifolds with continuous Wil-
son lines, in which case T corresponds to one of the T;
moduli of Sec. VII A, U is a (1,2) modulus, and B and C
are continuous Wilson line moduli [17]. Now if we divide
the fields as

T1 Q P)

S, T2, Ts, P2, and Ps c g c p,

(69)
(7O)

(71)

BandC cg, (76)

then we get a Kahler potential of the required form
[Eq. (32)]

then we get a Kahler potential of the required form
[Eq. (32)]

K = —ln p+(p — +g y, y

and the target space duality symmetries [15],

a, T; —i,b;

i+ ' ~~i i+

(72) (77)

and the target space duality symmetries [17] contain the
desired R parity [Eq. (26)].

C. Fermionic four-dimensional string models

contain the desired A parity [Eq. (26)] on setting b;
c, = 0, a1 ——d1 ———1, and a2 ——a3 —d2 —d3 —1.

The Kahler potential of the untwisted sector of the
revamped Hipped SU(5) model [18] is [19]

~ = —»
I

1 —1@iI' —I+'»I' —IC'2. 1' —lhil' —lhil'+ — @i+2O2s@2s+ 2hihl

—»
I

1 —l@2I —IC'»
I

—IC'sil —lh21 —lh21 + — @"+ 2C'»@31 + 2h2h2

—» 1 —IC'41 —IC's I' —IC"I' —l~» I

—IC'i. l' —Ih. l' —lhsl

+ 44 + 45 + 43 + 24]2412 + 26363
1 2 2 2 2

all three parts of which are of the form of Eq. (38).
Furthermore, if we divide the fields as

then we get a Kahler potential of the required form

[Eq. (32)]

44 and C'5

C', 4, 4i2, h and hs c @,
@1)@2) @23~ @23~ @31)@31) ~1~ ~].)

h2 and hz C y (.

(79)
(80) Ii = -lnl 1 —lvl + - ~ ~ —I&l I+~(»&)

1

+o (@',&'), (82)

Up to trivial redefinitions.
and the target space duality symmetries [19] contain the
desired B parity [Eq. (26)].
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D. Calabi- Yau compacti6cations VIII. CONCLUSIONS

Here I give the Calabi- Yau manifold discussed in
Sec. 4.3 of [20] as another example of a compactifica-
tion of superstrings that can give Kahler potentials of
the form discussed in Sec. V. At a particular point in the
moduli space of the above-mentioned Calabi-Yau mani-
fold, the low-energy gauge group includes an extra U(l)
factor, a subgroup of which may be preserved on sub-
spaces of the moduli space that pass through that point.
The Kahler potential on a subspace of the moduli space
that preserves a U(l) subgroup of the extra U(1) gauge
symmetry is [20]

(83)

where JV = (IVq, N2) are the neutral (1,2) moduli that
span the subspace, and C is a vector whose components
are 63 of the 99 charged (1,2) moduli and their associated
matter Belds. Also the Kahler potential on a subspace of
the moduli space that preserves a U(1) subgroup of the
extra U(1)4 gauge symmetry is [20]

A globally supersymmetric model of inflation (see, for
example, [9,21]) will not work in a generic supergrav-
ity theory because the higher-order, non-renormalizable
supergravity corrections destroy the flatness of the infla-
ton's potential. In this paper I have derived a form for
the Kahler potential which eliminates these corrections
if W = W~ = g = 0 during inflation (where W is the
superpotential, the inflaton 6 p, and Wy g 0). It is
encouraging that Kahler potentials of the required form
often occur in superstrings and that the target space du-
ality symmetries of superstrings often contain B parities
which would make W = W~ = 0 automatic for @ = 0.

Also, I have shown that supergravity theories with
Kahler potentials of this form may give rise to inflation
even if the corresponding globally supersymmetric the-
ory does not. The simplest examples of this new idea for
inflation give a spectral index n = 1 —2/IV 0.96 for the
density perturbations and negligible gravitational waves,
though more complicated examples lose this predictive
power.

(84)

where N is a vector whose components are the 12 neutral
(1,2) moduli that span the subspace.

With respect to the unbroken U(1)

ACKNOW LEDC MENTS

I thank D. H. Lyth for detailed comments on vari-
ous drafts of this paper, and K. Maeda and M. Sasaki
for helpful comments on an early draft of this paper. I
was supported by the JSPS and this work was supported
by Monbusho Grant-in-Aid for Encouragement of Young
Scientists No. 92062.

[1] A. D. Linde, Particle Physics and Inflationary Cosmology
(Harwood Academic, Chur, Switzerland, 1990).

[2] E. W. Kolb and M. S. Turner, The Ear ly Universe
(Addison-Wesley, New York, 1990).

[3] D. H. Lyth, Phys. Lett. 147B, 403 (1984); 150B, 465(E)
(1985); A. R. Liddle, Phys. Rev. D 49, 739 (1994).

[4] For reviews of supersymmetry and supergravity, see H. P.
Nilles, Phys. Rep. 110, 1 (1984); D. Bailin and A. Love,
Supersymmetric Gauge Pield Theory and String Theory
(IOP, Bristol, 1994).

[5] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev.
Lett. 65, 3233 (1990); F. C. Adams, J. R. Bond, K.
Preese, J. A. Prieman, and A. V. Olinto, Phys. Rev. D
47, 426 (1993).

[6] R. Holman, P. Ramond, and G. G. Ross, Phys. Lett.
137B, 343 (1984).

[7) A. S. Goncharov and A. D. Linde, Class. Quantum Grav.
1, L75 (1984).

[8] H. Murayama, H. Suzuki, T. Yanagida, and J. Yokoyama,
Phys. Rev. D 50, 2356 (1994).

[9] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart,
and D. Wands, Phys. Rev. D 49, 6410 (1994).

[10] A. R. Liddle and D. H. Lyth, Phys. Rep. 231, 1 (1993).

[11] For a review, see A. B. Lahanas and D. V. Nanopoulos,
Phys. Rep. 145, 1 (1987).

[12] M. Dine, N. Seiberg, and E. Witten, Nucl. Phys. B 289,
589 (1987).

[13] A. R. Liddle and D. H. Lyth, Phys. Lett. B291, 391
(1992).

[14] S. Ferrara, C. Kounnas, and M. Porrati, Phys. Lett. B
181, 263 (1986).

[15] For a review, see A. Giveon, M. Porrati, and E. Rabi-
novici, Phys. Rep. 244, 77 (1994).

[16] M. Cvetic, J. Louis, and B. A. Ovrut, Phys. Lett. B 206,
227 (1988).

[17] G. L. Cardoso, D. Liist, and T. Mohaupt, Nucl. Phys.
B432, 68 (1994).

[18] I. Antoniadis, J. Ellis, J. S. Hagehn& and D. V. Nanopou-
los, Phys. Lett. B 231, 65 (1989).

[19] J. L. Lopez, D. V. Nanopoulos, and K. Yuan, Phys. Rev.
D 50, 4060 (1994).

[20) L. J. Dixon, V. S. Kaplunovsky, and J. Louis, Nucl. Phys.
B329, 27 (1990).

[21] H. Murayama, H. Suzuki, T. Yanagida, and J. Yokoyama,
Phys. Rev. Lett. 70, 1912 (1993).


