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The quantum cosmology of two-dimensional dilaton-gravity models is investigated. A class of
models is mapped onto the constrained oscillator-ghost-oscillator model. A number of exact and
approximate solutions to the corresponding Wheeler-DeWitt equation are presented. A wider class
of minisuperspace models that can be solved in this fashion is identified. Supersymmetric extensions
to the induced gravity theory and the bosonic string theory are then considered and closed-form
solutions to the associated quantum constraints are derived. The possibility of applying the third-
quantization procedure to two-dimensional dilaton gravity is brieHy discussed.
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I. INTRODUCTION

It is widely thought that quantum gravitational eKects
become important on scales of the order of the Planck
length. It follows, therefore, that insight into the nature
of quantum gravity might be gained by considering the
very early Universe and the end point of black hole evap-
oration. However, there remain many unresolved tech-
nical and conceptual difhculties with (3+1)-dimensional
quantum gravity and to make progress one must consider
simplified toy models.

Recently there has been considerable interest in two-
dimensional theories of gravity. The Einstein action is a
topological invariant in two dimensions and must there-
fore be modified if the theory is to be nontrivial. The
simplest extension is to include a nonminimally coupled,
self-interacting scalar "dilaton" field. These models are
closely related to string theory in noncritical dimensions
[1] and may provide a solvable framework in which some
of the questions raised in quantum gravity can be stud-
ied. Indeed, black hole evaporation has been extensively
investigated following the introduction of the Callan-
Giddings-Harvey-Strominger (CGHS) model [2].

Quantization of two-dimensional models has been per-
formed by employing a number of techniques such as
the Becchi-Rouet-Stora-Tyutin (BRST) and Dirac oper-
ator methods [3,4]. However, it is possible that lower-
dimensional gravity may also shed light on some of the
issues raised in quantum cosmology, such as the problem
of extracting physical predictions from the wave function
of the Universe. In this paper we investigate the quan-
tum cosmology of a generalized class of two-dimensional
models.

A number of approaches to quantum cosmology may
be taken. In the path-integral formalism, for example,
the wave function of the Universe is expressed as a path
integral over a certain class of metrics, matter distribu-
tions, and manifolds [5,6]. This formalism has recently
been investigated within the context of two-dimensional
quantum gravity by Ishikawa [7].

Alternatively, one may follow the Dirac quantization
procedure [8]. The wave function of the Universe is

annihilated by the Hamiltonian operator and, in prin-
ciple, its functional form can be determined by solving
the zero-energy Schrodinger equation. This equation de-
composes into the Wheeler-DeWitt and momentum con-
straint equations that describe, respectively, the invari-
ance of the theory under reparametrizations of time and
spatial dilfeomorphisms [9].

In general, the Wheeler-DeWitt equation is a func-
tional difI'erential equation and. is very difIicult to solve.
Solutions can be found in four-dimensional theories by in-
voking the "minisuperspace" approximation and &eezing
out the inhomogeneous modes. It is not yet established
that such an approach can lead to meaningful results in
higher dimensions, although arguments have been devel-
oped to suggest that it may be relevant [10]. On the other
hand, the existence of a Killing vector in a wide class
of spatially closed, two-dimensional cosmologies implies
that all classical solutions to the field equations are spa-
tially homogeneous [3]. It can therefore be argued that
the minisuperspace approach is exact for these models
[11,12].

Adi and Solomon have adopted a geometrical approach
and found a new solution of the Wheeler-DeWitt equa-
tion [13]. Navarro-Salas et al. [11] have quantized the
induced gravity theory [14] via the covariant phase-space
and reduced Arnowitt-Deser-Misner (ADM) phase-space
methods. They also derived and solved the Wheeler-
DeWitt equation for this model. Henneaux, on the other
hand, performed the quantization of this theory in the
functional Schrodinger representation by first solving the
supermomentum constraint at the classical level [15].
This technique was subsequently generalized to other
models [16].

In this paper we follow the approach normally em-
ployed in four-dimensional quantum cosmology. We con-
sider spatially closed cosmologies within the generalized
class of two-dimensional dilaton-gravity models, where
the dilaton field is assumed to be constant on the sur-
faces of homogeneity. The models are defined by the
functional form of the dilaton potential and specific mod-
els have been considered previously in this fashion by a
number of authors [11,17—19]. We find that the Wheeler-

0556-2821/95/51(12)/6829(14)/$06. 00 6829 1995 The American Physical Society



6830 JAMES E. I.IDSEY

DeWitt equation is exactly solvable for a wide class of
potentials.

The paper is organized as follows. The classical dy-
namics of these models is considered in Sec. II and a
subset is mapped onto the constrained oscillator-ghost-
oscillator model. In Sec. III, these models are quan-
tized and a number of exact solutions to the Wheeler-
DeWitt equation are presented. An interpretation of
these solutions is discussed within the context of a spe-
cific model. Two classes of approximate solutions are
presented in Sec. IV. The first is a power series solu-
tion to the Wheeler-DeWitt equation derived by employ-
ing a modification of the Picard iteration scheme [20].
The second is the class of WKB solutions derived by
means of a I egendre transformation [21]. In Sec. V,
a wider class of exactly solvable two-dimensional min-
isuperspaces is identified. If appropriate conditions are
satisGed, these models can also be mapped onto the con-
strained oscillator-ghost-oscillator model. The superpo-
tential of the wave function must be a separable function
of the minisuperspace null coordinates. We employ this
observation to transform the Wheeler-DeWitt equation
derived from a renormalizable dilaton-gravity model into
a solvable form [19). In Sec. VI, a supersymmetric exten-
sion is considered. It is found that the superspace Hamil-
tonians derived from the induced gravity theory and the
string effective action may each be viewed as the bosonic
component of a supersymmetric Hamiltonian. This sym-
metry is preserved at the quantum level and the asso-
ciated quantum constraints are solved exactly in closed
form for both models. We conclude in Sec. VII with a
brief discussion on the possibility of applying the third-
quantization procedure to two-dimensional cosmologies.
Units are chosen such that 6 = c = 1 unless otherwise
stated.

II. TWO-DIMENSIONAL DILATON-C RAVITY
MODELS

A. The generalized action

spherically symmetric four-dimensional Einstein-Hilbert
action. This is equivalent to Eq. (2.1) if c2 ——e
ci ——2c2, and U = 2(l —Ae ), where A is the four-
dimensional cosmological constant. In this example the
dilaton field is related to the radius of the two-sphere.

Actions of the form (2.1) also arise in string theory
[1]. To leading order in the inverse string tension n, the
tree-level effective action for the closed bosonic string in
two dimensions is given by

S = —— d xy ge —+[R+4(VC) +D(C)], (2.2)
1

where D(4) = c = 16/n' is proportional to the efFective
central charge and the tachyon field is assumed to be zero
[24]. The field strength II„„pof the antisymmetric tensor
field vanishes identically in two dimensions. This action
is closely related to the gravitational sector of the CGHS
model [2].

Closed string loop corrections introduce additional
terms into the P functions and therefore modify the ef-
fective action (2.2) [25]. If field derivatives are neglected,
only the dilaton potential D(4) is altered and, in general,
the loop corrections have the form

(2.3)

where ao ——c and n represents the number of handles
inserted [26]. The values of the other coefficients a are
determined by the string theory.

McGuigan, Nappi, and Yost have considered two-
dimensional string theories containing gauge fields [27].
They showed that open strings are governed by the Born-
Infeld action for nonlinear electrodynamics [28]. Ori-
entable open strings may couple to SU(N) and nonori-
entable strings to SO(N) or Sp(N), where N must be
even for nonorientable strings [29]. When hole and cross-
cap corrections [30] are included, it is found that the
modified equations of motion may be derived from an
efFective action. of the form (2.2), where

The most general action for two-dimensional dilaton
gravity that is invariant under local reparametrizations
and does not contain third- or higher-order derivatives is
[3,22]

S = —— d xg —g[c2(4)R
1 2

2'
+ci(4)g""0„48I'+ U(4')], (2.1)

where g& is the metric on the two-dimensional space-
time manifold, g is its deterininant, ci(4) and c2(4) are
functions of the dilaton scalar field O', B is the curvature
scalar, and U(4) is the dilaton potential.

Specific forms for the functions (ci, c2, Uj correspond
to different two-dimensional models. For example, the
induced gravity action is a special case of Eq. (2.1)
with ci ——1, c2 ——24, and U = 4A [23]. The con-
stant curvature condition may be derived from this ac-
tion and provides a suitable analogue to the Einstein Geld
equations in two dimensions [14]. Also of interest is the

D(C.) = c —K(N+ 2g)e (2.4)

Z —= ~2 dC Qci(4) (2.5)

and perform the conformal transformation

and q = —1, 0, +1 when the gauge group is SO(N),
SU(N), or Sp(N), respectively. v is a positive-definite
open string coupling constant.

Mignemi has recently investigated action (2.2) with
D = Ae " for some arbitrary constant h, , and has
found black hole solutions [31]. This action reduces to
the string effective action in the limit 6 —+ 0 and is
also conformally equivalent to a two-dimensional higher-
order, pure gravity theory with a Lagrangian given byI = R"~~" l whe~e h g 1 [32].

The general action (2.1) may be simplified after suit-
able redeffnitions of the dilaton and graviton fields [22].
If cq and c2 are positive-definite functions, we may define
a new scalar Geld
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where

2 2 —2p
gpv = ~ gravy (2 6) S = — dt —uv+ NaV

N (2.i3)

(2.7)

and the Hamiltonian constraint, derived by functionally
di6'erentiating the action with respect to the nondynam-
ical lapse function, is given by

and q is a constant. The action (2.1) transforms to , uv — V[@(v)] = 0.
¹ 2q2

(2.14)

S = —— d xQ g[~—qgR+ 2g""B„@B„@+V(@)],

(2.S)

where

The second term on the left-hand side is the "superpo-
tential. " Its direct dependence on the dynamical degrees
of freedom may be eliminated by introducing the rescaled
variables

qg =—2c2[4{Z)], V(g) = e ~U(4) (2.15)

Thus, the models are defined uniquely by the functional
form of the dilaton potential. Unless otherwise stated,
we shall view theory (2.8) as our starting action and we
therefore drop the tildes for notational simplicity.

and

dv'v'V[@(v')]

= —q dQ'e @ ~~V(Q'), (2.i6)
B. Two-dimensional cosmologies

In the canonical &amework the topology of space-time
is Z x IR, where the real line R corresponds to the time
dimension and the spatial section Z is either a real line or
a circle S . The former case applies to two-dimensional
black hole solutions, whereas the compact spatial topol-
ogy is relevant for cosmological models. In this case the
world interval has the form

1S = — dt nP+ &aV
NaV (2.17)

where P represents a rescaled dilaton field. It follows
that 0 ( o. ( +oo, but the range of values spanned by
P is model dependent. The Jacobian of this transforma-
tion vanishes if V(g) vanishes and we therefore restrict
our discussion to potentials that are either positive or
negative definite. The action (2.13) now takes the form

ds' = —N'{t)dt'+ a'(t)dx', (2.io) and the corresponding Hamiltonian constraint (2.14) be-
comes

dt —
~
qua+ —a@ —Ko.V

2
(2.11)

after integration over the spatial sections.
We now proceed to express the kinetic terms of Eq.

(2.11) in canoiucal and diagonal forms by introducing
new variables. This will allow the classical field equations
to be solved for appropriate choices of lapse function and
leads to simple forms for the Hamiltonian constraint. We
begin by defining the new coordinate pair

u—:~2qae~~ ~, v = ~2qe (2.12)

The range of these variables is determined by physical
considerations. The physically interesting region of pa-
rameter space is 0& (a, q@) & +oo and this corresponds
to the range 0 & u & +oo and 0 & v & ~2q. In terms of
these variables the action (2.11) has the form

where a(t) is the radius of the spatial hypersurfaces and
%(t) is the lapse function. The spatial sections represent
surfaces of constant g. When the line element is given
by Eq. (2.10), the Ricci curvature satisfies i/ gR-
—20q(oK), where the extrinsic curvature scalar is given
by K = a/(oN)and a—dot de'notes differentiation with
respect to t. It follows, therefore, that the action (2.8)
takes the form

H=aV(p pp —1) =0, (2.IS)

where p = P/(NaV) an—d pp = —n/(Na V)are the
momenta conjugate to n and P, respectively.

In the gauge N = aV, the field equations take the
simple form n = P = 0 and have the general solution

n = np + b(t —tp),

P = Pp+ b (t —tp), (2.i9)
where (np, Pp tp bj are constants. We conclude,
therefore, that the classical dynamics of these two-
dimensional Universes is equivalent to that of a nonin-
teracting point particle propagating on two-dimensional
Minkowski space. The variables n and P may be viewed
as null coordinates and the regime of Minkowski space
accessible to the "particle" depends on the dilaton po-
tential.

We now impose the additional restriction that P re-
mains positive or negative definite for all physically rel-
evant values of the scale factor and dilaton field. In this
case we may introduce a third pair of variables defined
by

This restriction on P ensures that the corresponding
Wheeler-DeWitt equation will not be of the elliptic type when
expressed in terms of w and z.
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zv—:V'WP —v n, z—:gals + v n, (2.20) III. EXACT QUANTUM V@AVE FUNCTIONS

where p = P/~P~. For real values of n and P, z ) ~i'~. In
the gauge

1

~ (n~P) '~', (2.21)

action (2.17) transforms to

S = — dt[p(z —iu ) + 4(z —iU )]. (2.22)

This is the action for the constrained oscillator-ghost-
oscillator system when P & 0 and the model corresponds
to a constrained hyperbolic system if P ) 0. In this latter
case, the field equations have the general solution

A. The Wheeler-DeWitt equation

a2
+1 4=0.

OnO
(3.1)

The cosniological models defined by Eq. (2.17) are
quantized with the algebra [n, p ] = i and [P, pp] = i.
The Wheeler-DeWitt equation is the operator form of the
Hamiltonian constraint (2.18) and is realized by identify-
ing p with i O/On —and pp with i O/OP—. The physical
states @ of the Universe are annihilated by this Hamil-
tonian operator. We shall not consider the ambiguities
that arise in operator ordering, so the Wheeler-DeWitt
equation has the form

t/2 + ~ —t/2

t/2 + D —t/2 (2.23) —ibm —iP/b&b = C (3 2)

This equation admits a number or exact solutions [33].
One family is given by

where the constants of proportionality satisfy AB = CD
and are chosen to ensure z ) ~to~ for all t. The trajectory
of this solution is a central conic section in this sector of
the (iU, z) plane. If P & 0, however, the general solution
is

ZU = EE cos(t/2 + Oi), z = E cos(t/2 + 02), (2.24)

where b is an arbitrary, complex constant. ~4'b] is
bounded everywhere when Imb = 0 and is bounded for
Imb&0ifP&0.

A natural generalization of this solution is to include
a variable amplitude A(n, P). Substitution of the ansatz
4 = A@g into Eq. (3.1) implies that 4 satisfies

where (E,Oi, 02 j are arbitrary, real constants and ~e = l.
These solutions lie on the family of ellipses [17]:

iBL . BL
OnOP b On OP

=0 (3 3)

m + z —2~mz cos0 = E sin 0, (2.25)

and one nontrivial solution to this equation is

(3 4)
where the eccentricity is determined by 0 = 01 —02 and
the major axis lies along the line m = ez.

This correspondence between the constrained
oscillator-ghost-oscillator and a specific two-dimensional
dilaton-gravity model was recently observed by Onder
and Tucker [17] in the synchronous gauge N = 1. Their
model corresponds to the choice ci ——c, c2 ——24, and
U = A + Ae in action (2.1), where fc, A, A) are con-
stants. Within the context of this model, they employed
such a correspondence to investigate the connection be-
tween the classical and quantum cosmologies. They iden-
tified appropriate linear superpositions of quantum states
that highlighted the classical orbits (2.25) and were there-
fore able to conclude that a deBnite correlation between
classical and quantum solutions exists in this model. This
is interesting because the question of how a classical
space-time emerges from a quantum theory of the Uni-
verse is currently unresolved. The above analysis general-
izes the results of [17] and shows that the correspondence
between the oscillator model and two-dimensional cos-
mologies arises in a wide class of dilaton-gravity models.
This suggests that two-dimensional theories may provide
valuable insight into the problems associated with quan-
tum cosmology in higher dimensions. In view of this we
proceed in the next section to investigate the quantum
cosmological behavior of these models.

In terms of the coordinate pair (2.20) the Wheeler-
DeWitt equation (3.1) transforms into [17,33—37]

{92
+p(m —z ) 4=0.

Bz (3 s)

This has separable solutions of the form iIJ = P c„@„,
where

e„=II„[~c~jH„[~«I .—.~-'+-'j~', (3.6)

s = s~ In(4npP),
1 (n&

i~PJ
and the Wheeler-DeWitt equation becomes

(3.7)

, +9pe' 4 =0. (3.8)

The wave function is an eigenstate of the momentum op-

c are arbitrary complex coeKcients, H„ is the Hermite
polynomial of order n, , and c = i (c = 1) for p = +1
(~ = —1).

If P does not change sign, a third class of solution is
generated by defining the variables
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erator 8/Or and has the separable form

4p ——e'""Zg,pcs(~pe '), (3.9)

interior of the future light cone is represented because
v & v „=~2q is bounded from above.

For this model the (n, P) coordinates are given by

V
—= —+ V'2~@, v —= ——V'2~a.

2 2

The Wheeler-DeWitt equation transforms into

(3.10)

a2
, +p(p —v) iII = 0 (3.11)

and has the separable solution

ill = [ciAi(m —pp) + c2Bi(m —pp)]
x [csAi(m —pv) + c4Bi(m —pv)] (3.12)

in terms of Airy functions, where (m, c~) are arbitrary
constants [39].

B. Exponential dilaton interactions

It is useful to consider a specific model in order to
discuss these solutions. We shall investigate an action of
the form (2.2), where the dilaton potential is given by
D = Ae 2" for some constants (h, A) [31]. This action
is conformally equivalent to Eq. (2.8), where

—2C ~(q) ~ ~

ellaA (qg~
8 q2) (3.13)

The kinetic terms in the action (2.11) may be diagonal-
ized by introducing the variables

where p is a separation constant and Z+'p/3 represents a
linear combination of ordinary Bessel functions of order
hip/3.

It should be noted that technical questions arise when
quantizing with variables that are restricted to a finite
range, as is the case in the derivation of Eqs. (3.1) and
(3.5). However, these issues are beyond the scope of the
present work [38]. On the other hand, the variables (3.7)
are unrestricted and Eq. (3.8) can be derived froin the
corresponding classical action with an appropriate choice
of factor ordering. Equations (3.1) and (3.5) may then
be derived directly Rom this equation by a change of
variables.

An additional class of exact solutions may be generated
by defining new variables

2 g/
2 (3.15)

and

1+6
/3 = ——

41+h, (2)
A

P = ——ln(vt)), h = —1,
4

(3.16)

respectively, and when h g 1, the sign of P is uniquely
determined by the sign of A/(1+ h).

The parameters (o., P) may also be viewed as null co-
ordinates over a region of Minkowski space spanned by
the timelike coordinate p = n + P and spacelike coordi-
nate q = n —P. Thus, if P & 0, it follows that p & ~q~

and the analysis is again restricted to the interior of the
future light cone of the origin. Since n, P C (0, oo), the
whole of the interior is now covered. On the other hand, if
P & 0, q & ~p~, and the propagation of the wave function
is restricted to the Rindler wedge of Minkowski space.

The simplest interpretation of the wave function iden-
tifies an oscillating solution to the Wheeler-DeWitt equa-
tion as a Lorentzian geometry and a cosmological singu-
larity is associated with an infinite number of oscillations
[40]. A nonoscillating solution represents a classically
forbidden Euclidean geometry. Let us consider the case
where P & 0 and h g —1. Equation (3.6) represents
the basis for a discrete spectrum of Euclidean solutions,
where the parameter n determines the excitation level of
the wave function [36]. The ground state is associated
with n = 0 and excited states with n ) 0. This ground
state is identical to solution (3.2) when 6 = i. Hence, —
we may view the solution 4b—;as the ground state of
a continuous spectrum of excited states (3.2) that are
parametrized by the separation constant 6 with Reb = 0
and Imb ( 0.

Although these classes of Euclidean solution appear to
correspond to classically forbidden behavior, Lorentzian
wave functions may be generated from appropriate lin-
ear combinations of the excited states. A more general
solution to Eq. (3.1) is given by [33]

e = dcM c e---»/, (3.17)
T = (ae+~ ~+e ~~ ~),

X= ' (ae«" —e-~~"), (3.14)

and this implies that the minisuperspace metric is trans-
formed into the Minkowski metric, where T is the time-
like coordinate and X is the spacelike coordinate. Since
T & ~X~, only the interior region of the future light cone
of the origin is covered by this coordinate system. We
deduce, therefore, that the variables (2.12) represent the
null coordinates u = T + X and v = T —X in this re-
gion. It should be noted that only a Gnite region of the

OO

d„('p-3)/~, ---I~I/-
2 0

= e'P" K,p/3 2 o,p (3.18)

where M(c) is an arbitrary function of the parameter
c = ib and C represents some contour of integration in
the complex plane. If M(c) = 2c~'" sl~s and the contour
of integration is over the positive half of the real axis, Eq.
(3.17) may be evaluated exactly in terms of the modified
Bessel function:
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We recognize this superposition as solution (3.9) with
Z = K(es'). This solution may also be generated from a
linear combination of harmonic-oscillator wave functions
and, in general, solutions (3.2), (3.6), and (3.9) may be
expressed as linear combinations of one another for pos-
itive and negative P [33,36,37].

The modified Bessel function has the asymptotic form
K~(x) oc z 'i for ~x~ (( 1 and q g 0. Thus, the wave

function has the form 4„oc e'&~"+'~ for small spatial ge-
ometries (s -+ —oo) and these represent plane waves in
the variables (r, s). The wave function oscillates an in-
6nite number of times when the spatial volume of the
Universe vanishes and we identify this point as a cos-
mological singularity. However, the wave function is ex-
ponentially damped for e ' ) ~p~/3 and this region of
minisuperspace is classically forbidden. It is interesting
to relate this solution to the classical solution in terms of
the variables (3.7). The gravitational field equations de-
rived from action (2.17) in the gauge N = 9e '/(4aVp)
are given by

where g is real and e & 0, it will pass to the left of the
origin in the complex plane. In this case, Eq. (3.22) is
given by [41]

iIr = Ai(p, + m)Ai(v + m). (3.23)

IV. APPR.OXIMATE %TAVE FUNCTIONS

Up to a numerical constant, this solution corresponds to
Eq. (3.12) with ci ——cs and c~ = c4 ——0. It oscillates
if either v + m ( 0 or p + m & 0 and is exponentially
damped when both arguments are positive.

Thus far we have derived exact solutions to the
Wheeler-DeWitt equation. However, it is useful to search
for approximate solutions as well. Although such solu-
tions are not exact, they can provide insight into the
nature of the wave function. In the following section, we
shall discuss two classes of approximate solutions.

~ . 27 6s0
" 6s

4p
(3.19)

A. Popover series salujions

and the general solution satisfying the Hamiltonian con-
straint is Power series solutions to the Wheeler-DeWitt equation

(3.1) may be derived by expanding the wave function as
the infinite sum of functions:

s. t' s.ln e '+~e g
i/2

4A~ p
(3.20)

CXO

@=)
m=O

(4.1)

where 1A, B) are arbitrary constants. (We have per-
formed a linear translation on t without loss of general-
ity. ) It follows that the value of s is bounded from above
by the constraint e ' ( 2A/3 and we may therefore iden-
tify the eigenvalue of the momentum operator 8/Br with
the integration constant A, i.e. , ~p~

= 2A.
In general, it is difBcult to evaluate Eq. (3.17) exactly.

However, it can be related directly to solution (3.12) by
performing a trivial rescaling c = —2c and specifying

This ansatz is a consistent solution to Eq. (3.1) if

BnOp

(4.2)

1 c
M(c) = exp ——+ m, cci (3.21) Equation (4.2) is the canonical, one-dimensional wave

equation and has the general solution
where m is an arbitrary constant. Substitution of vari-
ables (3.10) into Eq. (3.17) therefore implies that @o ——P(n) + Q(P), (4.4)

dC C c 1
c'/' 12

exp ——+ (p, + v+ 2m) —+ —(p —v)'
2 4c

(3.22)

An integral of this form has been evaluated previously
by Halliwell and Louko within the context of the path-
integral quantization of the four-dimensional de Sitter
universe [41]. They showed that it may be expressed in
terms of products of Airy functions, where the specific
combination is determined by the contour of integration.
In our example, we wish to construct wave functions from
a linear combination of bounded wave functions of the
form (3.2) and therefore require Rec ( 0. If the contour
of integration is chosen to lie along the line c = ig —e,

where P and Q are arbitrary, twice continuously difFer-
entiable functions. A modification of the Picard iteration
scheme [20,34) may now be established by expressing @
in terms of quadratures with respect to the null variables
(n, P). When m, = 1, Eq. (4.3) admits the separable
solution

dn, P(n, ) + n dPi Q(Pi) (4.5)

and this result may then be substituted back into Eq.
(4.3) to derive @2 and so on. The general pattern is
easy to deduce after a few iterations and we conclude,
therefore, that
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@=Op+ ):(—1)

m=1

dcxiP(cubi)
and a new function

(4 8)

P P3 P2
+n dP " dP, dPQ(P) (46)

~(( n) —= x(+ Pn —S(x, P). (4.9)

Partial difFerentiation with respect to ( implies that

is also a solution to the Wheeler-DeWitt equation (3.1).
It should be emphasized that we have not assumed a

semiclassical approximation in deriving these power se-
ries solutions. The advantage of this scheme is that the
wave function is given in terms of arbitrary functions of
n and P. In many minisuperspace models these variables
are related to the spatial volume of the Universe, where
small values of n or P typically correspond to small spa-
tial volumes. Indeed, this is the case for two-dimensional
dilaton-gravity cosmologies, since o, is proportional to the
square of the scale factor. Consequently, for P(n) = 0,
we may view solution (4.6) in the region of the origin as
an expansion in powers of a small parameter o..

(4.10)

where the second equality follows from Eq. (4.7). Equa-
tion (4.10) has the general solution

c = ,'n('+ —f(n), (4.11)

where f (rl) is an arbitrary function of q.
A parametric solution may now be found by transform-

ing back into the old variables. After differentiation of
Eq. (4.11) with respect to q, we find that

20! d

rl

—f(n)+ n dn'

O.'

2+
'g d'g

(4.12)

B. Semiclassical wave functions

Within the context of four-dimensional cosmologies,
the nature of space-time is accurately described by classi-
cal physics when the spatial volume of the Universe is sig-
nificantly larger than the Planck scale. It follows, there-
fore, that classical behavior from the quantum regime
should be predicted by the quantum theory. Presently,
the problem of how such a transition might occur is an
unresolved. one. However, it is reasonable to suppose that
the nature of semiclassical wave functions may provide
some insight.

In the WEB approximation, corresponding to the limit
5 -+ 0, one treats some of the degrees of freedom jc) as
classical variables and the remainder (qj quantum me-
chanically. The wave function is then viewed as a linear
superposition of waves of the form 4 e ' /", where
S is the classical action satisfying the Hamilton-Jacobi
equation. This equation is derived by identifying the
conjugate momenta in Eq. (2.18) with p = BS/Bo. and

pp = BS/OP. It takes the form of a nonlinear, first-order
partial differential equation:

It should be noted that this Legendre transformation
is only self-consistent, if the Jacobian

f&'S)
~x' ~P' i,~x~P) (4»)

f(n) = —'+P'n
77

(4.14)

where fn;, P;) are finite constants, and this ansatz leads
to the action

is nonvanishing. Solutions are said to be "developable"
if J g 0 and "nondevelopable" if J = 0. All developable
solutions can be written in the parametric form of Eq.
(4.12). In principle, we can determine g = q(n, P) from
the second equation in (4.12) once the functional form of
f (rI) has been specified. Substituting this result into the
erst equation yields the action in terms of the canonical
variables, or equivalently, in terms of the original vari-
ables via Eqs. (2.12), (2.15), and (2.16).

For example, the Jacobian is nonvanishing if

S = 2+(a —n;)(P —P;). (4.15)
OS t9S

&x ~P
(4.7)

where a new variable g—:~2n has been introduced. It is
well known that there exists a one-to-one correspondence
between congruences of classical solutions and solutions
to the Hamilton- Jacobi equation in two-dimensional min-
isuperspaces [42]. In principle, therefore, an arbitrary so-
lution to Eq. (4.7) may be generated once the classical
solutions are known.

However, parametric solutions may be found more di-
rectly by employing a Legendre transformation [21]. We
de6ne new variables

When f = 0, this solution is closely related to the exact
solution of Eq. (3.8) that is given by @ = Ho (2+nP),
where Ho (x) is the Hankel function. For small argu-
rnents this function has the asymptotic form 2ivr ln(x),
so the wave function does not oscillate. On the other
hand, the Hankel function has the form Ho (x) oc(2)

x /' e+' at large arguments and this does have oscilla-
tory behavior. In this example, a large argument corre-
sponds to a large value of the scale factor. Consequently,
the argument of this solution may be identified with the
action (4.15) and represents a classically allowed solution
that has tunneled from the Euclidean regime.
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Exact solutions can also be found if f oc r1+ "and f oc

lng. Furthermore, it is interesting to note that solution
(3.2) to the full Wheeler-DeWitt equation (3.1) is of the
WKB form iir = e ', where S = bn+ b iP. This is an
exact, nondevelopable solution to the Hamilton-Jacobi
equation (4.7) and in this sense the WKB approximation
is exact for this solution.

This concludes our discussion on approximate solu-
tions. In the next section we shall investigate whether
other minisuperspace models can be solved in the man-
ner discussed above.

V. A CLASS OF INTEGRABLE
MINISUPERSPACES

It is interesting to investigate whether a wider class of
models leads to the Wheeler-DeWitt equation (3.1). To
proceed, we investigate an equation of the form

0
, +4m'(x, y) @ =0,

Bx t9g
(5 1)

where the superpotential, m (x, y), is some function of
the minisuperspace coordinates (x, y).

We introduce new variables n = n(cr) and p = p(r)
that are arbitrary functions of the minisuperspace null
coordinates 0 = x+ y and 7 = x —y. These new vari-
ables satisfy the boundary conditions Bn/Bx = Bn/By
and Bp/Bx = —Bp/By and these constraints ensure that
the derivative terms in Eq. (5.1) are transformed into
the canonical form

mined by the specific form of the superpotential.
The 3acobian of the transformation leading to Eq.

(5.2) vanishes whenever the null variables n = n(o) or
P = P(r) have turning points and these will occur at the
zero points of the superpotential if Eq. (5.3) is satisfied.
Thus, the Wheeler-DeWitt equation can be mapped onto
the unit-mass Klein-Gordon equation if the superpoten-
tial is positive or negative definite over the whole region
of minisuperspace covered by (n, Pj and, in addition, is
a separable function of these null coordinates. For ex-
ample, if n ) 0 and P ( 0, the solutions discussed in
Sec. III B are also solutions to Eq. (5.1). If, on the other
hand, the superpotential does vanish at some point in
minisuperspace, equivalent transformations to those dis-
cussed above may. be performed on both sides of the zero
point. The two solutions in the different regions may
then be matched at the boundary by requiring that the
wave function and its first derivative are continuous [43].

There are a number of interesting minisuperspaces for
which Eq. (5.3) can be solved exactly. In many cases
the superpotential of the wave function is independent
of one of the null coordinates, i.e. , it is a single func-
tion of either 0 or 7. This is the case for the Wheeler-
DeWitt equation derived from a renormalizable, two-
dimensional dilaton-gravity theory. One-loop quantum
corrections to the CGHS action have been calculated by
Russo, Susskind, and Thorlacius [44]. In the conformal
gauge g+ ———e ~/2, g~~ = 0, the one-loop efFective
action has the form

BnBP B
BxBxBnBP™~ 0 (5 2)

2 2(~—ri)/v + ) B f B f (5.6)

It follows that Eq. (5.2) reduces to Eq. (3.1) if the
new variables n and P are themselves solutions to the
equation

Bn BP dn dP
gx Ox 80 l7

where

Ky=Kp ——C+e
2

represents a Liouville-type field,

(5.7)

In principle, therefore, Eq. (5.1) may be solved if a so-
lution to the constraint equation (5.3) can be found. Ef-
fectively, the problem of solving the linear, second-order
partial differential equation (5.1) has been reduced to
finding a solution to the nonlinear, first order equation-
(5.3) and in many cases it is considerably easier to solve
this latter equation. Indeed, it is clear from the second
equality in Eq. (5.3) that when the superpotential has
the generic form

(5 8)

is a rescaled version of the dilaton field 4, f~ are confor-.
mal scalar fields, and the constants K = (K —24)/12 and
p are assumed to be positive definite.

The Wheeler-DeWitt equation corresponding to this
renormalizable model of dilaton gravity has been derived
by Mazzitelli and Russo [19]. It has the form

m (x, y) = m+ (o )m (r), (5.4)

where m~ are some known analytical functions, Eq. (5.3)
admits the general separable solution

dcr'm+(cr'), P = A dr'm (r'), (5.5)

where A is an arbitrary separation constant. The region
of minisuperspace covered by these coordinates is deter-

The reader is referred to [44] for the details of the deriva-
tion. The numerical value of K is determined by including
the one-loop contributions from the reparametrization ghosts,
dilaton, and conformal fields. The theory is one-loop finite if
~ = (1V —24)/12.
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VI. SUPERSVMMETRIC QUANTUM
COSMOLOGY

(5.9)

where yo, etc. , represent the zero modes of the harmonic
expansion of the fields on the cylinder. In this analysis
it is assumed that the coupling between the zero- and
higher-order modes is negligible and this is equivalent to
invoking the minisuperspace approximation. This repre-
sents an improvement over the approximation employed
to derive Eq. (3.1), however, since this latter equation
follows &om the classical action (2.2), whereas Eq. (5.9)
follows directly from the one-loop effective action (5.6).

Equation (5.9) is solved by separating the wave func-
tion into its gravitational and matter components with
the ansatz @ = C'(gp, Bp)p(f& p). T'he plane waves y =
exp[i P Z~ f~p] form a basis for the solutions, where Zz2
are arbitrary constants. By identifying (x, y) = (gp Ap),
it is readily seen that C satisfies Eq. (5.1), where the
superpotential is given by

Z2 2 4 2 2(~p —Ap) /K

2
(5.10)

and Z2—:P Z2 represents the total momentum eigen-
2

value of the matter sector. If Z & 2K+4, m is negative
de6nite and a function of (yp —Op) only. We may there-
fore choose m, + ——1 in Eq. (5.5) and this implies that 4
satisfies an equation of the form 8 4/OnBP = —4, where

n = A(yp + Bp),

P=
I

—~ —2 I(&, —n, ) —2~& e ~x-fz'
2 Xo —&p

Ar. g 2

(5.11)

On the other hand, the superpotential vanishes along the
null line

v. Z2 —2K —4~
xo —no = —l

2 8@2

if Z & 2K, + 4 and in this case diferent coordinate rep-
resentations must be employed on either side of this line.

We conclude, therefore, that the wave functions dis-
cussed in earlier sections also apply to this renormaliz-
able model of dilaton gravity. In particular, Lorentzian
solutions to Eq. (5.9) may be generated from linear su-
perpositions of Euclidean solutions and vice versa when
n ) 0 and p ( 0. It follows immediately from Eq. (5.11)
that these conditions are satisfied for all yo ) 00 ) 0
when A ) 0 and Z2 & 2K+ 4.

This concludes our discussion on exact bosonic wave
functions. In the following section we shall investi-
gate whether supersymmetric extensions to the quantum
models discussed above can be performed.

Graham discovered that a hidden symmetry exists
in the Bianchi type-IX universe by showing how the
classical superspace Hamiltonian may be viewed as the
bosonic part of a supersymmetric Hamiltonian [45]. It
has now been shown that this hidden symmetry exists in
all Bianchi class A models [46—49]. This implies that a
sypersymmetry can be introduced at the quantum level.
This supersymmetric extension of the quantum theory
has significant consequences for quantum cosmology, as
shown by calculations for the Bianchi type-II universe
[49]. It is thought that these extensions may provide valu-
able insight into some of the questions relevant to a com-
plete theory of quantum gravity. In particular, they may
resolve the problems encountered when one attempts to
construct a conserved probability from the wave function
[48]. It is therefore of interest to investigate whether hid-
den supersymmetries exist in two-dimensional dilaton-
gravity models.

We begin by briefly reviewing the "hidden symmetry"
method of Graham [45]. In the minisuperspace approx-
imation the classical Hamiltonian constraint takes the
form

2Hp ——G" p„p + W(q) = 0, (6.1)

where G~ is the metric with signature (—,+, +, . . .) on
the (D + 1)-dimensional minisuperspace spanned by the
finite number of degrees of freedom q" (p = 0, 1, . . . , D).
The momenta conjugate to these variables are p„and
W represents the superpotential. This Hamiltonian is
the bosonic component of a supersymmetric Hamiltonian
[50,51] if there exists a function I(q) that respects the
same symmetries as Ho and is itself a solution to the
Euclidean Hamilton- Jacobi equation

BI BI
aq aq- (6.2)

Fermionic degrees of freedom p~, p obeying the spinor
algebra

[rp", y ]+ ——[&p", p ]+ ——0, [p",P ]+ ——G" (6.3)

satisfy

Q' =Q' =o (6.5)

and, if Eq. (6.2) is satisfied, the Hamiltonian (6.1) may
be written as

2Hp ——[Q, Q]+, [Hp, Q] = [Hp, Q] = 0. (6.6)

These equations represent the algebra for a single, com-
plex supersymmetry charge Q and the model therefore
exhibits an N = 2 supersymmetry [51].

This symmetry is preserved at the quantum level

are then introduced. It follows that the supercharges

. Wi „6 . W)
Q = v"

I » +&& I
Q—:v"

I
»' —

&& I (64)~q" )
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by choosing the representation y" = 0~ and
G""O/Og" for the fermionic degrees of freedom, where
gi' are Grassmann variables [45,47]. The bosonic degrees
of freedom have the usual representation p& ———ihO/Oq".
Equations (6.5) and (6.6) now represent the operator re-
alizations of the supersymmetric algebra. The quantized.
superspace Hamiltonian is given by

BI
A+ ——0,

BQ! Bo!

BI
OP OP

h 82I
H = IIO+ — [g",p ] (6.7)

t9 OI 8 BI
(On On OP OP

and has an additional term that vanishes in the classical
limit. The existence of this term suggests that suitable
imaginary or complex solutions to Eq. (6.2) will be dif-
ficult to find. It follows that the supersymmetric wave
functions are annihilated by the supercharge operators

(6.8)

M 0 BI
On OP OP

BI
C, =o,

and it is these constraints that represent the "square
roots" of the Wheeler-DeWitt equation.

OP

BI
C2 ——0. (6.11)

A. Induced gravity theory

To investigate whether the two-dimensional cosmolog-
ical models considered in Sec. II exhibit a hidden super-
symmetry of the form discussed above, we must first iden-
tify the symmetries of the classical Hamiltonian (2.14).
The kinetic part is invariant under the simultaneous in-
terchanges u ++ +v. However, the full Hamiltonian is
not necessarily invariant under this interchange because
of the generality of the dilaton potential. On the other
hand, it is symmetric under both simultaneous inter-
changes if the potential is constant, i.e., if V = A . This
form of the potential in Eq. (2.8) corresponds to the in-

duced gravity action for q = i/8 and it is straightforward
to verify that the above symmetries are equivalent to an
invariance under n ++ +p.

Evaluation of Eq. (2.16) implies that P = q A e
and comparing Eq. (2.18) with Eq. (6.1) implies that
the nonzero components of the minisuperspace metric are
G p ——Gp ——aA . The superpotential is therefore given
by R' = —2aA and it follows that one solution to Eq.
(6.2) that respects the symmetries of the Hamiltonian is

I = —2i(nP)'~'. (6.9)

Since we require this "Euclidean" action to be real, we
must assume that A ( 0.

The functional form of the supersymmetric wave func-
tion may now be determined by solving the constraints
(6.8). Because of the anticommutation relations obeyed
by the Grassmann variables 0~, the general supersym-
metric wave function may be expanded. as

4 =A++B00 +Bi0 +C20 0, (6.10)

where the bosonic functions (A+, Bo, Bi, C2) are func-
tions of (n, P) only. The annihilation of the wave func-
tion by the supercharge operators then translates into a
set of coupled, Brst-order partial differential equations:

The solution to these equations is given by

A+ ——e
—I

C2 ——e,I

t9i OI
Bo! Bo,'

(6.12)

where the function I" = E(a, P) is itself a solution to the
equation

O2I" t' O I OI OIi
O~ OP)

(6.13)

When I is given by Eq. (6.9), Eq. (6.13) simplifies to

02

BtU

a2 —m +z +2 E —0
Bz

(6.14)

where (tv, z) are defined by Eq. (2.20). Hence, I' may be
interpreted physically as the wave function for a quantum
system describing two coupled harmonic oscillators that
have identical frequencies but a difference in energy of 2.
The solution to Eq. (6.14) has the separable form

r =a„~ + ~ II„, & — ~ e-~-+»~.

(6.15)

The functions A+ and C2 represent the empty and
filled fermion sectors of the Hilbert space. Both may
be interpreted. as lowest-ord. er, WKB approximations to
exact solutions of the bosonic Wheeler-DeWitt equa-
tion (3.8). This equation may be written formally as
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H(p) 0 = H(i) 4 where we have split the Wheeler-DeWitt
operator into the two components

t9 t9—9+e ~ H(i) (6.i6)

Application of H(i) implies that H(&) 4 = E4, where
E = p . If the eigenvalue p is real, this equation may be
interpreted as the Schrodinger equation, where E rep-
resents the energy associated with H~i~ [52]. Therefore,
the state with E = 0 corresponds to the state of lowest
energy. When P ( 0 and p = 0, the general form of
the bosonic wave function (3.9) is given by a linear com-
bination of modified Bessel functions Ip(z) and Kp(x),
where 2: = 2/op/. For large x these functions have the
asymptotic forms Ip oc e and Kp cx e, respectively,
and these limits correspond to the solutions C2 and A+.
The supersymmetric vacua are therefore closely related
to their semiclassical limits and correspond to the pure
bosonic states of lowest energy. These features appear
to be generic properties of supersymmetric ground-state
wave functions [51].

BI BI
Oo. BP

(6.2i)

and also respects the duality symmetry n ++ P. One
solution satisfying the necessary conditions is I = 2/cnP
and since (n, P) are positive definite, c ) 0 is necessary
for the solution to be real.

We conclude, therefore, that the general supersymmet-
ric wave function may also be found in closed form for
this theory. The bosonic functions in the Grassmann ba-
sis expansion of the wave function are again given by Eq.
(6.12), but E has the slightly difFerent form

(6.22)

where ( —= c'~'(n'~'+ P'~') and g
—= c'~'(n'~' —P'~')

n = X and P—:Y' . The classical Hamiltonian (6.20)
is then given by Eq. (6.1), where the nonvanishing com-
ponents of the minisuperspace metric are G p ——t p
(nP) ~ and the superpotential W = 2c(o.P) ~ . There
exists a hidden supersymmetry if I satisfies

B. A string inspired model VII. CONCLUSIONS AND DISCUSSION

H=e —24 a4 —aC —ca~
' '2

¹

(6.i7)

and it is straightforward to verify that Eq. (6.17) is in-
variant under the duality transformation

1
a = —, 4 = P+ lna.A' (6.IS)

If we introduce the coordinate pair

X=—ae —~, V=e-~, (6.19)

the Hamiltonian takes the form

H = — XY —cXY
¹

(6.20)

and invariance under the duality transformation (6.18) is
therefore equivalent to an invariance under the simulta-
neous interchange X ~ V.

The momenta conjugate to X and Y are px = 4YjX
and py. = 4X/2V, respectively. It is convenient to per-
form a rescaling of these degrees of freedom by defining

String theory exhibits a symmetry known as target
space duality [53]. (For a recent review see, e.g. , Ref.
[54]). In two-dimensional space-times, a string cannot
tell if it is propagating on a circle of radius a or of radius
a . In efFect, this allows one to transform between the-
ories of radii a and a after a suitable translation on the
dilaton field [55]. It is convenient to consider this symme-
try within the context of the action (2.2) in the absence
of loop corrections, i.e. , D = c & 0. The Hamiltonian
derived from this action for the cosmological space-time
(2.10) is given by

In this paper we have investigated the quantum cos-
mology of a generalized class of two-dimensional dilaton-
gravity models. If the dilaton potential contains no roots,
i.e. , if V(vP) g 0 for all physically interesting g, the clas-
sical dynamics of these Universes is equivalent to that of
a noninteracting, point particle propagating over a por-
tion of two-dimensional Minkowski space. A large sub-
set of this class of models is dynamically equivalent to
the isotropic, constrained oscillator-ghost-oscillator sys-
tem. This suggests that the relationship between quan-
tum configurations and classical space-times, as discussed
in Ref. [17], could be generalized to these models.

Furthermore, these correspondences imply that the
Wheeler-DeWitt equation can be expressed as the unit-
mass Klein-Gordon equation if a suitable choice of fac-
tor ordering is made. This allows a number of exact
and approximate solutions to be found. Quantum states
corresponding to Lorentzian geometries may be gener-
ated from an infinite sum of Euclidean solutions and vice
versa. The Hamilton-3acobi equation can be solved by
employing a Legendre transformation and. all developable
solutions to this equation were found in parametric form.

We proceeded to identify a wider class of integrable
two-dimensional minisuperspaces that can be solved ex-
actly by mapping the Wheeler-DeWitt equation onto the
unit-mass Klein-Gordon equation. This mapping is pos-
sible if the superpotential of the wave function is a separa-
ble function of the null coordinates over minisuperspace.
We applied this result to the Wheeler-DeWitt equation
derived from a renormalizable, two-dimensional dilaton-
gravity model [19].

One of the main problems with the quantum cosmol-
ogy program is the construction of a non-negative norm
from solutions to the Wheeler-DeWitt equation. This
equation is a hyperbolic, second-order partial differential
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equation, so the conserved current associated with it is
not necessarily semipositive definite. Consequently, it is
not clear that such a current will provide a suitable mea-
sure of probability. A similar problem is encounted when
the Klein-Gordon equation for a scalar Geld is solved. In
this case, however, the ambiguity is resolved by taking
the "square root" and in view of the close correspon-
dence between the Wheeler-DeWitt and Klein-Gordon
equations, it has been suggested that a similar technique
might solve the corresponding problem in quantum cos-
mology [48,56].

This suggests that one should search for supersymmet-
ric extensions to quantum cosmology. It was shown in
Sec. VI that the classical Hamiltonians derived from the
induced gravity theory and a string-inspired model may
be viewed as the bosonic components of a supersymmet-
ric Hamiltonian. In the latter case, the origin of this sym-
metry may be traced to the invariance of string theory
under duality transformations. The hidden symmetry
method was employed to derive the corresponding quan-
tum constraints for the two models. This method dif-
fers from other approaches to supersymmetric quantum
cosmology because it does not start from a Beld theory
of supergravity [49]. The quantum constraints can be
solved exactly and closed-form expressions for the gen-
eral supersymmetric wave function were found. It would
be interesting to investigate whether this method can be
applied to more general models.

An alternative approach to quantum cosmology is the
third quantization procedure [57,58]. The aim of this
approach is to construct a consistent probabilistic mea-
sure in quantum gravity by promoting the wave func-
tion of the Universe to a quantum field operator that
acts on a Hilbert space of states. The "vacuum" state
in this space is identified as the state where the Uni-
verse does not exist. Topology changing processes can
then be described by including self-interactions of the
Universe field. Moreover, in. the minisuperspace approx-
imation a suitable combination of the dynamical degrees
of freedom may be associated with a time variable in the
Wheeler-DeWitt equation. It then follows that the su-
perpotential of the wave function may be viewed as a
"time-dependent" function. In ordinary quantum Geld
theory it is well known that particles are created from
the vacuum by a time-varying external potential and this
suggests that Universes could be created via a similar
process. In practice the Universe Geld is expanded into
positive frequency in- and out-mode functions and their
Hermitian conjugates. The in and out modes are related
to one another by the Bogoliubov coefFicients and these
determine the number of Universes in a given mode [59].
The creation of Universes in this picture arises because
the two Hilbert spaces generated by the in- and out-mode
functions are inequivalent and this results in nonzero Bo-
goliubov coefIicients.

Recently Vilenkin [60] has argued against this picture
of Universe creation. His main objection is that the time
variable constructed in minisuperspace models is gener-

ally not a monotonically increasing function since Uni-
verses can contract as well as expand. He then interprets
the creation of a pair of Universes in terms of a contract-
ing Universe that begins reexpanding at a finite radius.
On the other hand, he does suggest that third quantiza-
tion might be appropriate for describing topology chang-
ing processes in two-dimensional Universes.

Since there is currently no generally accepted inter-
pretation of third quantization, it is of interest to inves-
tigate its consequences further. The procedures can be
applied to the class of two-dimensional models (2.8) for
which P, as defined in Eq. (2.16), is positive-deffnrte for
all @. The variables (3.7) take all values in the range
(s, r) E (—oo, +oo) and we may therefore view s as the
time variable in the Wheeler-DeWitt equation (3.8). The
scale factor of the Universe vanishes as 8 m —oo and in-
Gnite spatial volume corresponds to the limit 8 ~ oo.
Formally, this model is identical to the one considered
previously by Hosoya and Morikawa [58], so their results
will apply here. The appropriately normalized positive-
frequency in- and out-mode functions are given by

u'"(s, r) =- —
~

sinh
~

e'""J„(e '),
)

out
( )

7r
I p I /6 iptII (2) '( 38

)
] ~ 1/2

2 3 v (7.1)

(1
—2mlyl/3) —1/2 [5 [ (

2wlPl/3 1)
—1/2 (7 2)

and the average number of Universes with "energy" p
therefore has a Planckian distribution

~u = lc2(p~ p) I

= (e lul/ 1)— (7 3)

Hosoya and Morikawa [58] extended this free field the-
ory by including a 4 interaction that describes the split-
ting of a "mother" Universe into two "baby" Universes
of identical topology. By treating the mother Universe in
a classical fashion, they showed that the quantized baby
Universes also have a Planckian distribution. The for-
mal equivalence of their model with those studied in this
work suggests that similar conclusions should apply for
a wide class of two-dimensional cosmologies. It would be
of interest to investigate these possibilities further.
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respectively, where v = —i~p~/3. As s —+ oo, u "t oc e's
and this is the WKB solution given by Eq. (4.15) with
f = 0. It follows that the Bogoliubov coefficients are
given by ci (p, q) = bib„~ and c2(p, q) = 628„~, where
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